
204

LEARNING MONOTONE LOG-TERM DNF FORMULAS
酒井義文 丸岡章

Yoshifumi Sakai Akira Maruoka
Graduate School of Information Sciences, Tohoku University

Abstract
Based on the uniform distribution PAC learning model, the learnability for monotone disjunctive normal form
formulas with at most $O(\log n)$ terms ($O(\log n)$-term MDNF) is investigated. Using the technique of restriction,
an algorithm that learns $O(\log n)$-term MDNF in polynomial time is given.

1 Introduction
The problem of deciding the polynomial time learnability of the class of concepts represented by disjunctive
normal form formulas, denoted DNF, seems to be one of the most important and tantalizing open problems
in PAC (probably approximately correct) learning paradigm introduced by $Valiant[9]$. Although the problem
still remains open, the learnability of various claeses of concepts obtained by restricting DNF in some way has
been studied so far: In the distribution free setting PAC model, the claes of disjunctive normal form formulas
with at most k literak in each term, denoted k-DNF, is shown to be learnable for fixed $k[9]$, whereas the class
of disjunctive normal form (monotone) formulas with at moet k terms, denoted k-term DNF (k-term MDNF),
is not learnable even in the case where $k=2$ unless $RP=$ NP $[4,7]$. $,If$ the learner is allowed to produce a
formula in k-CNF(the class of conjunctive normal form formulas with at most k literals in each clause) as
hypothesis, k-term MDNF is \ddot{s}hown to be $learnable[7]$, but in this case the hypothesis can have $O(n^{k})$ clauses,
where n is the number of variables of atarget function.

There is another type of PAC model, called uniform distribution setting, where the examples are assumed to
be generated according to the uniform distribut.ion, and hence we can get more information in general about a
target function from examples than in the case of distribution free setting. $Si\iota lce$ the problem of deciding the
learnability of DNF remains open, it is natural to investigate the problem of the learnability for various classes
in the uniform distribution setting. Afew classes have been shown to be learnable in this setting: For fixed k ,
k-term MDNF is shown to be $learnable[3,5,6]$;The class of disjunctive normal form formulas in which each
variable occurs at most once, denoted μDNF , is shown to be learnable. The latter result should be constructed
with the fact that in the case of the distribution-free setting, deciding the learnability of DNF is no harder
than deciding the learnability of $\mu DNF[4]$. Recently, k-term DNF is shown to be learnable[2]and this class
is also learnable in the more relaxed distribution setting introduced in [1] where examples are assumed to be
generated according to distributions deviated somehow from the uniform distribution. In the same setting of
distributions, k-term MDNF is independently shown to be learnable using only positive $examples[8]$, whereas
the algorithm for k-term DNF given in [2] uses both positive and negative examples. Another related result in
uniform distribution setting is given in [10], $\backslash vhere$ an algorithm $th_{\Phi}t$ learns DNF in quasi-polynomial time is
proposed.

In this paper we investigate the learnability of k-term MDNF in the uniform distribution setting. The
parameter k specifying the class is allowed to depend on the number n of variables of atarget function.

Using the technique of restricting the examples such that appropriately chosen components of them take
value 0 , we deal with the case where parameter k specifying the class is allowed to depend on the number
n of variables of atarget function and give apolynomial time $4gorithm$ that learns $O(\log n)$-term MDNF in
the uniform distribution setting. We adopt the strategy of restrictingthe examples so that all of clauses in
atarget function except aterm are suppressed, and hence the remaining clause can be easily found. As far
as apolynomial time algorithm takes the strategy, the number of clauses in MDNF that can be learned by a
polynomial time algorithm must be at most $O(\log n)$.

\ln section 2, we illustrate the learning model and give the definition of learnability. In section 3, we give the
learning algorithm for k-term MDNF together with an idea behind it, and in section 4we give the proof of its
correctness.

数理解析研究所講究録
第 871巻 1994年 204-211

205

2 Preliminaries
Let f be aBoolean function of n variables $x_{1},$ $\ldots,$

x_{n} . Given $f,$ a vector $v\in\{0,1\}^{n}$ is calleda positive example
(resp. negative example) of f if and only if $f(v)=1$ (resp. $f(v)=0$). Let D_{f}^{+} (resp. D_{f}^{-}) denote the uniform
probability distribution on $f^{-1}(1)$ (resp. $f^{-1}(0)$). Positive examples (resp. negative examples) are assumed
to be generated independently according to D_{f}^{+} (resp. D_{f}^{-}). In this paper we restrict ourselves to learning
algorithms that take as input only positive examples. In order to get positive examples, alearning algorithm
calk an oracle, denoted POS $()$, which produces positive examples independently according to D_{f}^{+} . So we only
need the probability distribution D^{+}

In the following) we often $identi/y$ a Boolean formula with the Boolean function that it represents. Thus,
we regard the class F of Boolean formulas as the corresponding class of Boolean functions. Given aclass of
Boolean functions $F,$ F_{n} denotes. the set of Boolean functions of n variables in F. For each f in F , let size(f)

denote the fewest number of symbols needed to write the representation f in F. In the following, we write
$D_{f}^{+}(f)$ to represent $\sum_{f(v)=1}D_{f}^{+}(v)$.

