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Abstract
In this paper we consider the k-clustering problem for a set $S$ of $n$ points in the

d-dimensional space with minsum sum of squared errors as clustering criteria, which is
motivated from a problem, called color quantization problem, of computing a color lookup
table for frame buffer display. Using the technique of computational geometry and random
sampling, we present an efficient randomized algorithm which, roughly speaking, finds an
$\epsilon$-approximate 2-clustering in $O(n(1/\epsilon)^{d})$ time.

1 Introduction
Clustering is the grouping of similar objects and a clustering of a set is a partition of its elements
that is chosen to minimize some measure of dissimilarity. It is very fundamental and used in
various fields in computer science such as pattern recognition, learning theory, image processing
and computer graphics. There are various kinds of measure of dissimilarity, called criteria, in
compliance with the problem. In this paper, we investigate the clustering problem suited for
the color quantization problem.

Definition of the k-clustering problem: The general k-clustering problem can be defined as
follows. A k-clustering is a partition of the given set $S$ of $n$ points $p_{i}=(x_{i})(i=1, \ldots, n)$ in the
d-dimensional space into $k$ disjoint nonempty subsets $S_{1},$

$\ldots,$
$S_{k}$ , called clusters. A k-clustering

is measured by the following two criteria.
(Intra-cluster criterion) For each cluster $S_{j}$ , the measure (or error) Intra$(S_{j})$ of $S_{j}$ , rep-

resenting how good the cluster $S_{j}$ is, is defined appropriately by applications. Typical
intra-cluster criteria are the diameter, radius, variance, and sum of squared errors, namely
variance multiplied by $|S_{j}|$ and sometimes called variance-based, of point set $S_{j}$ .

(Inter-cluster criterion) The inter-cluster criterion defines the total cost of the k-clustering,
which is a function of Intra$(S_{j})(j=1, \ldots, k)$ and is denoted by Inter$(y_{1}, y_{2}, \ldots, y_{k})$ where
$y_{j}=Intra(S_{j})$ . Typical function forms are $\max\{y_{j}|j=1, \ldots, k\}$ and $\sum_{i=1}^{k}y_{k}$ .

Then, the k-clustering problem is to find a k-clustering which minimizes the inter-cluster cri-
terion:

$\min$ { $Inter(Intra(S_{1}),$
$\ldots,$

$Intra(S_{k}))|$ k-clustering $(S_{1},$
$\ldots$ , $S_{k})$ of $S$ }

Previous results concerning diameter and radius: In computational geometry, many
results have been obtained for the clustering problem. The diameter and radius problems are
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rather well studied. They include an $O(n\log n)$-time algorithm for finding a 2-clustering of $n$

points in the plane which minimizes the maximum diameter (Asano, Bhattacharya, Keil and
Yao [1]), an $O(n^{2}\log^{2}n)$-time algorithm for finding a 3-clustering of planar point set which
minimizes the mxhaximum diameter (Hagauer and Rote [3]), and an $O(n\log^{2}n/\log\log n)$-time
algorithm for finding a 2-clustering which minimizes the sum of the two diameters (Hershberger
[6]). When $k$ is regarded as a variable, most k-clustering problems become NP-hard (e.g., see
Megiddo and Supowit [7]). For fixed $k$ , the k-clustering problem using the diameter and radius
as the intra-cluster criterion and a monotone function, including taking the maximum and the
summation, as the inter-cluster criterion can be solved in a polynomial time (Capoyleas, Rote
and Woeginger [2]).

Motivation for the variance-based clustering: In this paper, we consider the k-clustering
problem with variance-based measures as an intra-cluster criterion. This is motivated from
the color quantization problem of computing a color lookup table for frame buffer display.
Typical color quantization problems cluster hundreds of thousands of points in the RGB three-
dimensional space into $k=256$ clusters. Since $k$ is large, a top-down approach to recursively
divide the point set into 2 clusters is mostly employed. In this problem, the diameter and radius
are not suited as an intra-cluster criterion, and sum of squared errors criterion, sometimes called
variance-based, (Wan, Wong and Prusinkiewicz [8]) and $L_{1}$ -based (median cut; Heckbert [5])
criterion are often used. In [8], [5], the top-down approach is used and in solving the 2-clustering
problem both only treat separating planes orthogonal to some coordinate axis. These algorithms
are implemented in rlequant of Utah Raster Toolkit, and ppmquant of XIIR5 or tiffmedian
of Tiff Soft. Although these implementations run rather fast in practice, roughly speaking in
$O(n\log n)time$ , there is no theoretical guarantee about how good their solution k-clusterings
are.

