goooboooogn
0 8710 19940 15-23

15

Optimal Simulation of Two-Dimensional Alternating Finite Automata
by Three-Way Nondeterministic Turing Machines

P fERE (Akira ITO), # k3 A (Katsushi INOUE), BB A B (Itsuo TAKANAMI)
' ' IWOKFL%E

ABSTRACT We show that n log n space is sufficient for three-way non-
deterministic Turing machines (3NTs) to simulate two-dimensional al-
ternating finite automata (AFs), where n is the number of columns of
rectangular input tapes. It is already known that n log n space is
necessary for 3NTs to simulate AFs. Thus, our algorithm is optimal
in the sense of space complexity point of view,

1. Introduction

Recently, Jiang et al. [1] has shown interesting properties of two-
dimensional alternating finite automata (AFs). For example, the class of
sets accepted by AFs are not closed under complementation, and two-
dimensional alternating finite automata with only universal states (UFs) are
not equal to the complements of two-dimensional nondeterministic finite
automata (NAs). These results contradicts our earlier expectation with
usual sense. . :

In order to draw them out, the same paper reveals the fact that three-way
nondeterministic Turing machines (3NTs) requires at least n log n space to
simulate UFs, where n is the number of columns of a rectangular input tape.

This paper will show that n log n space is also sufficient for 3NTs to
simulate AFs. Combined with Jiangs’ revelation, we can say that n log n
space is necessary and sufficient, thus optimal for 3NTs to simulate AFs and
UFs. : : ‘

2. Preliminaries

In contrast with ordinary one-dimensional Turing machines [2] which are
given one-dimensional strings as inputs, a two-dimensional Turing machine
[3] is a off-line Turing machines whose input tapes are rectangular in
shape. It can move around on the input tape to the left, right, up, or
downward, but never falls off the boundary symbols #’s surrounding over the
four border edges of the input tape. Well-known concepts on the ordinary
automata theory, such as nondeterminism, alternation, one-way movement of
input head, space complexity, etc., naturally extended to the two-
dimensional automata, except slight modifications: One-way movement of the
input head becomes here three-way movement of left, right, and downward
directions. Also, two-dimensional space complexity functions here have two
variables "m" and "n", which represent the number of rows and columns of the

input tapes, respectively.

16

A configuration of two-dimensional alternating Turing machine M on input
tape x is a triple (x,(i,j),(q,a ,k,)), where x is a rectangular input tape
for M, (i,j) is the position of the input head, q is a state of the finite
control, a is the content of the working tape, and k is the position of the
working tape head. A two-dimensional alternating Turing machine M is called
"L(m,n) space-bounded" if for each m, n (m,n>1) and for each input tape x
with m rows and n columns, there exists an accepting computation tree such
that each node labeled with configuration (x,(i,j),(q,a , k)) satisfies | «
| < L(myn), when M accepts x. Also, M is called "L(m) space-bounded” if for
each m (m>1) and for each square input tape x with m rows (m columns), there
exists an accepting computation tree such that each node labeled with con-
figuration (x,(i,j),(q,a ,k)) satisfies | « | < L(m), when M accepts x.

A two-dimensional finite automaton can be regarded as a two-dimensional
Turing machine whose space complexity function is constantly bounded, i.e.,
L{(m,n)<c for some constant c.

Let "AF", "UF", and "3NT(L(m,n))" denote a two-dimensional alternating
finite automaton, a two-dimensional alternating finite automaton with only
universal states, and a three-way nondeterministic L{(m,n) space-bounded two-
dimensional Turing machine, respectively [3-5].

For any family of two-dimensional automata ¥, the class of sets of rec-
tangular input tapes accepted by ¥ is denoted by 2[%¥] and the class of
sets of "square" input tapes accepted by ¥ is denoted by £{¥], that is,

r_ 1"

. the superscript "s" indicates the restriction of their input tapes to square
ones. ‘

For convenience, we simply denotes a configuration of AF M by a triple
(x,q9,(i,j)), where x is the input tape for M, q is a state of the finite
control of M, and (i,j) is an input head position., Let Im(x) be the initial
configuration (x,qe,(1,1)) of M on x, where qo¢ is the initial state of M.
The set of all possible configurations of M on x is denoted by "Cu(x)". Let
c and ¢’ be two configurations of M. If ¢ can reach ¢’ by a single step, we
write ¢ Fu c’. '