Definition 1 A class of formulas F is called learnable in time $t(n,size(f),\epsilon,$ δ) if and only if there exists a
learning algorithm L with oracle POS$()$ such that for any positive integer $n,$ $f\in F_{n},$ $\epsilon,$ $\delta\in(0,1)$, the algorithm
L halts in time $t(n,size(f),$ $e,$ 6) and outputs a formula $g\in F_{n}$ that with probability at least $1-\delta$ satisfies
$D_{f}^{+}(f\Delta g)<\epsilon$ and $g\subseteq f$, where $f\Delta g$ denotes the formula $(f\wedge\overline{g})\vee(\overline{f}\wedge g)$. (Note that, in the case of $g\subseteq f$,
$D_{J}^{+}(f\Delta g)$ is written as $D_{f}^{+}(f\wedge\overline{g}).)$

The formulas f and g in the definition above are called atarget function and ahypothesis, respectively.
The parameter ϵ and δ in the definition above are called an accuracy parameter and confidence parameter,
respectively.

We adopt the so called an oracle model, so the learning algorithm in Definition 1takes ae input $n,$ $size(f)$,
ϵ , and δ for atarget function f . In gener$a1$ alearning algorithm is assumed to use negative examples, which
are generated according to D_{f}^{-} , as well as positive examples, and accordingly the hypothesis g it produces
is required to satisfy $D_{f}^{-}(f\Delta g)<\epsilon$ as well as $D_{f}^{+}(f\Delta g)<\epsilon$. Since we deal with learning algorithms which
use only positive examples, it turns out that we can simply replaced the condition $D_{f}^{-}(f\Delta g)<\epsilon$ with the
somewhat stronger condition $g\subseteq f$ in the definition of learnability. According to the definition we simply say
F is learnable instead of saying F is learnable by positive examples under uniform distributions.

Aliteral is either aBoolean variable or its negation , and aconjunction offinite literals is called amonomial (or
a term). MDNF denotes the class of monotone disjunctive normal form formulas, and k-term MDNF denotes
the class of monotone disjunctive normal form formulas with up to k terms. We use parameter k as input of
learning algorithm instead of $si_{4}^{r}e(f)$ since size$(f)=O(nk)$ for any f in k-term MDNF. Let Term(f) denote
the set of terms of formula f in MDNF. Let $Var(f)$ denote the set of variables that appear in formula f in
MDNF. In general there exist anumber of formulas in MDNF that represent the same function. Throughout
the paper amonotone Boolean formula is assumed to be nonredundant in the sense that amonotone formula
representing afunction is the one that has the fewest number of terms among $s_{-}uch$ formulas so that, if f is
such aformula, then for any distinct terms s and t of $f,$ $Var(s)\not\subset Var(t)$ holds.

Throughout the paper v denotes the random variable that takes the values in $\{v\in\{0,1\}^{n}|f(v)=1\}$

according to the uniform distribution D_{f}^{+} . For $1\leq i\leq n$, let v_{i} denote the random variable that takes the
value of the ith component of v . For a set $A=\{x\iota_{1}, \ldots, x_{i_{j}}\}\subseteq\{x_{1}, \ldots, x_{n}\}$, let v_{A} denote $(v_{i_{1}}, \ldots, v_{i_{j}})$, and
let $v_{A}=0$ mean that $v_{i_{1}}=0,$

$\ldots,$ $v_{i;}=0$. For aformula f in MDNF and a set $A\subseteq\{x_{1}, \ldots, x_{n}\},$ f_{A} denotes
aformula $_{t\epsilon[be] rm(f),Vu()\cap A\neq f}t$ and $f_{A}’$ denotes aformula $_{t\in Term(f),Var(t)\cap A=f}t$. Later $f_{\{x:\}}$ and $f_{\{x.\}}’$ are
simply written as f_{i} and $f_{i’}$, respectively. For aset $A=\{x_{i_{1}}, \ldots, x_{j_{j}}\}\subseteq\{x_{1}, \ldots, x_{n}\}$, we say that the set
A suppresses the terms in Term(f_{A}) . This is because putting $x:_{1}=0,$ $\ldots,$ $x_{*j}=0$ makes all of the terms in
Term$(f_{A})0$. Natural logarithm is $wri\grave{t}$ten as $ln’$. The cardinality of aset S is denoted $|S|$.

Before closing this section, we give alemma due to [6] that will be used in the following sections. Procedure
FREQ given in Figure 1can be used to estimate the conditional probability of event $E(v)$ under condition
$C(v)$ from the fraction of its occurrence in asequence of trials. As in the definition of learnability, δ is called
confidence parameter of FREQ.

Lemma 2.1 ([6]) Let $p,$ q and 6 be such that $0<p \leq 1,0<q\leq\frac{2}{3}p$ and $0<\delta<1$. If $Pr[E(v)|C(v)]\leq p-q$

then FREQ returns “high” with probability at most 6, and if $Pr[E(v)|C(v)]\geq p$ then FREQ returns “low”
with probability at most δ .

