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abstract
Consider the problem of identifying $\min T(f)$ and $\max F(f)$ of a positive (i.e., monotone) Boolean

function $f$ , by using membership queries only, where $\min T(f)(\max F(f))$ denotes the set of minimal
true vectors (maximal false vectors) of $f$ . It is known that an incrementally polynomial algorithm
exists if and only if there is a polynomial time algorithm to check the existence of an unknown
vector for given sets $MT \subseteq\min T(f)$ and $MF \subseteq\max F(f)$ . Unfortunately, however, the complexity
of this problem is still unknown. To answer this question partially, we introduce in this paper a
measure for the difficulty of finding an unknown vector, which is called the maximum latency. lf the
maximum latency is constant, then an unknown vector can be found in polynomial time and there
is an incrementally polynomial algorithm for identification. Several subclasses of positive functions
are shown to have constant maximum latency, e.g., 2-monotonic positive functions, $\Delta$-partial positive
threshold functions and matroid functions, while the class of general positive functions has maximum
latency not smaller than $\lfloor n/4\rfloor+1$ and the class of positive k-DNF functions has $\Omega(\sqrt{n})$ maximum
latency.

1 Introduction

Consider the problem of identifying $T(f)$ (set of
true vectors) and $F(f)$ (set of false vectors) of a
given Boolean function (or a function in short)
$f$ by asking membership queries to an oracle
whether $f(u)=0$ or 1 holds for some selected vec-
tors $u[2]$ . $\ln$ the terminology of computational
learning theory $[1, 12]$ , this is the exact learn-
ing of a Boolean theory $f$ by membership queries
only. It is also a process of forming a theory that
explains a certain phenomenon by collecting pos-
itive and negative data (in the sense of causing
and not causing that phenomenon) [4]. In par-
ticular, we are interested in the case where $f$ is
known to be positive, i.e., monotone. If $f$ is a pos-
itive function, $T(f)$ and $F(f)$ can be compactly
represented by $\min T(f)$ (set of minimal true vec-
tors) and $\max F(f)$ (set of maximal false vectors).
Therefore our problem is stated as follows.

Problem IDENTIFICATION

Input: an oracle for a positive function $f$ .
Output: $\min T(f)$ and $\max F(f)$ .

The complexity of this type of enumeration al-
gorithm is usually measured in its length of input
and output. An algorithm to enumerate items
$a_{1},$ $a_{2},$ $\ldots,$ $a_{p}$ is called incrementally polynomial
[7], (i) if it iterates the following procedure for
$i=1,2,$ $\ldots,p$ : output the i-th item $a_{i}$ from the
knowledge of its input and items $a_{1},$ $a_{2},$ $\ldots,$ $a_{i-1}$

generated by then, and (ii) if the time required
for the i-th iteration is polynomial in the input
length and the sizes of $a_{1},$ $a_{2},$ $\ldots,$ $a_{i-1}$ . If an algo-
rithm is incrementally polynomial, it also satis-
fies the criterion of polynomial total time [7] (i.e.,
polynomial time in the length of input and out-
put).

Now let $MT$ and $MF$ respectively denote the
partial knowledge of $\min T(f)$ and $\max F(f)$ cur-
rently at hand, i.e.,

$MT \subseteq\min T(f)$ and $MF \subseteq\max F(f)$ . (1.1)
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Define

$T(MT)$ $=$
.

{$v|v\geq w$ for some $w\in MT$}
$F(MF)$ $=$ {$v|v\leq w$ for some $w\in MF$ }.

By assumption (1.1), $T(MT)$ $\subseteq$ $T(f)$ and
$F(MF)\subseteq F(f)$ , and hence

$T(MT)\cap F(MF)=\emptyset$

holds. A vector $u$ is called unknown if

$u\in\{0,1\}^{n}\backslash (T(MT)\cup F(MF))$ ,

since it is not known at the current stage whether
$u$ is a true vector or a false vector of $f$ . lf there
is no unknown vector, then $T(MT)\cup F(MF)=$

$\{0,1\}^{n}$ holds, i.e., $MT= \min T(f)$ and $MF=$

$\max F(f)$ hold for some positive function $f$ .
The general procedure of identifying a positive

function $f$ can be described as follows.