Rigorous definition of the variance-based clustering: Therefore, it is required to develop
a fast 2-clustering algorithm and to determine the complexity of the k-clustering problem for the
variance-based case. Before describing the existing computational-geometric results concerning
variance-based case, let us define the variance-based intra-clutser criterion in a rigorous way.
The variance Var(S) of $S$ of points $p_{i}=(x_{i})$ in $S$ is defined by

$Var(S)=\frac{1}{|S|}\sum_{p.\in S}\Vert x_{i}-\overline{x}(S)\Vert^{2}$

where
$\overline{x}(S)=\frac{1}{|S|}\sum_{p.\in S}x_{i}$ .

The sum of squared errors Error(S) with respect to the centroid of $S$ is defined by

Error
$(S)= \sum_{p:\in S}\Vert x_{i}-\overline{x}(S)\Vert^{2}$

.

Previous results on the variance-based clustering: For the variance-based criteria, unlike
the diameter and radius, the k-clustering problem adopting the maximum function as the inter-
cluster criterion becomes hard to solve (Hasegawa, Imai, Inaba, Katoh and Nakano [4]). Also,
in applications such as the color quantization problem, the summation function is adopted as
an inter-cluster criterion [8]. In this paper, we consider only the summation case, that is, the
k-clustering problem to minimize the summation of variance-based intra-cluster costs among
clusters.

For the variance-based clustering problem with the summation function as an inter-cluster
metric, it is known that an optimum 2-clustering is linearly separable and that an optimum k-
clustering is induced by the Voronoi diagram generated by $k$ points (e.g., see [4, 8]). Using this
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characterization together with standard computational-geometric techniques, the 2-clustering
problem can be solved in $O(n^{2})$ time and $O(n)$ space, and the k-clustering problem is solvable
in a polynomial time when $k$ is fixed [4].

Our results: To develop a practically useful 2-clustering algorithm with the most typical
intra-cluster criterion of the sum of squared errors, we present an efficient randomized algorithm
which, roughly speaking, finds an $\epsilon$-approximate 2-clustering in $O(n(1/\epsilon)^{d})$ time, which is quite
practical and can be used to real large-scale problems such as the color quantization problem.
This randomized algorithm can be easily generalized to the k-clustering problem.

2 Randomized algorithms for the case of the sum of
squared errors

It has been shown that the k-clustering problem for fixed $k$ can be solved in $O(n^{dk})time$ , which
is polynomial in $n$ . But its degree is large even for moderate values of $d$ and $k$ , and even for
$k=3,4,5$ , its polynomial degree is quite high, which makes it less interesting to implement
the algorithms for practical problems such as the color quantization problem. The k-clustering
problem is NP-complete in general when $k$ is regarded as a variable, and in this respect the
results are best possible we may expect to have.

To develop a practically useful algorithm, utilizing randomization may be a good candidate,
since the intra-cluster metric we are using has its intrinsic statistical meanings. In this section,
we develop randomized algorithms for the k-clustering problem.

Here we mainly consider the 2-clustering problem, but most of the following discussions
carry over to the k-clustering problem. First, let us consider how to estimate Error$(S)$ for
the set $S$ of $n$ points $p_{i}=(x_{i})(i=1, \ldots, n)$ by random sampling. Let $T$ be a set of $m$

points obtained by $m$ independent draws at random from $S$ . If the original point set $S$ are
uniformly located, ( $n/(m$ –l))Error(T) may be a good estimate for Error(S). However, this
is not necessarily the case. For example, suppose that a point $p_{i}$ in $S$ is far from the other
$n-1$ points in $S$ , and the other $n-1$ points are very close to one another. Then, Error$(S)$

is nearly equal to the squared distance between $p_{i}$ and a point in $S-\{p_{i}\}$ , while with high
probability Error$(T)$ is almost zero. This indicates that Error$(T)$ cannot necessarily provide a
good estimate for Error$(S)$ .

On the other hand, the centroid $\overline{x}(T)$ of $T$ is close to the centroid $\overline{x}(S)$ of $S$ with high
probability by the law of large numbers, and we obtain the following lemma.

Lemma 1 With probability $1-\delta$ ,

$\Vert\overline{x}(T)-\overline{x}(S)\Vert^{2}<\frac{1}{\delta m}$Var(S).

Proof: First, observe that

$E(\overline{x}(T))=\overline{x}(S)$ , $E(\Vert\overline{x}(T)-\overline{x}(S)\Vert^{2})=\frac{1}{m}$Var(S)

and then apply the Markov inequality to obtain the following.