206

procedure FREQ $(p-q, p, E(v), C(v))\delta)$:
begin

$rarrow(12/q^{2})\ln(1/\delta)$;
call POS$()$ repeatedly until r positive examples that satisfy $C(v)$ are found;
if $E(v)$ holds at least $r(p-q/2)$ these positive examples then

return (high’
else return “low“

end

Figure 1: Procedure FREQ

Algorithm LEARN
input: $n,$ $k,$ $\epsilon,$

δ

output: g

begin
$darrow 2(k+3nk^{2}+2k^{3})$;
$garrow\emptyset$;
while FREQ (\’e/2, $e,$ $g(v)=0$, true, $6/d$) $=$ high’ do

begin
$tarrow MAKE_{-}TERM(g)$;
$garrow g\vee t$

end
end

Figure 2: Algorithm LEARN

3 Results
The main result of the present paper is stated as the next theorem.

Theorem 3.1 The class k-term MDNF is learnable in time polynomial in $n,$ $k,$ $2^{k},$ $1/\epsilon$ and $\ln(1/\delta)$.

The above theorem immediately implies the following corollary.

Corollary 3.2 For $k=O(\log n)$, the class k-term MDNF is learnable in time polynomial in $n,$ $1/e$ and
$\ln(1/\delta)$.

We $shaU$ verify the theorem by giving alearning algorithm which is based on the notion of $res\dot{t}riction$ given
by [6]. We first give an outline of the algorithm together with an idea behind it.

Let f be a target in k-term MDNF, and let v be arandom positive example of f . The algorithm proceeds
finding terms of f one by one. Suppose that the algorithm succeeded to find some terms in Term(f) and
that the disjunction of these terms is denoted g . The $algorithm_{\{}continues$ to find one of the remaining terms
in Term$(f)-Term(g)$ by caUing procedure MAKE-TERM given in Figure 3until it finds almost all of the
remaining terms.

\ln order to find the remaining terms, we employ the technique of restricting the domain of atarget function
to asmaller region: We restrict ourselves to positive examples v such that $v_{A}=0$ for A chosen appropriately
so that we may consider ae atarget function $f_{A}’$ with $n-|A|$ variables rather\cdot than f by ignoring the variables
corresponding to the elements in A. This is because A suppresses all the terms in f_{A} . If we can find A

such that $f_{A}’$ contains only one term, then we can easily $fin^{}d$ the $te\acute{r}m$ by observing sufficiently many positive
vectors v such that $v_{A}=0$. This is because with high probability it holds that for sufficiently many positive
vectors v with $v_{A}=0$ the components of vectors v take value 1if and only if the components correspond to
the variables of the single term not suppressed by A. So all we have to do is to find such A. To do this we
provide two stages: The first stage (step 1in procedure MAKE-TERM) produces A that suppresses g ;By

207

procedure $MAKE_{-}TERM(g)$:
begin

step 1: $Aarrow 1$;
while Term$(g_{A}’)\neq\emptyset$ do (*g\’A is formula $_{t\in Term(g),V\pi(t)\cap A=f}t*$)

begin
$iarrow CHOOSE(Var(g_{A}’), g(v)=0$ and $v_{4}=0$);
$Aarrow A\cup\{x_{i}\}$

end;
step 2: repeat forever

begin
let T be a subset of $\{x_{1}, \ldots , x_{n}\}-A$

consisting of such $x_{j}’ s$ in $\{x_{1}, \ldots, x_{n}\}-A$ that

FREQ $(\frac{1}{2}-\frac{1}{2^{k+1}k^{2}},$ $\frac{1}{2’}v_{j}=0,$ $v_{A}=0,$ $\frac{6}{d})=$ “low“ ;

$iarrow CHOOSE(T, v_{A}=0)$;
if $i=0$ then return $\bigwedge_{x_{j}\epsilon\tau}x_{j}$;
$Aarrow A\cup\{x:\}$

end
end

procedure CHOOSE(V, $C(v)$):
begin

$larrow k$;
$iarrow 0$;
for each x_{j} in V do

if $l>0$ and FREQ ($\frac{1}{2(l+1)}$ $\frac{1}{2l}$, $v_{j}=0,$ $C(v),$ $\frac{\delta}{d})=$ “high” then

begin
$\dot{\iota}arrow j$;