Algorithm IDENTFY
$/Input$ : an oracle for a positive function $f$ .

Output: $\min T(f)$ and $\max F(f)$ .
1. Start with appropriate sets $MT( \subseteq\min$

$T(f))$ and $MF( \subseteq\max F(f))$ , where $MT\cup$

$MF\neq\phi$ is assumed.
2. Test if $T(MT)\cup F(MF)=\{0,1\}^{n}$ holds.

If so, output $MT$ and $MF$ , and halt. Otherwise,
find an unknown vector $u$ and go to 3.

3. Ask an oracle if $f(u)=1$ or $f(u);=0$.
$1ff(u)=1$ , then compute a new minimal true
vector $y$ such that $y\leq u$ and let $MT$ $:=MT\cup$

$\{y\}$ . On the other hand, if $f(u)=0$ , compute a
new maximal false vector $y$ such that $y\geq u$ and
let $MF$ $:=MF\cup\{y\}$ . Return to 2. $\square$

The crucial part of this algorithm is in Step 2,
i.e., to solve the following problem, where a set of
vectors $M$ is incomparable if any pair of vectors
$v$ and $w$ in $M$ satisfies $v\not\geq w$ and $w\not\geq v$ .

Problem EQ
Input: Incomparable sets $MT,$ $MF(\subseteq\{0,1\}^{n})$

such that $T(MT)\cap F(MF)=\emptyset$ .
Question: Does $T(MT)\cup F(MF)=\{0,1\}$“

(i.e., no unknown vector) hold?

If problem EQ can be solved in polynomial
time, it is known that an unknown vector in

Step 2 can be found in polynomial time [2], and
that computing a minimal true vector or a max-
imal false vector $y$ from an unknown vector $u$

in Step 3 can also be done in polynomial time
[1, 2, 12]. Therefore, an incrementally polyno-
mial algorithm exists if and only if problem EQ
can be solved in polynomial time. It is shown in
[2] that problem EQ is polynomially equivalent
to many other interesting problems encountered
in various fields such as hypergraph theory [5],
theory of coteries (used in distributed systems)
[6], artificial intelligence [11] and Boolean theory
[2]. Unfortunately, the complexity of these prob-
lems is still open, though there is some evidence
to conjecture that it is co NP-complete.

In order to investigate the complexity of EQ
for subclasses of positive functions, we introduce
in this paper the concept of maximum latency,
which is a complexity measure for finding an un-
known vector. If the maximum latency is con-
stant, then it is shown in section 2 that EQ can be
solved in polynomial time, though the converse is
not generally true. In section 4, we show that the
maximum latency of general positive functions
is at least $\lfloor n/4\rfloor+1$ . However, several special
classes of positive functions are found in section
3 to have constant maximum latency; classes of
(i) 2-monotonic positive functions $[3, 10]$ , (ii) $\Delta-$

partial positive threshold functions [10], (iii) ma-
troid functions [13], (iv) k-tight functions, and
(v) others. For these classes of positive func-
tions, therefore, there are incrementally polyno-
mial identification algorithms. Finally it is shown
in section 4 that the class of positive k-DNF func-
tions has the maximum latency of $\Omega(\cap n$ , even
though it is known [5] that EQ can be solved in
polynomial time for this class of functions.

The last result indicates that the concept of
maximum latency is not always sufficient to dis-
tinguish polynomially solvable cases from those
not solvable in polynomial time. However, it is
also evident that the maximum latency is a pow-
erful tool to find polynomially solvable special
cases.
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2 Definitions and basic proper-
ties

A Boolean function, or a function in short, is a
mapping $f$ : $\{0,1\}^{n}rightarrow\{0,1\}$ , where $v\in\{0,1\}^{n}$

is called a Boolean vector (a vector in short). If
$f(v)=1$ (resp. $0$ ), then $v$ is called a true (resp.
false) vector of $f$ . The set of all true vectors (false
vectors) is denoted by $T(f)(F(f))$ . A function
$f$ is positive if $v\leq w$ always implies $f(v)\leq f(w)$ .
A positive function is also called monotone. A
true vector $v$ of $f$ is minimal if there is no other
true vector $w$ such that $w<v$ , and let $\min T(f)$

denote the set of all minimal true vectors of $f$ .
A maximal false vector is symmetrically defined
and $\max F(f)$ denotes the set of all maximal false
vectors of $f$ .