Normally, the acceptance of alternating machines is defined in connection
with the existence of an accepting computation tree.(3) It can, however, be
defined by the following deterministic procedure, too. This is essentially
the same scheme given by Chandra et al, (6)

17

main program GENERAL:

begin

if In(x)e€ SATURATE(Cu(x),d) then accept else reject e (1)
end.

function SATURATE(var D,A: subsets of Cu(x)): a subset of D - A
begin
E:= {c| ¢ is an accepting configuration in DU A};
loop do
4:=9;
for each c €D - E do
if (c is existential and Fc’€E[c Fu c’])
or (c is universal and Vc’(¢c Fwn c’)[c’€E])
then 4:= 4 + {c}?
endfor;
E:=E+ 4;
if A=9 then return E - A;
endloop
end.

Let each element of the set SATURATE(Cu(x),®) after Step (1) of the
program GENERAL be called "generalized accepting configurations,” or "g.a.
configurations" in short. 1In terms of [5], a generalized accepting con-
figuration is the configuration c such that there exists a c-accepting com-
putation tree (c-accepting computation tree itself is the computation tree
whose root is labeled with ¢ and whose leaves are all labeled with accepting
configurations).

The set A as an argument of the function SATURATE is assumed to be that
of configurations which had been already judged as g.a. configurations. 1In
the constraint that the elements of A are fixed, the function SATURATE
produces additional g.a. configurations only from the target set D, exclud-
ing the outer set Cu(x)—D beyond D. We also neglect the part DN A(€ A) of
D from the output range since it is already known as g.a. configurations.

The outer loop is repeated until there is no more configuration in D to
be judged as g.a. configuration. At each step of the inner for—lqop, each
configuration in D which has not yet been judged as a g.a. configuration is
tested by means of conjunction or disjunction on the previous judgment of
its immediate successors. Thus, the algorithm proceeds in the bottom-up man-
ner from the leaves (= accepting configurations) up to the root (= initial
configuration) of the computation tree of M on x.

- It should be noted that the final set of generalized accepting configura-
tions will never change even if we evaluate it in any order. In other
words, the calculating order is restricted only with the partial order rela-
tion +wx. Based on this property of g.a. configurations, we can take
another strategy. For example, we partition the set Cu(x) into two disjoint
parts Cl1 and C2 earlier, then alternatively change one part by the other as
the scope of the evaluation for the function SATURATE. It is clear that
this strategy will finally produces the same set of g.a. configurations as

1. For two sets A and B, "A+ B" denotes the set AUB-ANB.

18

the program GENERAL:

main program MODIFIED:
begin {assume ClU C2= Cyh(x) & ClNn C2= @}

A:=@;

repeat
A Al: = SATURATE(C1,A);
A:= A+ AAl;
A A2:= SATURATE(C2,A);
A=A+ A A2

until A A2= 9;
if In(x)€ A then accept else reject -
end.

3. Results

In that follows, we show that two-dimensional alternating finite automata
can be simulated by three-way nondeterministic n log n space-bounded Turing
machines, where n is the number of columns of the input tapes. Note that
this space bound function does not depend on the number m of rows of given
input tapes.

Main Theorem. £ [AF] € Z[3NT(n log n)]

Proof. Assume that an input tape x with m rows and n colums is given to an
AF M. Let Q be the set of states of the finite control of M.

First of all, it should be noted that, with such a principle that the bot-
tom area of x is saturated earlier than the top area, we can further modify
the program MODIFIED described in the preceding section into a "recursive
program”" as follows.

main program RECURSIVE: ‘
global const C[0..m+1]: where Cl[i]l= {(x,q,(i,j)) | q€ Q & 0<j<n+1};
global var A[-1..m+2]: where A[ile C[i] (0<i<m+1) and A[-1]1=A[m+2]1=0;
begin

Ali]l:= P for each i(0<Li<m+l1);

ROLLER(O) ;

if Iu(x)€ A[1l] then accept else reject

end.

procedure ROLLER(var i:row index of x):
begin
if i=m+2 then return;
loop do
ROLLER(i+1);
A Ai:= SATURATE(C[i],A[i-11U A[i]U A[i+1]);
if AAi= @ then return;
AfiJ:=Alil+ A Ai
endloop
end.