$re_{P_{1arrow l-1}^{eat}}$

until $l=0$ or FREQ $(\frac{1}{2(l+1)},$ $\frac{1}{2l}$ $v_{j}=0,$ $C(v),$ $\frac{\delta}{d})=$ “low”

end;
return i

end

Figure 3: Procedures MAKE.TERM and CHOOSE

208

adding appropriate variables to Athe second stage (step 2in procedure MAKE-TERM) yields A_{s} such that
$f_{A}’$ consists of asingle term. These stages find A by calling repeatedly procedure CHOOSE which will be
described below. In finding set A in these stages, oracle POS$()$ is called until vector v such that $v_{A}=0$ is
found. So it will take much time to find such v if the probability $Pr[v_{A}=0]$ is small. To make the algorithm
to halt in polynomial time, we are required to choose A such that $Pr[v_{A}=0]$ is large and that A suppresses
alarge number of terms in f . As we will see in the proof of Fact 4.8 there is asort of tradeoff between the
two requirements. This is the critical point of the argument that wiU be dealt with later in detail. This is a
rough sketch of the whole algorithm. Strictly speaking, the algorithm sometimes works in asomewhat different
way from what we mentioned. This is because the algorithm is constructed based on procedure FREQ which
yields an output with some tolerance: From an answer of procedure FREQ $(p-q, p, E(v), C(v), \delta)$, we can
conclude with probability 1–6 which of $Pr[E(v)|C(v)]\geq p-q$ and $Pr[E(v)|C(v)]\leq p$ holds. In other
words, an answer gives us no information when $p-q\leq Pr[E(v)|C(v)]\leq phold\dot{s}$.

We now explain in more detail how to find the variable set A such that $f_{A}’$ consists of asingle term. Step 1
and 2in procedure MAKE-TERM do this by calling procedure CHOOSE to find anew variable and repeatedly
adding it to the set A previously found. When procedure CHOOSE(V, $C(v)$) is called, V is taken to be the
set of the possible variables added an$dC(v)$ is taken to be the condition to restrict the domain appropriately.
Procedure CHOOSE(V, $C(v)$) first checks if $Pr[v_{j}=0|C(v)]\leq 1/(2k)$ holds for all x_{j} in V. If it is so, then
it returns 0 , which indicates that V constitutes the single term of $f_{A}’$. p_{D}ughly speaking, this is because, when
$C(v)$ is taken to be $v_{A}=0$, the condition says that $Pr[v_{j}=1|v_{A}=0]\geq 1-1/(2k)$ holds for all $x_{j}’ s$ in V ,
which means that the components, corresponding to V , of apositive vector v with $v_{A}=0$ probably has value
1(Fact 4.4). Otherwise it finds x_{i} that maximizes $Pr[v_{i}=0|C(v)]$ among the variables in V and returns i

$(\neq 0)$. Because newly added variable x_{i} is chosen in this way, it is guaranteed that for variable set $Afinally_{\rangle}$

obtained $Pr[v_{A}=0]$ becomes large. Let g be the disjunction of the terms and A be the set both found by the
algorithm LEARN so far. Step 1in MAKE-TERM calls CHOOSE$(Var(g_{A}’), g(v)=0$ and $v_{A}=0$) and adds
the returned variable to A to make the new variable set until all of the terms in g are suppressed by A. Then
step 1passes the set A chosen to step 2. Step 2makes the variable set T consisting of all the variables x_{i} in
$\{x_{1}, \ldots, x_{n}\}-A$ such that $Pr[v_{j}=0|v_{A}=0]<1/2$, and then calls CHOOSE$(T, v_{A}=0)$, and finally adds
the returned variable to A repeatedly until all of the variables x_{j} in T satisfies $Pr[v_{j}=0|v_{A}=0]\leq 1/(2k)$,
which means that $Tconstitut\dot{e}s$ asingle term in Term$(f)-Term(g)$. We notice that, in order to choose set T

of the possible variables to restrict the domain, we use the condition $Pr[v_{j}=0|v_{A}=0]<1/2$ because we
need to prevent a variable x_{j} which does not appear in any remaining terms from being selected as avariable
in T (For such avariable x_{j} , clearly $Pr[v_{j}=0|.v_{A}=0]=1/2$ holds).

4 Correctness
In this section, we show that Algorithm LEARN in Figure 2 learns k-term MDNF in time polynomial in $n,$ k ,
$2^{k},$ $1/e$ and $\ln(1/\delta)$ by verifying Lemma 4.1 and Lemma 4.6. The former shows the correctness of the algorithm,
while the latter estimates the time complexity of the algorithm.

Many of the statements in this section are involved with Lemma 2.1, so we simply claim that the fact
that FREQ returns (($1ow’$ implies $Pr[E(v)|C(v)]<p$, and that the fact that FREQ returns “high” implies
$Pr[E(v)|C(v)]>p-q$ without saying the phrase “with high probability“. The probability that this is not
the case turns out to be sufficiently small because we take the confidence parameter sufficiently small.

Because of FREQ built in the algorithm LEARN, LEARN is not guaranteed to halt in polynomial time. But
for simplicity we use the learning algorithm shown in Figures 2 and 3 for the time being. Later, as it will be
mentioned in the proof of Lemma 4.6, we shall modify the algorithm somehow. The algorithm is forced to halt
in polynomial time at an appropriate time. It turns out that the probability of this happening is so small that
it does not violate the condition of the learnability.

Lemma 4.1 Let f be a target function in k-term MDNF. Algonthm LEARN outputs a formula g in
k-term MDNF that with probability at least $1-\delta/2$ satisfies $D_{f}^{+}(f\Delta g)<e$, and $g\subseteq f$.

To prove Lemma 4.1, we need a series of facts.