If $f$ is positive, it is known that $f$ has the
unique disjunctive normal form (DNF) consisting
of all prime implicants. There is one-to-one cor-
respondence between prime implicants and min-
imal true vectors. For example, a positive $funC^{d}$

tion $f=x_{1}x_{2}\vee x_{2}x_{3}\vee x_{3}x_{1}$ , has prime impli-
cants $x_{1}x_{2},$ $x_{2}x_{3},$ $x_{3}x_{1}$ which correspond to mini-
mal true vectors (110), (011), (101), respectively.
The input length to describe a positive function $f$

is $O(n| \min T(f)|)$ if it is represented in this man-
ner.

Given incomparable sets $MT,$ $MF(\subseteq\{0,1\}^{n})$

such that $MT\cup MF\neq\emptyset$ and $T(MT)\cap F(MF)=$
$\emptyset$ , the partial function $\dot{g}$ is defined by

$g(v)=\{\begin{array}{l}1,v\in T(MT)0,v\in F(MF)unknown,otherwise\end{array}$

If $MT$ and $MF$ of $g$ satisfy $MT \subseteq\min T(f)$ and
$MF \subseteq\max F(f)$ for some (complete) positive
function $f$ , then $g$ is called a partial function of
$f$ . The set of unknown vectors of $g$ is denoted by
$U(g)$ , i.e.,

$U^{}(g)=\{0,1\}^{n}\backslash (T(MT)\cup F(MF))$ .

The k-neighborhood of $g$ is defined by

$N_{k}(g)=\{v|||v-a\Vert\leq k$

for some $a\in MT\cup MF$ },

where $\Vert w\Vert$ denotes $\sum_{i=1}^{n}|w_{i}|$ . The latency of $g$ ,
$\lambda(g)$ , is defined to be the integer $k$ satisfying

$N_{k-1}(g)\cap U(g)=\phi$ and $N_{k}(g)\cap U(g)\neq\phi$ .

As a special case, if $U(g)=\phi$ i.e., $g=f$ , then
$\lambda(g)$ is defined to be $0$ . $\lambda(g)$ is equivalently given
by

$\lambda(g)=\min\{||u-a|||a\in MT\cup MF,u\in U(g)\}$ .

Now let $C_{X}$ be a subclass of positive functions.
$C_{X}(n)$ denotes the set of functions in $C_{X}$ with
$n$ variables. For $C_{X}(n)$ , the maximum latency is
defined by

$\Lambda_{X}(n)=\max\{\lambda(g)|g$ is
a partial function of $f\in C_{X}(n)$ }.

If $g$ is a partial function of $f\in C_{X}(n)$ , then
by definition there is no unknown vector if
$N_{\Lambda_{X}(n)}(g)\cap U(g)=\phi$ . That is, in order to
find an unknown vector, we only need to search
$\Lambda_{X}$ (n)-neighborhood of $g$ . Therefore, if a posi-
tive function $f$ of $n$ variables is known to belong
to class $C_{X}(n)$ , Step 2 of Algorithm IDENTFY
can be executed as follows.

2. Test if $N_{\Lambda_{X}(n)}(g)\subseteq T(MT)\cup F(MF)$ , where
$g$ is the partial function defined by $MT$

and $MF$ . If so, output $MT$ and $MF$ , and
halt. Otherwise, find an unknown vector
$u\in N_{\Lambda_{X}(n)}(g)\backslash (T(MT)\cup F(MF))$ and go
to 3.

