Extremal Problems and Ramsey Properties of Ball, Box or Orthant containing many points in \mathbb{R}^d — And Combinatorics of Permutations

Yoshiyasu Ishigami*

Department of Mathematics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169, Japan.

1 Ball and Box

For any points $x = (x_1, \dots, x_d), y = (y_1, \dots, y_d) \in \mathbf{R}^d$, let $Box_d(x, y)$ be the smallest d-dimensional standard box in \mathbf{R}^d which contains the two point x, y, i.e.

$$Box_d(x,y) := \{z = (z_i)_i \in \mathbf{R}^d | x_i \le z_i \le y_i \text{ or } x_i \ge z_i \ge y_i \text{ for any } 1 \le i \le d\} - \{x,y\}.$$

And let $Ball_d(x,y)$ be the smallest d- dimensinal ball in \mathbf{R}^d which contains the two points $x,y \in \mathbf{R}^d$, i.e.

$$Ball_d(x,y) := \{\frac{1}{2}(x+y) + r \mid ||r|| \le \frac{1}{2}||x-y||\} - \{x,y\},$$

where $\|\cdot\|$ means the euclidean norm.

For any positive integers d, n, if F = Box or Ball, then we define $\Pi^F(n, d)$ the largest number which satisfies the condition (*) "For any set P of n points in \mathbf{R}^d , there exist two points $x, y \in P$ such that $F_d(x, y)$ contains $\Pi^F(n, d)$ points of P."

When "For any set P" is replaced by "For any convex set P" in (*), we denote $\Pi^F(n,d)$ by $\overline{\Pi}^F(n,d)$.

Clearly,
$$\Pi^{Box}(n,1) = \overline{\Pi}^{Box}(n,1) = \Pi^{Ball}(n,1) = \overline{\Pi}^{Ball}(n,1) = n$$
.

Proposition 1
$$\Pi^{Box}(n,2) = \left\lceil \frac{n-4}{5} \right\rceil, \overline{\Pi}^{Box}(n,2) = \left\lceil \frac{n}{4} \right\rceil - 1.$$

^{*}Partially supported by the Grant in Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan

Theorem 2 $\Pi^{Ball}(n,2) = \overline{\Pi}^{Ball}(n,2) = \left\lceil \frac{n}{3} \right\rceil - 1.$

J.Urrutia conjectured $\overline{\Pi}^{Ball}(n) \geq n/2$. Theorem 2 disprove it.

Theorem 3 For any integer $n, d \geq 1$,

$$\left(\frac{2}{8^{2^{d-1}}}\right)n \le \Pi^{Box}(n,d) \le \left(\frac{9.49}{2^{2^{d-1}}1.47^d}\right)n + 2.$$

Theorem 4 For any integer $n, d \geq 1$,

$$\left(\frac{2}{8^d}\right)n - 2 \le \Pi^{Ball}(n,d) \le \left(\frac{2}{1.15^d}\right)n.$$

It is interesting to compare Theorem 3 with Erdös-Szekeres Theorem (\mathbf{R}^{d+1} -version).

2 Orthant and Permutation

N.G.de Bruijn extended the Erdös-Szekeres Theorem "Any sequence of integers of length n contains a monotone subsequence of length $\lceil \sqrt{n} \rceil$ (best possible)" to a result about sequences of d-dimensional vectors, which includes the following proposition:

Let r(d) be the largest number such that there is a set P of r(d) points of \mathbf{R}^d whose boxes are empty, i.e. $Box_d(x,y) \cap P = \emptyset$ for any $x,y \in P$. Then $r(d) = 2^{2^{d-1}}$.