Fact 4.2 Let V be a subset of the sei $\{x_{1}, \ldots , x_{n}\}$, and let l be the value of l at the execution of retum
statement in the procedure CHOOSE called with parameters V and $C(v)$. If CHOOSE returns 0 then for
any varzable x_{j} in $V,$ $Pr[v_{j}=0|C(v)]<1/(2k)$ holds, and if CHOOSE returns i not equal to 0 then
$Pr[v_{i}=0|C(v)]>1/(2(l+2))$ holds and for any $var\dot{v}ablex_{j}$ in $V,$ $Pr[v_{j}=0 C(v)]<1/(21)$ holds.

209

Fact 4.3 ([6]) Let f be in k-term MDNF andt be any term in Term(f) . For any x ; in $Var(t),$ $Pr[v_{i}=0]\leq$

$1/2-(1/2^{k})Pr[t(v)=1]$.

Fact 4.4 Let f be a target function. If algorithm LEARN calls the p rocedure MAKE-TERM with parameter
g such that Term$(g)\subseteq Term(f)$, then MAKE-TERM retums a term in Term$(f)-Term(g)$.

Proof: Let A and T be those at the execution of the return statement $i_{t^{1}}$ step 2. Since A suppresses all terms in
Term(g) and there remain at most k terms not being suppressed by A , there exists term s in Term$(f)-Term(g)$
such that $Pr[s(v)=1|v_{A}=0]\geq 1/k$. We therefore have by Fact 4.3 that for any x_{j} in $Var(s)Pr[v_{j}=0|$
$v_{A}=0]\leq 1/2-1/(2^{k}k)$, which implies $Pr[v_{j}=0|v_{A}=0]<1/2-1/(2^{k+1}k^{2})$. Hence by the condition of T we
have $Var(s)\subseteq T$. Assume in contradiction that $Var(s)\subsetneq T$ holds. Let x_{j} be a variable in $T-Var(s)$. We have
Pr [$v_{j}=0$ and $s(v)=1|v_{A}=0$] $=Pr$ [$v_{j}=0|s(v)=1$ and $v_{A}=0$] $\cdot Pr[s(v)=1|v_{A}=0]\geq(1/2)\cdot(1/k)$,
which implies $Pr[v_{j}=0|v_{A}=0]\geq 1/(2k)$. This is contradiction because, when MAKE-TERM returns
formula $\bigwedge_{x_{1}\in T}x_{l}i$ takes value 0 , and hence for any x_{l} in $TPr[v_{l}=0|v_{A}=0]<1/(2k)$. \square

Fact 4.5 Let $f,$ g and h be formulas in MDNF such that $f=g\vee h,$ $Term(g)\neq\emptyset$ and Term$(h)\neq\emptyset$. There
exists a vanable x : in $Var(g)$ such that $Pr[v_{i}=0|g(v)=0]\geq 1/(2|Term(h)|)$.

Proof: There exists aterm t in Term(h) such that $Pr[t(v)=1|g(v)=0]\geq 1/|Term(h)|$. Then, for any
variable x:in $Var(g)-Var(t),$ $Pr[v:=0|g(v)=0]\geq(1/2)Pr[t(v)=1|g(v)=0]\geq 1/(2|Term(h)|)$. Since
any formula is assumed to be nonredundant throughout the paper, $Var(g)-Var(t)$ is not empty. Thus

oit

completes the proof.
We now proceed to the proof of Lemma 4.1.

Proof of Lemma 4.1: Since the correctness of the algorithm is immediate from Fact 4.4, we only need to
estimate the confidence parameters.

Note that the number of iteration of the while statement in step 1in MAKE-TERM is at most $|Term(g)|\leq k$,
since by Fact 4.2 and 4.5 the value of i returned by CHOOSE is not 0 throughout the execution of the while
statement, and each variable x_{i} added to A in step 1suppresses at least one term in Term(g) . Also note that
the number of iteration of repeat statement in step 2is at moet $|Term(f)|-|Term(g)|\leq k$, since each variable
x_{i} added to A is chosen from T, which implies that $Pr[v_{i}=0|v_{A}=0]<1/2$ and hence the variable x_{i}

suppresses at least one term in Term(f) not suppressed by A .
The algorithm LEARN $ca_{\wedge}^{1}1s$ at most k times MAKE-TERM together with FREQ. Step 1in MAKE-TERM

calk CHOOSE at most k times, while step 2in MAKE-TERM calls CHOOSE at most k times $togethe\iota$ with
FREQ being called at most n times for each call for CHOOSE. On the other hand, CHOOSE calls FREQ
at most $n+k$ times. Summing up these number of c alls for FREQ, we conclude that the total number of
calk for FREQ in the whole algorithm is at most $k+k(k(n+k)+k(2n+k))=k+3nk^{2}+2k^{3}$. Putting
$d=2(k+3nk^{2}+2k^{3})$, we can conclude that the probability that all of the FREQ called in the whole
algorithm give the right answers in the sense described at the begining of this section is bounded below by
$(1-\delta/d)^{d/2}\geq 1-6/2$. Thus, since the condition of the while statement in Algorithm LEARN guarantees

$that\square$

$Pr[g(v)=0]<\epsilon$, i.e., $D_{f}^{+}(f\Delta g)<\epsilon$, the lemma follows.

