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1 Introduction

Since current computing devices are based on the Turing Machine, principles of computation
on those devices are based on classical physics. lt is well known that classical physics is
sufficient to explain macroscopic phenomena, but is not to explain microscopic phenomena like
the interference of electrons. In these days, speed-up and down-sizing of computing devices
have been carried out using quantum physical effects, however, principles of computation on
these devices are also based on classical physics.

Until now, several physicists have proposed models of computation based on quantum
physics, so-called quantum computers. In early models of quantum computers such as those of
P. A. Benioff[3], researchers placed a great importance on finding an precise representration of
Turing Machines based on quantum physics. Thus, inherent properties of quantum physics were
not involved in those models. In other words, their purpose was to design a good simulator of
Turing machines based on quantum physics. $\ln$ 1985, D. Deutsch introduced, for the first time,
a model involving a superposition of physical states, which is one of the inherent prop.erties
of quantum physics[5], and suggested that his quantum computer might have a potential for
a new type of computer. Indeed, Deutsch and Jozsa have shown a problem such that the
quantum computer can solve faster than any other classical models of computation by using
so-called quantum parallelism[6].

A goal of this paper is to show mathematically a possibility that the Deutsch’s universal
QTM can compute faster than any other classical models of computation. Namely, in the
sequel, we show that the Deutsch’s universal quantum Turing machine can solve any NP-
complete problem in polynomial time under a physical assumption that we can observe the
existence of a specific physical state in a given superposition of physical states.

2 The Quantum Turing Machine

Definition of the Quantum Turing Machine

Like an ordinary Turing machine, a quantum Turing machine $M$ consists of a finite control, an
infinite tape, and a tape head.

数理解析研究所講究録
第 871巻 1994年 30-36



31

Deflnition [4] A Quantum Turing Machine (QTM) is a 7-tuple $M=(Q, \Sigma, \Gamma, U, q_{0}, B, F)$ ,
where

$Q$ is a finite set of states, ’

$\Gamma$ is a tape alphabet,
$B\in\Gamma$ is a blank symbol,
$\Sigma\subseteq\Gamma$ is an input alphabet,
$\delta$ is a state transition function and is a mapping from $Q\cross\Gamma\cross\Gamma\cross Q\cross\{L, R\}$ to
$C$ (the set of complex numbers),
$q_{0}\in Q$ is a initial state,
$F\subseteq Q$ is a set of final states.

An expression $\delta(p, a, b, q, d)=c$ represents the following: if $M$ reads a symbol $a$ in a state
$p$ (let $c_{1}$ be this configuration of $M$ ), $M$ writes a symbol $b$ on the square under the tape head,
changes the state into $q$ , and moves the head one square in the direction denoted by $d\in\{L, R\}$

(let $c_{2}$ be this configuration of $M$ ), and $c$ is called an amplitude of this event. Then we define
the probability that $M$ changes its configuration from $c_{1}$ to $c_{2}$ to be $|c|^{2}$ .

This state transition function 6 defines a linear mapping in a linear space of superpositions
of $M’ s$ configurations. This linear mapping is specified by the following matrix $M_{\delta}$ . Each row
and column of $M_{5}$ corresponds to a configuration of $M$ . Let $c_{1}$ and $c_{2}$ be two configurations
of $M$ , then the entry corresponding to $c_{2}$ row and $c_{1}$ column of $M_{\delta}$ is $\delta$ evaluated at the tuple
which transforms $c_{1}$ into $c_{2}$ in a single step. If no such tuple exists, the corresponding entry is
0. We call this matrix $M_{\delta}$ a time evolution matrix of $M$ .

Assumption: For any QTM $M$ , the time evolution matrix $M_{\delta}$ must be a unitary
mat$7\dot{T}X$ .

Namely, if $M_{\delta}^{\dagger}$ is the transpose conjugate of $M_{\delta}$ and $I$ is the unit matrix, then the relations
$M_{\delta}^{\dagger}M_{\delta}=M_{\delta}M_{\delta}^{\dagger}=I$ must be satisfied by $M_{\delta}$ .