N. Alon, Z. Füredi and M. Katchalski studied a set of n points of \mathbf{R}^d having many empty boxes.

When P is a finite set of points of \mathbf{R}^d , for $x = (x_i)_i \in P$ and for $\varepsilon \in \{-1, 1\}^d$, consider the ε th-orthant having x as the origin,

$$Orth_d(x,\varepsilon) := \{ z \in \mathbf{R}^d | \text{ For } \forall i, \text{ if } \varepsilon = 1, z_i \ge x_i, \text{ and if } \varepsilon = -1, z_i \le x_i \} - \{x\}.$$

Theorem 5 Let l(d) be the largest number such that there is a set P of l(d) points of \mathbf{R}^d whose orthants contains at most one point, i.e. $|Orth_d(x,\varepsilon) \cap P| \leq 1$ for $\forall x \in P$ and $\forall \varepsilon \in \{-1,1\}^d$. Then

$$1.47^d \le l(d) \le c \binom{d}{\lceil d/4 \rceil} < 1.76^d$$

for an absolute constant c and any sufficiently large d. (The lower bound can be shown constructively.)

Let $t, n(t \leq n)$ be positive integers and A a set of n elements. A finite sequence $\sigma = \sigma(1)\sigma(2)\cdots\sigma(t)$ is a t-permutation of A if and only if $\sigma(i) \in A$ for any $1 \leq i \leq t$ and $\sigma(i) \neq \sigma(j)$ for $1 \leq \forall i < \forall j \leq t$. The inverse of σ is the sequence $\sigma^{-1} = \sigma(t)\sigma(t-1)\cdots\sigma(1)$. Note that the inverse of a t-permutation is a t-permutation. A n-permutation σ of A contains a t-parmutation of A if τ is a subsequence of σ . Let $n_t(d) [n_t^*(d)]$ be the largest number n having d n-permutations $\{\sigma_1, \sigma_2 \cdots, \sigma_d\}$ of A such that for any t-permutation τ of A, there exists $\sigma_i(1 \leq \exists i \leq d)$ containing τ $[\tau$ or τ^{-1}]. A simple argument show that

$$l(d) = n_3^*(d).$$

For example, the five orders 1643275, 2654371, 3615472, 4621573, 5632174 of $\{1, 2, \dots, 7\}$ yields $n_3^*(5) \geq 7$. We will obtain bounds of $n_t(d)$ and $n_t^*(d)$.

Theorem 6 (i) For $t \geq 4$ and $d \geq t!$,

$$\left(1 - \frac{1}{t}\right) \left(\frac{1}{t}\right)^{\frac{1}{t-1}} \left(\frac{t!}{t!-1}\right)^{\frac{d}{t-1}} \le n_t(d) \le t - 3 + \binom{d}{\left\lceil \frac{d}{(t-2)!} \right\rceil}^{\frac{1}{t-2}}.$$

(ii) For $t \geq 6$ and $d \geq t!$,

$$\left(1 - \frac{1}{t}\right) \left(\frac{2}{t}\right)^{\frac{1}{t-1}} \left(\frac{t!}{t!-2}\right)^{\frac{d}{t-1}} \le n_t^*(d) \le t - 4 + 2^{\frac{1}{t-3}} \left(\frac{d}{\left\lceil \frac{d}{(t-3)!} \right\rceil} \right)^{\frac{1}{t-3}}.$$

References

- [1] Akiyama, J., Ishigami, Y., Urabe, M., Urrutia, J.: A containment problem in the plane (submitted).
- [2] Alon, N., Füredi, Z., Katchalski, M.: Separating pairs of points by standard boxes. Europ. J. Combinatorics 6, 205-210 (1985).
- [3] Erdös, P., Szekeres, G.: A combinatorial problem in geometry, Compositio Math. 2, 463-470 (1935).
- [4] Ishigami, Y., Containment problems in the high-dimensional space and the Erdös-Szekeres theorem, (submitted).
- [5] Ishigami, Y., An extremal problem of orthants containing at most one point besides the origin. Discrete Mathematics (to appear)
- [6] Ishigami, Y., An extremal problem of permutations induced by subsequences of a permutation of n elements. (preprint).