Lemma 4.6 Algonthm LEARN halts in time polynomial in $n,$ $k,$ $2^{k},$ $1/\epsilon$ and $\ln(1/\delta)$.

To prove Lemma 4.6, we also need another series of facts.

Fact 4.7 Let $f,$ g and h be formulas in MDNF such that $f=g\vee h$ and Term$(h)\neq\emptyset$, let T be a subset of the
set $\{x_{1)}\ldots, x_{n}\}$ such that $T-Var(t)\neq\emptyset$ for any term t in Term(h) , and let $l\geq 2$. If there exists a vanable x_{i}

in T such that $|Term(h:)|\leq l-1$, then there exists a vanable x_{j} in T such that $Pr[v_{j}=0|g(v)=0]\geq 1/(2l)$.

Proof: Let variable x : be as in the fact. If $Pr[v_{i}=0|g(v)=0]\geq 1/(2l))$ then the fact holds. So we assume
$Pr[v_{i}=0|g(v)=0]<1/(2l)$, or equivalently Pr [$v;=0$ and $g(v)=0$] $<Pr[g(v)=0]/(2l)$.

Under the condition that $g(v)=0,$ $h_{i}(v)=0$ implies $h_{i}’(v)=1$. We therefore have $Pr[g(v)=0$ and $h_{i}(v)=$

$1]=Pr[g(v)=0]-Pr$ [$g(v)=0$ and $h_{i}(v)=0$] $\geq Pr[g(v)=0]-Pr$[$g(v)=0$ and $h_{1}’\cdot(v)=1$]. On the
other hand, it is easy to see we have Pr [$g(v)=0$ and $h_{i}’(v)=1$] $\leq 2Pr[v_{i}=0,$ $g(v)=0$ and $h_{i}’(v)=$

$1]<2Pr[g(v)=0]/(2l)$. This is because the second inequality follows from the assumption, whereas the
first inequality follows from the fact that, if v with $v_{i}=1$ satisfies both $g(v)=0$ and $h_{i}’(v)=1$, then the
vector obtained from v by changing the ith component from 1 to 0 also satisfies the same condition. Hence
from these inequalities we have Pr [$g(v)=0$ and $h_{i}(v)=1$] $>(1-1/l)Pr[g(v)=0]$. On the other hand, it

210

follows from $|Term(h_{i})|<l-1$ that there exists a term t in Term(h_{i}) such that Pr [$g(v)=0$ and $t(v)=1$] \geq

Pr [$g(v)=0$ and $h_{i}(v)=1$] $/|Term(h:)|\geq(1-1/l)Pr[g(v)=0]/(l-1)=(1/l)Pr[g(v)=0]$. Thus, for any
x_{j} in $T-Var(t)$, we have Pr [$v_{j}=0$ and $g(v)=0$] $\geq Pr$ [$v_{j}=0,$ $t(v)=1$ and $g(v)=0$] $\geq(1/2)Pr[t(v)=$
1 and $g(v)=0$] $\geq(1/(2l))Pr[g(v)=0]$, which implies $Pr[v_{j}=0|g(v)=0]\geq 1/(2l)$. This completes the
proof. O

Fact 4.8 Let f be a target fimction and let A be the set chosen in step 1 of procedure MAKE-TERM with
parameter g in MDNF such that Term$(g)\subsetneq Term(f)$. Then $Pr[v_{A}=0]>(1/2^{3k-1})Pr[g(v)=0]$.

Proof: Let $A_{r},$ i_{r} and l_{r} denote the values of $A,$ i and l , respectively, just after the rth execution of CHOOSE
in step 1 in procedure MAKE-TERM. Let A be passed from step 1 to step 2 after the mth iteration in step 1
so that $A=A_{m}\cup\{x_{i_{n}}\}=\{xx\}$. In particular, let $A_{m+1}=A$. We first note that CHOOSE in step
1 does not return 0 as the value of i throughout the iteration. This is because by Fact 4.5 for any $1\leq i\leq m$

there exists x_{j} in $Var(g_{A_{r}}’)$ such that Pr [$v_{j}=0|g_{A_{r}}’(v)=0$ and v_{A} . $=0$] $\geq 1/(2k)$, hence the first FREQ
in CHOOSE does not return “low“ for the variable. Let h be a formula in MDNF such that $h\vee g=f$. By
Fact 4.2, Pr [$v_{j}=0|g_{A_{r}}’(v)=0$ and $v_{A_{r}}=0$] $<1/(2l_{r})$ holds for any x_{j} in $Var(g_{A_{r}}’)$ and any $1\leq r\leq m$,
which in turn, together with Fact 4.7, implies $|Term((h_{A_{r}}’)_{i_{r}})|=|Term(h_{A_{r}}’)|-|Term(h_{A_{r+1}}’)|>l_{r}-1$ since
$Var(g_{A_{r}}’)-Var(t)\neq l$ for any term t in Term(h) . Again by Fact 4.2, we have $Pr[v_{i_{r}}=0|g_{A_{r}}’(v)=0$ and $v_{A_{r}}=$