The test of $N_{\Lambda_{X}(n)}(g)\subseteq T(MT)\cup F(MF)$ can
be accomplished by checking if $v\geq a$ for some
$a\in MT$ or $v\leq b$ for some $b\in MF$ , for every
$v\in N_{\Lambda_{X(n)}}(g)$ . This computation takes at most

$n(|MT|+|MF|)|N_{\Lambda_{X}(n)}(g)|=$

$n(|MT|+|MF|)^{2}n^{\Lambda_{X}(n)}$

time. Therefore, we have the next result.

Theorem 2.1 Let $g$ , defined by $MT$ and $MF$ ,
be a partial function of $f\in C_{X}(n)$ . If $\Lambda_{X}(n)$

is constant, then the above Step 2 can be exe-
cuted in polynomial time in $n$ and $|MT|+|MF|$ .
(Therefore, problem EQ can be solved in poly-
nomial time, and there is an incrementally poly-
nomial algorithm to identify $f\in C_{X}(n)$ . ) $\square$
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3 Restricted classes of positive
functions with constant max-
imum latencies

In this section, we show that there are some
nontrivial special classes of positive functions,
which have constant maximum latency. These
classes are important in practice and theory (e.g.,
[5, 10, 13]).

3.1 2-monotonic positive functions and
$\Delta$-partial positive threshold func-
tions

If functions $f$ and $g$ satisfy $g(a)\leq f(a)$ for any
$a\in\{0,1\}^{n}$ , then we denote $g\leq f$ . If $g\leq f$ and
there exists a vector $a$ satisfying $g(a)=1$ and
$f(a)=0$ , we denote $g<f$ . An assignment $A$ of
binary values $0$ or 1 to $k$ variables $x_{i_{1}},$ $x_{i_{2}},$ $\ldots,$ $x_{i_{k}}$

is called a k-assignment, and is denoted by

$A=(x_{i_{1}}arrow a_{1},x_{i_{2}}arrow a_{2}, ...., x_{i_{k}}arrow a_{k})$ ,

where each of $a_{1},$ $a_{2},$ $\ldots a_{k}$ is either 1 or $0$ . Let the
complement of $A$ , denoted by $\overline{A}$ , represent the
assignment obtained from $A$ by complementing
all the l’s and $O’ s$ in $A$ . When a function $f$ of $n$

variables and a k-assignment $A$ are given,

$f_{A}=f_{(x_{i_{1}}arrow a_{1},x_{i_{2}}arrow a_{2},\ldots,x;_{k}arrow a_{k})}$

denotes the function of $(n-k)$ variables obtained
by fixing variables $x_{i_{1}},$ $x_{i_{2}},$ $\ldots,$ $x_{i_{k}}$ as specified by
$A$ .

Let $f$ be a function of $n$ variables. If either
$f_{A}\leq f_{\overline{A}}$ or $f_{A}\geq f_{\overline{A}}$ holds for every k-assignment
$A$ , then $f$ is said to be k-comparable. If $f$ is k-
comparable for every $k$ such that $1\leq k\leq m$ ,
then $f$ is said to be m-monotonic. (For more
detailed discussion on these topics, see [10] for
example.) In particular, $f$ is l-monotonic if
$f_{\{x;arrow 1)}\geq f_{(x:arrow 0)}$ or $f_{(x:arrow 1)}\leq f_{(x_{i}arrow 0)}$ holds for
any $i\in\{1,2, \ldots,n\}$ . A function $f$ is positive
if and only if $f$ is 1 -monotonic and $f_{(x:arrow 1)}\geq$

$f_{(x_{i}arrow 0)}$ holds for all $i$ .
Now consider a 2-assignment $A=$ $(x_{i}arrow$

$1,x_{j}arrow 0)$ . If

$f_{A}\geq f_{\overline{A}}$ (resp. $f_{A}>f_{\overline{A}}$ )

holds, this is denoted $x_{i}\succeq fx_{j}$ (resp. $x_{i}\succ fx_{j}$ ).
Variables $x_{i}$ and $x_{j}$ are said to be comparable if
either $x_{i}\succeq fx_{j}$ or $x_{i}\preceq fx_{j}$ holds. When $x_{i}\succeq fx_{j}$

and $x_{i}\preceq fx_{j}$ hold simultaneously, it is denoted
as $x_{i}\approx fx_{j}$ . If $f$ is 2-monotonic, this binary
$relation\succeq f$ over the set of variables is known to
be a total preorder. [10]. A 2-monotonic positive
function $f$ of $n$ variables is called regular if

$x_{1}\succeq fx_{2}\succeq f$ $\succeq fx_{n}$ .
Any 2-monotonic positive function becomes reg-
ular by permuting variables. Let

$C_{P}$ : class of all positive functions,
$C_{2M}$ : class of 2-monotonic positive functions.