Computations and Observations

A computation by $M$ is an evolution process of a physical system defined by the unitary matrix
$M_{5}$ . If we denote an initial state of $M$ by $[\psi(0)]$ and a state at time $s$ by $[\psi(s)]$ ,

$[\psi(\tau t)]=M_{\delta}^{t}[\psi(0)]$ ,

where $\tau$ is the time required by $M$ to execute a single step.
And, the tape content will be observed as follows: if the vector (a superposition of configu-

rations) $\psi=\sum_{i}\alpha_{i}c_{i}$ is written on the tape, for any vector $\phi$ , we can observe with probability
$|(\phi, \psi)|^{2}$ that $\psi$ is parallel to $\phi$ . Especially, we can observe with probability $|\alpha_{i}|^{2}$ that $\psi$ is
parallel to $c_{i}$ .

In this paper, we assume the following on the observation of a configuration.

Assumption $A$ : When we observe a specific configuration $C$ , if $C$ exists in a
superposition, we can observe the existence of $C$ with certainty.
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Actually, the very recent result of Aharonov et al.[l] suggests that this assumption could be a
valid one.

The Universal Quantum Turing Machine

Deutsch’s universal QTM $U$ can executes all operations of ordinary reversible Turing machines
[2], and unitary transformations for l-bit state space[5]. Notice that the ordinary Turing
machines can not execute these unitary transformations. Deutsch’s universal QTM can execute
the following eight types of transformations:

$V_{0}=(\begin{array}{ll}cos\alpha sin\alpha-sin\alpha cos\alpha\end{array})$ , $V_{1}=(\begin{array}{ll}cos\alpha isin\alpha isin\alpha cos\alpha\end{array})$ , $V_{2}=(\begin{array}{ll}e^{i\alpha} 00 1\end{array})$ , $V_{3}=(\begin{array}{ll}1 00 e^{i\alpha}\end{array})$ ,

$V_{4}=V_{0}^{-1}$ , $V_{5}=V_{1}^{-1}$ , $V_{6}=V_{2}^{-1}$ , $V_{7}=V_{3}^{-1}$ ,

where $\alpha$ is any irrational multiple of $\pi$ . In this paper, we define $\alpha$ as follows:

$\alpha=\frac{\pi}{4}$ .

A QTM $U_{0}$ which simulates a reversible universal DTM $M$ can be constructed in a way that
Deutsch showed in [5]. This QTM $U_{0}$ runs in the same number of steps as $M$ . The universal
QTM (UQTM, for short) which we will use in the sequel is the QTM that will be obtained
from $U_{0}$ by adding the abilities to execute the above eight types of unitary transformations to
$U_{0}$ . Without loss of generality, we use the following convention when we evaluate the execution
time of the universal QTM.

Convention: The universal QTM executes a single step of the reversible DTM in
a single step, and each one of the eight types of transformations above in a single
step.

3 Results

In this section, we show a method of solving SAT in $O(n^{2})$ time using Deutsch’s UQTM under
the assumption A[7]. In order to simulate a reversible universal DTM, the UQTM $U$ has an
input tape $T_{1}$ , a work tape $T_{2}$ , and a history tape $T_{3}$ . Let $H_{1},$ $H_{2}$ , and $H_{3}$ be the heads on the
tapes $T_{1},$ $T_{2}$ , and $T_{3}$ , respectively (see Figure 1).

As shown in Figure 1, the UQTM $U$ starts the execution given a logical formula $f$ and
the number $m$ of variables in $f$ on the work tape $T_{2}$ , and the program $P$ to simulate on the
input tape $T_{1}$ . On the right-hand side of $P$ , infinitely many blank symbols are written. Notice
that the length of the description of $P$ is a constant which is independent of the length of
an input given on $T_{2}$ . The program $P$ consists of state transition rules of one-tape standard
DTMs and sentences corresponding to the eight unitary transformations above. Let $V(n, i)$ be
the sentence corresponding to these unitary transformations, where $0\leq n\leq 7$ . This sentence
represents that “apply the transformation $V_{n}$ on the ith bit of the work tape”.

In all configurations in a superposition, $U$ can simulate a single step of $M$ in the same
number of steps. The time complexity of the UQTM $U$ is the number of steps executed by $U$
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$T_{2}$ : work tape of $U$

$H_{2}$ : Read &Write

$T_{1}$ : input tape of $U$

$H_{1}$ : Read &Write

$T_{3}$ : history tape of $U$

$H_{3}$ : Read &Write

Figure 1: The UQTM $U$ .

until it finally halts, and is represented as a function of the length of the input (in this case,
the tdtal length of the descriptions of $f$ and $m$) given on $T_{2}$ .