Of course, SATURATE is the function described in the preceding section.
Note that two configurations c=(x,q,(i,j)) and c’=(x,q’,(i’,j’)) satisfy the

19

relation c¢ckwu ¢’ only when | i-i’'| <1, Thus, as actual arguments of
SATURATE, we have only to employ the subset of A corresponding to the cur-
rent row Afi] and its two adjacent rows A[i-1]U A[i+1], not whole the ele-
ments of A. ‘

The program RECURSIVE proceeds as if it presses and flattens '"the ground
level” by perpendicular moves of a "roller" with horizontal axis. Figure 1
illustrates the behaviors of the program for a computation graph, which is
derived from the pair of some AF and some x. The reader can see from Figure
1 that configurations of the bottom area is evaluated as early as possible
than those of the top area.

Here, we construct a three-way nondeterministic Turing machine M’ that
simulates the running process of the deterministic program RECURSIVE, not
directly simulating the four-way alternating automaton M itself. Since M’
can visit each row only once from the top row down to the bottom row on a
given input tape, it must guess the consequences of the entire calls for the
subroutine ROLLER evoked on the current row, which are not necessarily con-
secutive events. : .

In the following program, the array AL is used as an argument of
SATURATE, which corresponds to A[i-1]U A[i]U A[i+1] of the program RECUR-~
SIVE. AGk[1] is the guessed elements that would be added to A[i+1] by the
kth execution of ROLLER(i+1). A Ax[0] corresponds to the output A4Ai from
the function SATURATE. The two variables A ALO and A Gkx[O0] are used to
check the correctness of the guesses. The integer variable maxc represents
the number of times of calls for the subroutine ROLLER on the preceding i-
1st row. Below, K(Q,n) denotes the set {(q,j) | q€Q & 0<j<n+l} and qo is
the initial state of M.

20

main program THREE-WAY NONDETERMINISTIC:
var AL[-1..1]: where AL[r]<€ K(Q,n) (-1<r<1);
A ALO: where A ALOS K(Q,n);
A Gk[0..1] (k>1): where A Gkl[r]€K(Q,n) (0<r<l);
A4 Ax[-1..0] (k>1): where 4Ax(rlsK(Q,n) (-1<r<0);
begin
maxc:= 1;
for i=0 to m+1 do
move to the ith row (when i=0, assume #'s on the 1lst row);
AL[r]:= @ for each r(-1<r<1);

k:=1;
for Q=1 to maxc do
A ALO: = §;
- loop do
if k>2 and 4Ax-1[0]=0 then AGk[1]:=9 e (2)
else if i=m+]l then AGki{l]l:=0 e (3)

else guess A Gk[1]€K(Q,n)— AL[1];
AL[1]:= AL[1]+ A Gk[1];
A Ax[0]: = SATURATE({(x,q,(i,j)) | q€ Q & 0{j<n+1},AL);
if AAx[0]= 0 then exit loop;
AL[O}:= AL[O1+ A4 Ak[0];
AALO:= A ALO+ A Ax[0];

k:= k+1
endloop;
if i# 0 and A ALO# A G; [0] then reject; vee (4)
if i# 0 then AL[-1]:= AL[-1]1+ 4 A [-1]
endfor;) :
maxc: = k;

if i=1 and (qo,1)€ AL[0] then reject;
for k=1 to maxc do
A Ax[-1]:= 4 Ax[0];
AGk[0]:= AGk[1]
endfor
endfor;
accept
end.

When the latest value of the output AAi from the function SATURATE of
the former program RECURSIVE, is empty (except when the very first call of
it on each row), our simulating program stops the honest trace of the fur-
ther recursion, which will be evoked here, since there would be no change on
the array variable A. In order to save the wasteful job of this kind, it
simply sets A Gk[1l] to empty set as shown in Step (2).

On the ith (0<i<m) row, the correctness of each guess A G; [0], which had
been guessed on the preceding i-1st row, is checked at Step (4) by the
value of A Ak[0], which has been probably influenced by the recent guess A
Gk[1] during the computation of the function SATURATE.

On the m+list row, we can faithfully fix the value of A Gx{1l] to empty set
for each k as shown in Step (3), since the recursive call for ROLLER(m+2)
evoked here immediately returns without anything done. Therefore, the cor-
rectness of all the guesses described above is lastly confirmed when M’
visits the bottom boundary row.

Table.1 illustrates the process when the key variables of the program are
changing their contents in an accepting computation of M’ on the computation

| ,21

graph shown in Figure 3.