$Pr(\Vert\overline{x}(T)-\overline{x}(S)||^{2}>\frac{1}{\delta m}Var(S))<\delta$ . $\square$

Lemma 2 With probability $1-\delta$ ,

$\sum_{pj\in S}\Vert x_{i}-\overline{x}(T)\Vert^{2}<(1+\frac{1}{\delta m})Error(S)$.
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Proof: Immediate from Lemma 1 and the following.

$\sum_{p.\in S}\Vert x_{i}-\overline{x}(T)\Vert^{2}=Error(S)+|S|\cdot\Vert\overline{x}(T)-\overline{x}(S)\Vert^{2}$
. $\square$

Thus, we can estimate Error$(S)$ by random sampling. For the 2-clustering problem, we have
to estimate Error $(S_{1})$ and Error $(S_{2})$ for a 2-clustering $(S_{1}, S_{2})$ by estimating the centroids of
$S_{1}$ and $S_{2}$ . Now, consider the following algorithm.

A randomized algorithm for the 2-clustering:

1. Sample a subset $T$ of $m$ points from $S$ by $m$ independent draws at random;

2. For every linearly separable 2-clustering $(T_{1}, T_{2})$ of $T$ , execute the following:

Compute the centroids $t_{1}$ and $t_{2}$ of $T_{1}$ and $T_{2}$ , respectively;

Find a 2-clustering $(S_{1}, S_{2})$ of $S$ by dividing $S$ by the perpendicular bisector of line
segment connecting $t_{1}$ and $t_{2}$ ;

Compute the value of Error$(S_{1})+Error(S_{2})$ and maintain the minimum among these
values;

3. Output the 2-clustering of $S$ with minimum value above.

The idea of this randomized algorithm is to use all pairs of centroids of linearly separable
2-clusterings for the sampled point set $T$ . Let $(S_{1}^{*}, S_{2}^{*})$ be an optimum 2-clustering of $S$ , and
let $s_{1}^{*}$ and $s_{2}^{*}$ be the centroids of $S_{1}^{*}$ and $S_{2}^{*}$ , respectively. By considering all linearly separable
2-clusterings for $T$ , the algorithm handles the 2-clustering $(T_{I}’, T_{2}’)$ obtained by dividing $T$ by
the perpendicular bisector of line segment connecting $s_{1}^{*}$ and $s_{2}^{*}$ . Then, from the centroids of
$T_{1}’$ and $T_{2}’$ , we obtain a 2-clustering $(S_{1}’, S_{2}’)$ in the algorithm.

Since $T$ is obtained from $m$ independent draws,

$E(|T_{j}’|)=\frac{m}{n}|S_{j}^{*}|$ $(j=1,2)$ .

From Lemma 2, Error $(S_{j^{*}})$ can be estimated by using $|T_{j}’|$ . The sizes $|T_{j}’|(j=1,2)$ are deter-
mined by independent Bernoulli trials, and is dependent on the ratio of $|S_{1}^{*}|$ and $|S_{2}^{*}|$ . For the
sampling number $m$ , we say that $S$ is $f(m)$ -balanced if there exists an optimum 2-clustering
$(S_{1}^{*}, S_{2}^{*})$ with

$\frac{m}{n}\min\{|S_{1}^{*}|, |S_{2}^{*}|\}\geq f(m)$ ,

and the optimum 2-clustering is called an $f(m)$-balanced optimum 2-clustering. We then have
the following.

Lemma 3 Suppose there exists a $(\log_{e}m)$ -balanced optimum 2-clustering $(S_{1}^{*}, S_{2}^{*})$ . Then, with

probability $1- \frac{2}{m^{\beta^{2}/2}}$

$\min\{|T_{1^{*}}|, |T_{2}^{*}|\}>(1-\beta)\frac{m}{n}\min\{|S_{1}^{*}|, |S_{2}^{*}|\}\geq(1-\beta)\log m$.

