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SEMICLASSICAL ANALYSIS OF SCHRODINGER OPERATORS
WITH COULOMB-LIKE SINGULAR POTENTIALS

FUMIHIKO NAKANO (% FH £ L)

Department of Mathematical Science, University of Tokyo

ABSTRACT. In this paper, we study the behavior of eigenvalues and eigenfunctions

of Schriédinger operators whose potentials have finitely many negative singularities.

We prove that if potentials behave like O(|z)~?)(0 < p < 2) near singularities, then
2

eigenvalues behave like O(h—T-P_P) when the Planck constant h approaches to zero.
Then we obtain the asymptotic expansion of the eigenvalues and eigenfunctions in h.
We also study the splitting of the lowest eigenvalues and derive that the asymptotlc
is estimated by a suitable Riemann metric called Agmon distance.

0. INTRODUCTION

We consider Schrodinger operators whose potentials have finitely many negative
singularities, and study the behavior of eigenfunctions and eigenvalues when h, the
Planck constant, approaches to zero.

The Schrodinger operator we consider is,

H(h) := —h*A + V(z) on L*RY),
where h is the Planck constant.
The assumptions on V is,

Assumptions(A).
(1) V() has finitely many singular points p;,ps,--- ,pn € RY, and V(z) is
bounded below in the complement of the union of neiborhoods of singular
points, i.e., for any € > 0, there exists a constant M, > 0 such that,

if |z —p;| >¢€ (foranyi=1,---,n), then V(z) > -M,.

(2) V(z) € C®(R4\ {p1,---,pn}), and V(z) has asymptotic expansions near
each p; in the following form,

1 e
o L W) as s
¢ jaj=1

V(z) ~

(3) If d =1, then 0 < p < 1. Otherwise, 0 < p < 2.
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We assume the Assumptions (A) throughout this paper.

Remark. When (3) is satisfied, V(z) is in the Kato class and hence H(h) has a
unique Friedrichs extension and is bounded below (cf.[7]).

At first, we study the behavior of H(h) in the limit: h | 0. Let E,,(h) be the m-th
() .a

eigenvalue of H(h), counting multiplicities. Let h(()i)(h) 1= ~A-Z,a|=1 %:QT;;; (i=
1,---,n) and let {em}m=01,,..., be the eigenvalues of @?:1 h(()i), counting multi-

plicities.

Theorem 1. Let N € N. For sufficiently small h, H(h) has at least N eigenvalues
and

imh®E,,(h) =€en, 0<m<N, a= _2_p__
R10 2—p

Secondly, we consider asymptotic expansions of eigenvalues and eigenfunctions
in h as h tends to zero. In order that, we need additional assumptions on V(z).
Assumptions(B).

(1) V(z) has at most polynomial growth, i.e., there exist £ >0, M > 0, C > 0,
such that if |z| > M, then |V (z)| < C(1 + |z|)*.
(2) If d < 3, then p < %
Theorem 2. Assume (B).

(1) Let e, be a simple eigenvalue of P, h(()i). Then the corresponding eigen-
value E,,(H) of H(h) has an asymptotic expansion in the following form,

En(h) ~ h™*(em + Y &;(h#)7),
j=1

i.e.,
k
E.n(h) — h™%(em + Z &j(hﬂ)j) = O(h~a+(k+1)/3),
j=1

where a = ;}f—p, 8= 2—3;.
(2) Let 9., be the eigenfuction of H(h) corresponding to an eigenvalue En,(h)
and ¢, be the eigenfuction of h(()l)(h) corresponding to e, (i is taken so

that e,, is an eigenvalue of hg)). And let U® be an operator defined by
UWf)(@) == h*Pf(hPz+p) for fe L*(R?).

Then, U, has an asymptotic expansion in the following form in L2-
sense,

U(Z) 'lz[}m. ~ Pm + Z(hﬁ)Jch,?

=1

When e, is degencrate, the situation is slightly different.

69



70

SEMICLASSICAL ANALYSIS OF SCHRODINGER OPERATORS

Theorem 3. Assume (B). Let E,,, -+ ,Emtk—1 be the eigenvalues such that

h=®E,. appoaches to e, which is an eigenvalue of @, h(()i) with multiplicity k.
Then each Er,y, has an asymptotic expansion in h,

o0
Em-l-PNh'_a(e-*_Z&_]jJ(h‘ﬁ)j)a p=0,--- ak_ L
=1
Theorem 4. Under the same conditions as Thoreom 8, and if no two asymptotic
expansions of E,,, -, E,,+x—1 are the same, then for each corresponding eigen-

function v;, there exists unique singular point of V(x), ¥n(), such that for any
NeN,

1(Jagy — Dill2 = O(RY)
holds and U"(j)v,bj has an asymptotic expansion in L? sense, where JIn(j) 18 @ func-
tion that takes value one in the neiborhood of pa;y (|| - ll2 is L2(R%)-norm.).

Corollary. If E;(h) is simple for h > 0, then either of the following two holds,
(1) There ezists a singular point p,(;) € R* such that for any N € N,
I(Jnsy — D¥illa = OKY), as h 0.
(2) There exists another eigenvalue Ej(h) such that for any N € N,
|E; — E;jl =O(h"), as h|O.

Physically, the case (2) of this corollary corresponds to the situation that a
particle exists near both of at least two singular points. And the quantity |E} — Ej]|
is related to the tunneling effect between the singularities.

When the number of the singularities is two (i.e., n = 2), and E; is the lowest
eigenvalue of H(h), we can estimate |E} — Ej| sharply.