$0]>1/(2(l_{r}+2))$. Since $v_{A}=0$ implies $g(v)=0$, we have by the inequalities above

$Pr[v_{A}=0]$ $=$ Pr [$g(v)=0$ and $v_{A}=0$]
$=$ $Pr[g(v)=0]Pr[v_{A}=0|g(v)=0]$

$=$ $Pr[g(v)=0]\cdot\prod_{r=1}^{m}Pr$ [$v_{i_{r}}=0|g_{A_{r}}’(v)=0$ an$dv_{A_{r}}=0$]

$>$ $Pr[g(v)=0]\cdot\prod_{r=1}^{m}\frac{1}{2(l_{r}+2)}$

$>$ $Pr[g(v)=0]\cdot(\prod_{r=1}^{m}(2(|Term(h_{A_{r}}’)|-|Term(h_{A_{r+1}}’)|+3)))^{-1}$

\geq $Pr[g(v)=0]\cdot(2^{m}\cdot 3^{m}\cdot 4^{|[be] rm(h)|})^{-1}$.

Putting $d_{r}=|Term(h_{4_{r}\iota}’)|-|Term(h_{A_{r+1}}’)|$ and $d=|Term(h)|$, the last inequality follows from the fact that,
for any nonnegative integers $d_{r}’ s$ such that $\sum_{r=1}^{m}d_{r}\leq d,$ $\prod_{r=1}^{m}(d_{r}+3)\leq 3^{m}\cdot 4^{d}$ holds. 0

$)$

Fact 4.9 Let f be a target function and let A be the set chosen in step 2 of procedure MAKE-TERM with
parameter g in MDNF such that Term$(g)\subsetneq Term(f)$. Then $Pr[v_{A}=0]>(1/2^{8k-1})Pr[g(v)=0]$.

Proof: Let $A_{r},$ $T_{r},$ i_{r} and l_{r} denote the values of $A,$ $T,$ i and l , respectively, just after the rth execution of
CHOOSE in step 2 in procedure MAKE-TERM. Assume that CHOOSE called in step 2 return 0 as the value
of i for the first time in the mth iteration in step 2 so that $i_{m}=0$ and for any $1\leq r<m,$ $i_{r}\neq 0$.

We first show the claim that for any $1\leq r<m$, there exists a term s in Term$(f_{A_{r}}’)$ such that $Var(s)\subsetneq T_{r}$

which implies that $T_{r}-Var(t)\neq\emptyset$ for any term t in Term$(f_{A_{r}}’)$. There exists a term s in Term$(f_{A_{r}}’)$ such that
$Pr[s(v)=1|v_{A_{r}}=0]\geq 1/|Term(f_{A_{r}}’)|\geq 1/k\geq 1/(2k^{2})$. By Fact 4.3 and the fact that in the rth execution any
variable x_{j} in $\{x_{1}, \ldots, x_{n}\}-A_{r-1}$ such that $Pr[v_{j}=0|v_{A_{r-1}}=0]\leq 1/2-1/(2^{k+1}k^{2})$ is taken to be in T., we
have $Var(s)\subseteq T_{r}$ for any $1\leq r<m$. We show that for this term $s,$ $Var(s)\neq T_{r}$ holds. Assume in contradiction
that $Var(s)=T_{r}$. For any variable x_{j} in $\{x_{1}, \ldots , x_{n}\}-(T_{r}\cup A_{r})\}Pr[v_{j}=0|v_{A_{r}}=0]>1/2-1/(2^{k+1}k^{2})$, which
in turn, together with Fact 4.3, implies that for any term t in Term$(f_{A_{r}}’)-\{s\},$ $Pr[t(v)=1|v_{A_{r}}=0]<1/(2k^{2})$.
Since there exist at most k terms in Term$(f_{A_{r}}’)-\{s\}$, we have therefore that for any variable x_{i} in $T_{r},$ $Pr[v_{i}=$

$0|v_{A_{r}}=0] \leq(1/2)\sum_{t\in Term(f_{1_{r}})-\{\cdot\}}Pr[t(v)=1|v_{A_{r}}=0]<(1/2)\cdot k\cdot 1/(2k^{2})=1/(4k)\leq 1/(2(k+1))$,
hence CHOOSE returns 0 as the value of i_{r} , contradicting the assumption. Thus the claim is verified.