Theorem 3.1 Class $C_{2M}$ satisfies

$\Lambda_{2M}(n)=1$ .

Proof. Assume that a 2-monotonic positive
function $f$ is regular without loss of generality,
and that $g$ is a partial function of $f$ defined by
$MT$ and $MF$ . Assume that $N_{1}(g)\cap U(g)=\phi$

and $U(g)\neq\phi$ . Take a $u \in\max U(g)$ , where
$\max U(g)$ is the set of maximal unknown vec-
tors (i.e., $u+e_{j}\in T(MT)$ for all $j\in OFF(u)$ ).
Let $j= \max\{i|i\in OFF(u)\}$ . There exists $a\in$

$MT$ such that $a\leq u+e_{j}$ . Then $a-e_{j}\in F(MF)$

by assumption $N_{1}(g)\cap U(g)=\phi$ . Therefore,
there exists $b\in MF$ such that $b\geq a-e_{j^{-}}$. For
any $l\in OFF(u)\backslash \{j\}$ ,

$a-e_{j}+e_{l}\in T(f)\subseteq T(MT)\cup U(g)$

by regularity of $f$ , and hence $b\not\geq a-e_{j}+e_{l}$ , i.e.,
$b\leq u$ . (i) If $b=u$ , then $u\in F(MF)$ which is a
contradiction. (ii) If $b<u$ , then $u\in T(MT)$ by
$N_{1}(g)\cap U(g)=\phi$ , which is also a contradiction.
口

The 2-monotonicity was originally introduced
in conjunction with threshold functions (e.g.,
[10]), where a positive function $f$ is threshold
if there $exist_{\sim}n+1$ nonnegative real numbers
$w_{1},w_{2}-,$ $\ldots,w_{n}$ and $t$ such that:

$f(x)=\{\begin{array}{l}1,if\Sigma w_{i}x_{i}\geq t0,if\Sigma w_{i}x_{i}<t\end{array}$
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As $w_{i}\geq w_{j}$ implies $x_{i}\succeq fx_{j}$ and $w_{i}=w_{j}$ im-
plies $x_{i}\approx fx_{j}$ , a threshold function is always
2-monotonic, although the converse is not true
[10]. Therefore, Theorem 3.1 tells class $C_{TH}$ of
positive threshold functions satisfies

$\Lambda_{TH}(n)=1$ .

Next, we generalize the concept of thresh-
old functions by introducing some margin in the
threshold value. A positive function $f$ is called
a $\Delta$ -partial threshold function [10] if $f$ is repre-
sented by

$f(x)=\{\begin{array}{l}1,if\Sigma w_{i}x_{i}\geq t+\alpha 0,if\Sigma w_{i}x_{i}<t-\alpha 0or1,otherwise\end{array}$

where $w:(i=1,2, \ldots, n),$ $t,$ $\Delta$ are nonnegative
real numbers, and

$\alpha=\Delta\min_{i}w_{i}$ .

In this definition, the value $f(x)$ in the case of
“otherwise” can be arbitrary, provided that the
resulting $f$ is positive. Let

$C_{\Delta P’TH}$ : class of $\Delta$-partial positive threshold
functions.
For this class, we have the next result.