$Proof:Set\mu=,\frac{m}{n}\min\{|S_{i^{*}}|, |S_{2}|\}.FormindendentBnou11itria1sX_{f^{1}or}X_{X^{2}=X_{1}+\cdot\cdot+}X_{m}.withp_{r(X_{i}=1)=’\mu/m\leq Pr(X^{1}=0)^{*}=1-\mu/m,the}$

,
$X_{m}$ ,

$Pr(X<(1-\beta)\mu’)<\exp(-\mu’\beta^{2}/2)$ .
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From the assumption,

$\exp(-\mu’\beta^{2}/2)\leq\exp(-(\log m)\beta^{2}/2)=\frac{1}{m^{\beta^{2}/2}}$ . $\square$

Theorem 1 Suppose that the point set $S$ is $f(m)$ -balanced with $f(m)\geq\log m$ . Then, the ran-

domized algorithm finds a 2-clustering whose total value is within a factor of $1+ \frac{1}{\delta(1-\beta)f(m)}$

to the optimum value with probability $1- \delta-\frac{2}{m^{\beta^{2}/2}}$ in $o(nm^{d})$ time.

Proof: From Lemmas 2 and 3, with probability $1-\delta_{m^{\beta}}^{2}--\tau_{\overline{/z}}$ ,

$\sum_{j=1}^{2}\sum_{p.\in S_{j}}\Vert x_{t}-\overline{x}(T_{j}’)||^{2}\leq(1+\frac{1}{\delta(1-\beta)f(m)})\sum_{j=1}^{2}Error(S_{i}^{*})$

holds. Furthermore, the left hand side is bounded from below by $\sum_{j=1}^{2}$ Error(S;), whose value
is computed in the algorithm. Hence, the minimum value found in the algorithm is within the
factor.

Concerning the time complexity, all linearly separable 2-clusterings for $T$ can be enumerated
in $O(m^{d})$ time. For each 2-clustering $(T_{1},T_{2})$ of $T$ , finding a pair of centroids and a 2-clustering
of $S$ generated by the pair together with its objective function value can be done in $O(n)$ time.
Thus the theorem follows. $\square$

We have developed a randomized algorithm only for the 2-clustering problem so far, but
this can be directly generalized to the k-clustering problem. If there exists a balanced optimum
k-clustering, similar bounds can be obtained. It may be noted that the technique employed here
has some connection with the technique used to obtain a deterministic approximate algorithm
with worst-case ratio bounded by 2 for the k-clustering problem in [4].

The above theorem assumes some balancing condition. In some applications, a very small
cluster is useless even if its intra-cluster is small. In such a case, the randomized algorithm
naturally ignores such small-size cluster. Also, for the case of finding a good and balanced
2-clustering, such as the VLSI layout partition problem, we have only to apply the randomized
algorithm directly. Restating the theorem for such cases, we have the following.

Theorem 2 For the problem of finding an optimum 2-clustering among $(\gamma m)$ -balanced 2-
clusterings for a constant $\gamma$ , the mndomized algorithm finds a 2-clustering which is almost
at least $(\gamma m)$ -balanced and whose value is within a factor of $1+O(1/(\delta m))$ to the optimum
value of this problem with probability $1-\delta$ for not so small $\delta$ . $\square$

In the proof of this theorem, we use results concerning the $\epsilon$-net and $\epsilon$-approximations. On
the other hand, if very small clusters with small intra-cluster metric should be found, we may
enumerate such small clusters deterministically or in a randomized manner, since the number
of such small clusters is relatively small. For the 2-clustering problem in the two-dimensional
case, the number of linearly separable 2-clustering such that one cluster consists of at most $k’$

points is $O(k’n)$ and can be enumerated efliciently. By enumerating $k’$-sets for an appropriate
value of $k’$ , we obtain the $fol1^{s}owing$ theorem.

Theorem 3 The 2-clustering problem for $n$ points in the plane with Error as the intra-cluster
metric can be solved in $O(n^{5/3}(\log n)^{3})$ time with the appro vzmation ratio within a factor of
$1+O(1/\log m)$ with probability $1-O(1/\log m)$ .
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Proof: We set $m=n^{1/3}\log n$ , and by the randomized algorithm find a good $(\log m)^{2}$-balanced
2-clustering and by the deterministic algorithm enumerating $(\leq n^{2/3}\log n)$-sets find a best
unbalanced 2-clustering. Setting $\delta=1/\log m$ and $\beta$ to a constant, the time complexity of
the randomized algorithm is $O(n(n^{1/3}\log n)^{2})=O(n^{5/3}(\log n)^{2})$ and the approximation ratio
is bounded by $1+O(1/\log m)$ with probability $1-O(1/\log m)$ . The deterministic algorithm
runs in $O(n(n^{2/3}\log n)(\log n)^{2})=O(n^{5/3}(\log n)^{3})$ time. $\square$

It should be noted that the time complexity in this theorem is subquadratic, compared with
the deterministic quadratic exact algorithm.
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