By Fact 4.2, for any 1 $\leq r<m$ and any x_{j} in $T_{r},$ $Pr[v_{j}=0|v_{A_{r}}=0]<1/(2l_{r})$ holds. By the
above claims, the inequalities and Fact 4.7, we have for any $1\leq r<m,$ $|Term((f_{A_{r}}’)_{i_{r}})|>l_{r}-1$, which
implies $|Term(f_{A_{r+1}}’)|<|Term(f_{A_{r}}’)|-l_{r}+1$. By a similar argument to the proof of Fact 4.8, we have
$Pr[v_{A}=0]>(1/2^{5k})\cdot Pr[v_{A_{1}}=0]$. This is because $\sum_{r-1}^{m_{-}-1}(|Term(f_{A_{r}}’)|-|Term(f_{A_{r+1}}’)|)\leq|Term(f)|$ and

211

$m-1\leq|Term(f)|$. On the other hand, by Fact 4.8, $Pr[v_{A_{1}}=0]>(1/2^{3k-1})Pr[g(v)=0]$ holds. Thus we have
$Pr[v_{A}=0]>(1/2^{5k})\cdot Pr[v_{A_{1}}=0]>(1/2^{5k})(1/2^{3k-1})\cdot Pr[g(v)=0]=(1/2^{8k-1})\cdot Pr[g(v)=0]$, establishing
the fact. 口

Noting that the whik loop in the learning algorithm guarantees that $Pr[g(v)=0]>\epsilon/2$, we have the next
fact from Fact 4.8 and Fact 4.9.

Fact 4.10 Given parameter g with Term$(g)\subsetneq Term(f),$ Pr [$g(v)=0$ and $v_{A}=0$] $>e/2^{8k}$ holds throughout
procedure MAKE-TERM.

Fact 4.11 ([9]) The probability of at most rsuccesses in at least $(2/p)(r+\ln(1/\delta))$ independent tnals with
probabihty of success at least p is at most δ .

We now proceed to the proof of Lemma 4.6 which, together with Lemma 4.1, completes the proof of Theorem
3.1.
Proof of Lemma 4.6: In order to make algorithm LEARN halt in polynomial time, we have to modify
FREQ slightly. In view of Fact 4.11, the probability that at most r positive examples satisfying $C(v)$ are
found while FREQ calls POS$()$ $(2/Pr[C(v)])(r+\ln(d/\delta))$ times is at most δ/d . So if we modify FREQ by
replacing the call statement in the procedure by “call POS $()$ repeatedly until $(2/Pr[C(v)])(r+\ln(d/\delta))$ times
or r positive examples satisfying $C(v)$ are found“, the probability that the modified FREQ is forced to stop
because of the time limit is at most $6/d$. So in the same argument as that of the proof of Lemma 4.1, the
probability that FREQ is forced to stop during the whole algorithm is at most $\delta/2$.

We now estimate the time complexity of FREQ $(p-q, p, E(v), C(v), 6/d)$ which is called by LEARN. It
is easy to see that the time complexity is given by $O((2/Pr[C(v)])(r+\ln(d/6)))$. Now we have to estimate each
factor in the quantity. First of all we can simply put $d=2(k+3nk^{2}+2k^{3})$ and $r=(12/q^{2})\ln(1/\delta)$. Moreover
it is easy to see that the value of $1/Pr[C(v)]$ in each FREQ is at most $2^{8k}/\epsilon$ and that the value of $1/q$ in each
FREQ is at most $\max\{2/\epsilon, 2^{k+1}k^{2}\}$. Thus we can see the time complexity of FREQ is polynomial in $k,$ 2^{k} ,
$1/e$ and $\ln(n/\delta)$. Finally, it is not hard to see that the time complexity of LEARN is given as in the lemma. \square

R\’eferences
[1] P. L. Bartlett, R. C. Williamson, Investigating the distribution assumptions in the PAC learning model, in

Proceedings of the 4th Annual Workshop on Computational Learning Theory, Morgan Kaufmann, 1991.

[2] M. Flammini, A. Marchetti-Spaccamela and L. Kucera, Learning DNF Formulae under Classes of Probabil-
ity Distributions, in Proceedings of the 5th Annual Workshop on Computational Leaming Theory, Morgan
Kaufmann, 1992, pp.85-92.

[3] Q. P. Gu and A. Maruoka, Learning Monotone Boolean Functions by Uniformly Distributed Examples,
SIAM Journal on Computing, Vol.21, No.3, 1992, pp.587-599.

[4] M. Kearns, M. Li, L. Pitt and L. G. Valiant, On the Learnability of Boolean Formulae, in Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, 1987, pp.285-295.

[5] L. Kucera, A. Marchetti-Spaccamela and M. Protasi, On the learnability of DNF formulae, Lecture Notes
in Computer Science, Vol.317, 1988, pp.347-361.

[6] T. Ohguro and A. Maruoka, A learning algorithm for monotone k-term DNF, in Proceedings of FUJITSU
IIAS-SIS Workshop on Computational Learning Theory, 1989.

[7] L. Pitt and L. G. Valiant, Computational limitation on learning from examples, Journal of the ACM,
Vol.35, No.4, 1988, pp.965-984.

[8] Y. Sakai and A. Maruoka, Laerning k-term Monotone Boolean Formulae, in Proceedings of the 3rd Workshop
on Algonthmic Leaming Theory, 1992, pp.197-207.

[9] L. G. Valiant, A theory of the learnable, Communications of the ACM, 27(11), 1984, pp. 1134-1142.

[10] K. Verbeurgt, Learning DNF under the Uniform Distribution in Quasii-Polynomial Time, in Proceedings
of the Srd Annual Workshop on Computational Learning Theory, Morgan Kaufmann, 1990, $pp.314-326$.