Theorem 3.2 [9] Class $C_{\triangle PTH}$ satisfies

$\Lambda_{\Delta PTH}(n)\leq\lceil\Delta\rceil+1$ . $\square$

3.2 Matroid functions

For a given vector $v\in\{0,1\}^{n}$ , we use nota-
tions ON(v) $=\{j|v_{j}=1\}$ and OFF(v) $=$

$\{j|v_{j}=0\}$ . A positive function $f$ is called a
matroid function if for each $v,w \in\min T(f)$ and
each $i\in ON(v)\backslash ON(w)$ , there exists a $j\in$

ON$(w)\backslash ON(v)$ such that $v-e_{i}+e_{j} \in\min T(f)$ .
In other words, $M=(E,\mathcal{F})$ forms a matroid [13],
where $E=\{1,2, \ldots,n\}$ and $\mathcal{F}=\{ON(v)|v\leq$

$a$ for some $a \in\min T(f)$ }. Let
$C_{MAT}$ : the class of matroid functions.

Theorem 3.3 [9] Class $C_{MAT}$ of matroid func-
tions satisfies

$\Lambda_{MAT}(n)=\{\begin{array}{l}1,n=1,2,32,n\geq 4.\square \end{array}$

3.3 k-tight positive functions

A positive function $f$ is called k-tight if it satisfies

$\max\{\Vert a-b\Vert|a\in\min T(f),$ $b \in\max F(f)$

and $a-e_{j}\leq b$ for some $j\in ON(a)$ } $\leq k$ ,

where $k$ is a positive integer. Let

$C_{kTI}$ : class of k-tight positive functions.

For example, a positive threshold function with
$w_{\max}\leq kw_{\min}$ is always k-tight, where $w_{\max}=$

$\max_{i}w_{i}$ and $w_{\min}= \min_{i}w_{i}$ , since for any $a\in$

$\min T(f),$ $j\in ON(a)$ and $i_{l}\in OFF(a)(l=$

$1,2,$ $\ldots,$
$k$ ),

$\sum_{i=1}^{n}w_{i}a_{i}-w_{j}+\sum_{l=1}^{k}w_{i_{l}}$

$\geq\sum w_{i}a_{i}-w_{\max}+kw_{\min}\geq\sum w_{i}a_{i}\geq t$ ,

i.e., $a-e_{j}+ \sum_{l=1}^{k}e_{i_{l}}\in T(f)$ . To introduce other
types of k-tight functions, define the rank of a set
$S\subseteq\{0,1\}^{n}$ by $r(S)= \max\{||x\Vert|x\in S\}$ and
the anti-rank by $ar(S)= \min\{||x|||x\in S\}$ , re-
spectively. Then a positive function $f$ satisfying
one of the following conditions is k-tight.

(i) $|r( \max F(f))-ar(\min T(f))|\leq k-2$ .
(ii) $ar( \min T(f))\geq n-k+1$ .
(iii) $r( \max F(f))\leq k-1$ .
These types of functions are discussed in [5]

and other papers.

Theorem 3.4 [9] Class $C_{kTI}$ of k-tight positive
functions satisfies

$\Lambda_{kTI}(n)\leq k$ . $\square$

4 General positive functions
and positive k-DNF func-
tions.

Here we consider the class $C_{P}$ of all positive func-
tions, and

$C_{kDNF}$ : class of positive k-DNF functions,

where a positive function $f$ is a positive k-DNF

function if I $v$ Il $\leq k$ for all $v \in\min T(f)$ . It
turns out that these classes do not have constant
maximum latency.
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$\wedge\wedge\wedge k-1k-1k-1$ $\wedge k-1$

$S=$

$(\alpha-1)(k-1)$

$(\alpha-1)(k-1)$

:

$(\alpha-1)(k-1)$

As noted before, this tells that the existence
of an incrementally polynomial identification al-
gorithm cannot be concluded from our approach.
However, it dose not imply the nonexistence of
such algorithm, and in fact it is known [5] that
class $C_{kDNF}$ has an incrementally polynomial
identification algorithm, which is based on dif-
ferent idea.