Theorem 3.1 Under the assumption $A$ , the UQTM $U$ can solve SAT in $O(n^{2})$ time, where
$n$ is the total length of the description of a logical formula $f$ whose satisfiability should be
decided and the description of the number of variables in $f$ .

sketch of proof In the sequel, we construct a program $P$ that $U$ simulates in order to
solve SAT in $O(n^{2})$ time. Let us consider the satisfiability for an m-variable logical formula
$f(x_{1}, x_{2}, \ldots, x_{m})$ , where $x_{i},$ $i=1,2,$ $\ldots,m$ are boolean variables.

The machine $U$ writes an assignments to the variables in the logical formula $f$ together
with the corresponding value of $f$ on the tape $T_{2}$ . We show the program that $U$ will simulate
in Figure 2. $\ln$ the sequel, we explain the behavior of $U$ according to this program.

1. The initial configuration

The descriptions of the logical formula $f$ and the number $m$ of the variables are given as
input on the work tape $T_{2}$ , and the program $P$ that $U$ simulates is given on the input tape
$T_{1}$ . In the sequel, we identify a configuration of $U$ with a description of an assignment to
the variables in $f$ and the corresponding value of $f$ , which are written on the tape $T_{2}$ (this
description is written on the right-hand side of $f$ and $m$ on $T_{2}$ ). Let $[x_{1}],$

$\ldots,$
$[x_{m}]$ , and

$[x_{m+1}]$ be the bits corresponding to $x_{1},$ $\ldots,$ $x_{m}$ and the value of $f$ under the assignment in
this configuration, respectively. In the sequel, we are indicating only $[x_{1}, \ldots, x_{m}, x_{m+1}]$

in $[T_{2}]$ as a configuration of $U$ . Let

$[0,0, \ldots, 0;0]\sim$

$m$

be the initial configuration of $U$ . In order to simplify the presentation, we separate the
assignments for the variables from the value of $f$ by semicolon(;).
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begin
%%% Preparations of inputs
1 for $i=1$ to $m$ do
2 $V(4,i)$

od ;
%%% Computation of $f$

3 $x_{m+1}$ $:=f(x_{1}, \ldots, x_{m})$ ;
%%% Preparations for an observation
4 for $j=m$ to 1 do
5 $V(0,j)$

od
end.

Figure 2: The program that the UQTM $U$ simulates.

2. Preparations of inputs

There exist $2^{m}$ different assignments for $m$ variables of $f$ . Initially, $U$ makes a superpo-
sition of configurations corresponding to all of these assignments. $U$ will perform this by
applying

$V_{4}= \frac{1}{\sqrt{2}}(\begin{array}{l}1-111\end{array})$

to each bit corresponding to $m$ variables in order. $U$ can execute the transformation
by $V_{4}$ in a single step. In the execution of the first for loop, the initial configuration is
transformed as follows:

$[0,0, \ldots, 0;0]^{\bigcup_{x_{1_{arrow}^{\cup}}x_{m}}}\frac{1}{\sqrt{2^{m}}}\sum_{x_{1}=0}^{1}\sum_{x_{2}=0xm}^{1}\cdots\sum_{=0}^{1}[x_{1}, x_{2}, \ldots, x_{m}; 0]$.

Because $U$ can execute each transformation $\bigcup_{x}$ : in a single step, it can execute all the
transformations $\bigcup_{x_{1}}$ , $\bigcup_{x_{m}}$ in $m$ steps.

3. Computation of $f$

Let $U_{f}$ be a transformation corresponding to the computation of the value of the logical
formula $f$ , then

$\frac{1}{\sqrt{2^{m}}}\sum_{x_{1}=0}^{1}\sum_{x_{2}=0x}^{1}\cdots\sum_{m^{=0}}^{1}[x_{1}, x_{2}, \ldots, x_{m}; 0]$

$arrow\frac{1}{\sqrt{2^{m}}}\sum_{x_{1}=0}^{1}\sum_{x_{2}=0xm}^{1}\cdots\sum_{=0}^{1}[x_{1}, x_{2}, \ldots, x_{m}; f(x_{1}, x_{2}, \ldots, x_{m})]\equiv\psi U_{f}$.