It is clear that the program above correctly simulates the program RECUR-
SIVE, thus T(M')=T(M). We omit here the proof of the fact that the amount
of space used by M’ is bounded by O (n log n).0O

Fact. (1) If L(m)= o (m log m), then B[UFs] & L[3NT#(L(m))].
From this (and the obvious fact 2 [UF]l< £ [AF]), we get the followihg.

Corollary. n log n space is necessary and sufficient for 3NTs to simulate
AFs (UFs).

It is known [1] that n space is necessary and sufficient for 3NTs to
simulate the complements of AFs (the necessity is straightforward).

References

[1] T.Jiang,0.H.Ibarra,and H.Wang, Some results concerning 2-D on-line tes-
sellation acceptors and 2-D alternating finite automata, Lect.Notes in
Comp.Sci. 520, pp.221-230 (1991).

[2] J.E.Hopcroft and J.D.Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison Wesley (1979).

[3] K.Inoue,Il.Takanami,and H.Taniguchi, Two-dimensional altematlng Turing
machines, Theoret.Comput.Sci. 27, pp.61-83 (1983).

[4] A.TIto,K.Inoue,I.Takanami,and H.Taniguchi, Two-Dimensional Alternating
Turing Machines with Only Universal States, Inform. & Contr. 55, Nosl-3
(1982) 193-221. _

[6] A.Ito, K.Inoue, and I.Takanami, Deterministic Two-dimensional On-Line
Tessellation Acceptors are Equivalent to Two-Way Two-Dimensional Alter-
nating Finite Automata through 180° -Rotation, Theoret.Comput.Sci. 66
pp.273-287 (1989). '

[6] A.K.Chandra,D.C.Kozen,and L.Stockmeyer, Alternation, J.Ass.Comp.Mach.
28, pp.114-133 (1981).

[7] A.Ito,K.Inoue,]l.Takanami,and H.Taniguchi, Relationships of the Accepting
Powers between Cellular Space with Bounded Number of State-Changes and
Other Automata, Trans.IECE Japan J68-D, No.9, pp.1562-1570 (Sep.1985), in
Japanese [translated to Systems and Computers in Japan 17, No.7, pp.63-72
{1986)1.

top bottom
boundary row Ist row Znd row 3rd row boundary row

33 19
17 O
32
/@/ ——cl__ '
‘ 17

31 16 —®

15 <
29

29 26 >O2
26

5

\

/f
;
/]3

Y

25

\

i
FAYYSRAAR

éi< 24

1

_
J/L
—
e}

e
~

15

A

Fig.1 Behaviour of the program RECURSIVE on some computation graph.
Script number denote the order of configurations when they are judged
as generalized accepting computations. '

23

Table.1 Running process of the program THREE-WAY_NONDETERMINISTIC lead to the acceptance. t
top tt
boundary row 1st row 2nd row 3rd row 1Figt Y Trow
AGk[11 | A4Ak([0] A Gyl1] AAx[0] A Gk[1] 4 Ax[0] AGkl[1] A Ax[0] A Gkl1]} 4 Ax[0]
14 1
@
1 2 g1 ¢
[4 4
2 3 [¢] 4 (o] 14
¢ 4
4 5 [¢] (4
¢ ¢
(¢] 8 [#] 9
[¢] 7 ¢ Ld
9 10 (¢] ¢
3 5 6 : * [¢] 13
8, 10 11 (g1 12 P 7
13 ¢
12 ¢
7, 11 14 [¢] 4
@ 4
(g1 18 [¢] 19
(61 17 = =5 [:] :
[¢1] 16
6, 14 15 ¢ ¢
18, 20 21 [¢] ¢
¢ ¢ J
17, 21 22 {1 ¢
¢ ¢
(¢ 26 [: ! 2¢7
(g] 25 27 28 (g1 s
[¢1 24 p P
16, 22
2 23 26, 28 29 [¢] ¢
¢ [4
25, 29 30 [¢] ¢
¢ ¢
. [¢1] 33 [¢] ¢
24, 30 31 (g1 32 ¢ ¢
33)
32 ¢
maxc= 4 maxc= 11 maxcs= 17 maxc= 19 maxc= 15

Here, each number denotes the configuratons which are told off in such a number in Fig.3.

Note that other variables A Gy, [0] and AA; [-1] becomes A Gk[1] and AAk[0] in the next row,

respectively.

The symbol "[¢ 1" denotes the empty set generated at Step (2) of the program.