Theorem 4.1 $[8, 9]$ Class $C_{P}$ of general positive
functions satisfies

$\lfloor n/4\rfloor+1\leq\Lambda_{P}(n)\leq\lceil n/2\rceil$ . 口

For our purpose, the lower bound is more in-
teresting, and it was shown in [9] by construc-
tion. We omit its description because the proof
of Theorem 4.2 below also contains a similar con-
struction. Also we conjecture $\Lambda_{P}(n)=\lfloor n/4\rfloor+1$ ,
since $\Lambda_{P}(n)\leq\lfloor n/4\rfloor+1$ can be shown if we add
a rather weak assumption on the set of unknown
vectors $U(g)[8]$ .
Theorem 4.2 Class $C_{kDNF}$ satisfies, for $n\geq$

$4(k-1)$ ,

$\Lambda_{kDNF}(n)\geq(k-1)\lfloor\sqrt{\frac{n}{(k-1)}}\rfloor-k+2$ .

Proof. For $k=1$ , it is clear that $\Lambda_{1DNF}(n)\geq$

1. For $k\geq 2$ , we provide an example of $g$ with
$\lambda(g)=(k-1)L\sqrt{\frac{n}{(k-1)}}\rfloor-k+2$ for $n\geq 4(k-1)$ .
Let $\alpha=\lfloor\sqrt{\frac{n}{(k-1)}}\rfloor$ , where $\alpha$ satisfies $\alpha\geq 2$ .
Then

$\sqrt{\frac{n}{(k-1)}}\geq\alpha$ , i.e., $n\geq\alpha^{2}(k-1)$ .

Therefore, let $n=\alpha^{2}(k-1)+\beta$ , where $\beta$ is a
nonnegative integer. Now define a $\alpha(\alpha-1)(k-$

$1)\cross n$ matrix:

$X=$ $(S|I_{\alpha(\alpha-1)(k-1)}|0_{\alpha(\alpha-1)(k-1)\cross\beta})$ ,

where $S$ is the $\alpha(\alpha-1)(k-1)\cross\alpha(k-1)$ matrix
as above. Here, $I_{j}$ is the $j\cross j$ unit matrix, and
$O_{i\cross j}$ is the $i\cross j$ zero matrix. Define $f$ by

$\min T(f)=$ ( $the$ set of rows of matrix $X$ ),

and a partial function $g$ of $f$ by $MT= \min T(f)$

and $MF= \max F(f)\backslash \{u\}$ , where

$u=(1,1, \cdots, 1,0,0, \cdots, 01,1, \cdots, 1)$ .
$\vee\alpha(k-1)\overline{\alpha(\alpha-1)(k-1})\sim\beta$

Then $u+e_{j}\in T(MT)$ for any $j\in OFF(u)$ since
$u \in\max F(f)$ and $MT= \min T(f)$ . Moreover,
$u-e_{j}\in F(MF)$ For any $j\in\{1,2, \ldots, \alpha(k-1)\}$ ,
and $u- \sum_{j\in S}e_{j}\not\in F(MF)$ , where $S=\{n-\beta+$

$1,$ $n-\beta+2,$ $\ldots,$
$n$}. In other words,

$U(g)=\{(1,1, \cdots, 1,0,0, \cdots,0, *, *, \cdots, *)\}$ ,
$-\sim\alpha(k-1)\alpha(\alpha-1)(k-1)\overline{\beta}$

where $*stands$ for $0$ or 1. It is not difficult to
see that 1 $a-.w||=(\alpha-1)(k-1)+1$ for every
$a\in MT$ , and $w\in U(g)$ and $||b-w||=(\alpha-$
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$1)(k-1)+1$ for every $b\in MF$ and $w\in U(g)$ .
Therefore, its latency is

$\lambda(g)$ $=$ $(\alpha-1)(k-1)+1$

$=$ $(k-1)\lfloor\sqrt{\frac{n}{(k-1)}}\rfloor-k+2$ . 口

5 Discussion

In this paper, we introduced the maximum la-
tency as a measure for the difficulty to find an
unknown vector. Several interesting subclasses
of positive functions have constant maximum la-
tency. It would be important to find other sub-
classes of positive functions with constant max-
imum latency. Of course, the ultimate goal is
to develop a polynomial time identification algo-
rithm for general positive functions (or to dis-
prove its existence) by some new tools.
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