In order to execute the third line of the program, $U$ simulates a program of a one-tape
standard DTM $M_{f}$ computing the values of $f$ . $U$ simulates $M_{f}$ , regarding $T_{2}$ as the tape
of $M_{f}$ . Obviously, $U$ can execute the whole computation of above in $O(n^{2})$ time.
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4. Preparations for an observation

The machine $U$ executes the reverse transformation of the one executed in the prepara-
tions of inputs by applying

$V_{0}= \frac{1}{\mathscr{J}_{2}}(\begin{array}{ll}1 1-1 1\end{array})$

to the bits corresponding to the $m$ variables, from $[x_{m}]$ to $[x_{1}]$ in order. Because $U$

can execute a transformation by $V_{0}$ in a single step, it can execute the for loop of the
fourth line in Figure 2 in $m$ steps. In this transformation the superposition $\psi$ of $U’ s$

configurations will be transformed as follows:

(a) If the values of $f$ for $2^{m}$ different assignments are all $O’ s,$ $\psi$ will be transformed to
one configuration $[0,0, \ldots, 0;0]$ .

(b) If the values of $f$ for $2^{m}$ different assignments are all l’s, $\psi$ will be transformed to
one configuration $[0,0, \ldots, 0;1]$ .

(c) Otherwise, $\psi$ will be transformed to a superposition of several configurations.

An Observation

When $U$ completes all the computaions above, we will observe whether there exists a configu-
ration $c_{0}=[0,0, \ldots, 0;1]$ in the flnally obtained superposition of $U’ s$ configurations. If $c_{0}$ exists
in the superposition, we conclude that $f$ is satisfiable, and if not, unsatisfiable. The correctness
of this decision is shown by the claim below.

Claim $f$ is satisfiable if and only if there exists the configuration $[0,0, \ldots, 0;1]$ in
the finally obtained superposition of configurations.

The Time Complexity of UQTM $U$

Since the second line in Figure 2 is executed $m$ times in total, $U$ can execute the first for
loop within $O(m)$ steps. As mentioned above, $U$ can execute the third line within $O(n^{2})$ time.
Finally, $U$ can also execute the for loop of the fourth line within $O(m)$ steps. Therefore, $U$

can execute the procedure in Figure 2 within $O(n^{2})$ steps in total. $\square$

Definition [4] A language $L$ is in the class EQP (exact or error-free quantum polynomial time
$)$ if there exists a QTM with a distinguished acceptance tape cell, and a polynomial $p$ , such
that given any string $x$ as input, observing the acceptance cell at time $p(n)$ correctly classifies
$x$ with respect to $L$ . More generally, a language $L$ is in the class BQP (bounded-error quantum
polynomial time) if this classification can be accomplished with probability greater than 2/3[4].

Corollary 3.1 Under the assumption $A$ , NP $\subseteq$ EQP.

Example In Figure 3, we show the change of the superpositions of configurations in the case
of a function $f$ such that $f(0, O)=f(1,1)=1,$ $f(0,1)=f(1,0)=0$.
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$\wedge^{[0,0;0]}$

$\wedge^{\frac{1}{\sqrt{2}}([0,0’ 0]}$

$+$

$\wedge^{[1,0;0\rfloor)}$

$\}o(n)$ time

$\frac{1}{\mathcal{F}_{2}^{2}}([0,0;0]+[0,1;0]+[1,0;0]+[1,1;0])$

$u$ ComPutation of $f$
$\}o(n^{2})$ time

$\frac{1}{\sqrt{2}2}([0,0;1]+\lceil 0,1;0]+[1,0;0]+[1,1;1])$

$\frac{1}{1\overline{2^{3}}}$ (
$[0,0;1]\dashv 0,1;1]+[0,0;0J+[0.1;0]!$

[1,0;0]-[1,1;0]+[1,o;月 $+[1,1;1]$ ) $\}o(n)$ time

$\frac{1}{\sqrt{2}2}(\underline{[0,0;1]}+[0,0;0]![1,1;0]+[1,1;1])$

Figure 3: The change of the superposition of configurations of the UQTM $U$ .
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