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PRIME GRAPHS

HIROYOSHI YAMAKI (八牧 宏美)

1. Prime graphs. Let $G$ be a finite group and $\Gamma(G)$ be the prime graph of $G$ . This

is the graph such that the vertex-set $V(\Gamma(G))=\pi(G)$ , the set of prime divisors of

$|G|$ and two distinct primes $p$ and $r$ are joined by an edge if and only if there exists

an element of order $pr$ in $G$ . The concept of prime graph arose from cohomological

questions associated with integral representation of finite groups (See Gruenberg[4],[5],

$Gruenberg- Roggenkamp[6],[7])$ . Let $n(\Gamma(G))$ be the number of connected components of

$\Gamma(G)$ and $d_{G}(p, r)$ the length of the shortest path between $p$ and $r$ . If there is no path

between $p$ and $r$ , then $d_{G}(p, r)$ is defined to be infinite.

Theorem 1 ([10],[13],[14]).

$n(\Gamma(G))=\{\begin{array}{l}123456\end{array}$

Theorem 2 ([11]).

$d_{G}(p, r)=\{\begin{array}{l}1234\infty\end{array}$
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Remark 1. Theorems 1 and 2 hold for any finite group $G$ . The proofs depend upon the

classification of finite simple groups. Theorem 1 is the solution of Gruenberg-Kegel’s

conjecture. We classify not only the number of connected components but also the

components themselves. The significance of Theorem 1 can be found in $[5],[8],[9],[12]$

and [15].

Remark 2. If $G$ is solvable or simple, then $d_{G}(p, r)=1,2,3$ or $d_{G}(p, r)=\infty$ . For the

sporadic simple group $G,$ $d_{G}(p, r)=3$ if and only if $G=F_{1}$ and $p=29,$ $r=47$ or

$G=M_{23}$ and $p=3,$ $r=7$ . Unfortunately we have no application of Theorem 2. We are

trying to find applications of Theorem 2.

2. Related topics. Let $\chi$ be a character(resp. p-Brauer character) of $G$ and $L$ be the

set of values of $\chi$ on nonidentity elements(resp. nonidentity p-regular elements) of $G$ .

We say that $\chi$ is sharp(resp. p-Brauer sharp) if $f_{L}(\chi(1))=|G|$ (resp. $f_{L}(\chi(1))=|G|_{p’}$ )

where $f_{L}(x)$ is the monic polynomial of least degree whose set of roots is $L$ . We note

that $|G|$ (resp. $|G|_{p’}$ ) always divides $f_{L}(\chi(1))$ by Blichfeldt’s theorem(See [1]). Recently

Alvis and Nozawa[l] classified the groups with sharp character $\chi$ such that $\chi$ takes an

irrational value and $(\chi, 1_{G})=1$ . Therefore we can assume that $L$ is contained in Z. Let

$L=\{l_{1}, l_{2}, \ldots, l_{t}\}$ . The (p-Brauer) sharp character $\chi$ is said to be t-connected if and only

if $L\subseteq Z-\{\chi(1)-1, \chi(1)+1\}$ and $(\chi(1)-l_{i}, \chi(1)-l_{j})=1$ for $i\neq j$ .

Theorem 3 ([3],[8]). The following two conditions are $eq$ uivalen$t$ .

(1) $Gh$as a 2-connected (p-Brauer) sharp character.

(2) $\Gamma(G)-\{p\}$ is $dis$connected.

Remark 3. $\Gamma(G)-\{p\}$ is a subgraph of $\Gamma(G)$ such that the vertex-set is $V(\Gamma(G))-\{p\}$ . If

$p$ does not divide $|G|$ , then $\Gamma(G)-\{p\}=\Gamma(G)$ and the result is for ordinary (generalized)
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characters.

Remark 4. In [1] the authors assume that $\chi$ is the character of its representation. How-

ever in [3] and [8] $\chi$ may not have its representation.

Let $\mathfrak{R}(G)=$ { $n\in Z|G$ has a conjugacy class $C$ with $|C|=n$}. Thompson made the

following conjecture.

Thompson’s conjecture. Let $G$ be a finite group and $M$ a non abelian simple group. If

$\mathfrak{R}(G)=\Re(M)$ and $Z(G)=1$ , then $G$ is isomorphic with $M$ .

Theorem 4 ([2]). Thompson’s conjecture holds for a fnite simple group M With

$n(r(M))>1$ .

The proof heavily depends upon the classification of the connected components of

prime graphs of finite simple groups in Theorem 1.
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