Definition. For z,y € R¢, the Agmon distance px(z,y) with respect to the energy
E,(:= h™%ep) is defined by

o) =int { [ sV ) = B, 05(0)ds | 10) = 27 =y € 1.

Theorem 5. Let n = 2, and let a and b € R be the singular points. Let J, (resp.
Jp) be a function that takes value one in the neiborhood of a (resp. b). Let Ey(h)
be the lowest eigenvalue of H(h). And let 1o be the eigenfunction corresponding to
the eigenvalue Eo(h).

Assume that, for any € > 0, there exist C; > 0 such that,

e /1B
I atboll2[[ ool > Cee ™/
Then, for any € > 0, there exist constants Cy¢Cs ¢ such that

Creexp (282214 6)) < |1 - Bol < Caconp (-2 20-),

h h

where Ey is the second eigenvalue.

The assumption of Theorem 5, ||Jatboll2l|Jbtbolla > C.e~*/" comes from the
postulate that particle exists on both a and b. For example, if V(z) has mirror
symmetry with respect to one point, this condition is automatically satisfied.

Estimating py(a, b), we obtain,
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Theorem 5’. Under the same conditions as in Theorem 5, for any € > 0 there
exist constants Cy e, Co . such that

01,5 €xXp ( 60[0, l(l +€)> < |E1 - E()l < CQ,E exp ( eola bl (1 ))

It follows from this theorem that the behavior of |E; — Ej| is determined by
|a — b, p and ag only.

As for the known results, similar problems have been studied extensively by
many people in the case that V(z) satisfies,

(1) V(z) € C=,V(z) 2 0,

(2) lim . V(z) >0,

(3) There exists finitely many points p;,--- ,pn such that V(p;) = 0 (& =
1,---,n) and each minimum is non-degenerate ([1},[2],(4],[5},[6], and in their
references).

The aim of this paper is to study the similar results as above hold if V(z)
has negative singularities. We use mainly Simon’s methods ([1],[2]). We prove
Theorem 1 in Section 1, Theorem 2,3,4 in Section 2, and Theorem 5 in Section 4.
In the appendix, we show that the similar exponential estimates as Theorem 5 and
Theorem 5’ can be obtained for the width of the ground state band of Schrédinger
operator with periodic potential.

1. PROOF OF THEOREM 1

1.1 UPPER BOUND

Here, we will show limy o hA* Erm(h) < em.
Take a function j(z) € C§°(R%) which satisfies,

() {1, if |z| < 1,
z) =

J 0, if|z|>?2,
and let

: \ . S 1 ... P
J)—~J(h (z—pi)), i=1,---,nm, o<5<2_p

We can assume SuppJ(;) N SuppJ(;) = ¢ by taking h sufficiently small if necessary.
Let e,, be the m-th eigenvalue of @?zlh((;), and ¢,, be the corresponding

eigenfuction. Then Ui('")_lwm is an eigenfunction of H{™, where H{?(h) :=
0 0

NOIS

—-h2A - 2 lal=1 T (i(m) is defined so that e,, is the eigenvalue of h(()i(m)).).
We take “approximating eigenfunction”
Y (s 2) := Tl U™
Then, from the definition of J(hi) and Assumptions (A), we can see

2(1-p)

(1.0) (b (= HY ) = OB,

where (-,-) is L?(R%)-product.
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Claim 1.

(1‘1) (1/11, Q/hn) - 6[";, + O (exp(—-ch‘s"ig_p)) .

Proof of Claim 1. When i(l) # i(m), (1.1) is clear. Therefore we assume i(l) =
i(m).

2 y—1 N —1
l(%ﬁz,l//m)—&ml:‘ / 1= IO o UD ™ ppdr

/ v Uy dr
|z—pi| >ch®
- / =5 o (h™ 75 1) oo (h™ T 1) do
jz|>chs
=0 (ex;)(—ch6_'23—p)) .
O
Claim 2.
(1.2) (Y1, HYm) = h™%embim + O(h™29),
where 6 := max{$, 2—(-}:—%)}

Proof of Claim 2. As in the proof of Claim 1, we can assume i(l) = i(m).
We use the fact that if Hn = En, then

(fﬁa an) = E(f777 fﬁ) + (77, h2(Vf)2ﬁ)

We substitute f = J(*;), H=H® n= UG o, 7 = UD ™ ) into this. Therefore,

(W1, H W) = h™%em (1, ¥m) + (1, h2(V I Ym).

Estimating VJ(’;), and using (1.0), (1.1), we obtain (1.2). O

Here we use the Min-Max principle. At first, let

Hrn(h) = sup Q(gla sfrn—l;h)’

511"' WEm—1

Q(€17 e ,ém—l; h) ;= inf {(¢7 Hlb) ’ 1/) € D(H)1 "11)”2 = law € {§1) o 7€m—1}l} .
Then p,,(h) equals to either the m-th eigenvalue of H (counting multiplicities) or

infoess(H).
Fix any € > 0. For cach k € (0,1], we can find €}, --- ,€" | such that,

/‘Lm(h) S Q(é?a e )5::;—1; h) + E
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From (1.1), {¢1,--- , %} span m-dimensional subspace if h is sufficiently small.
Hence there exists ¢ € {&, -+ ,&n_1}t which is a linear combination of

{1, - y%m}. From (1.2),
Q€L Em_1; b) < (0, Hp) < h™%em + O(h™%%),
Since € > 0 is arbitrary,
ftm(h) < h™ %, + O(h™29).

As V(z) is bounded below outside of a compact set, inf oegs(H) > —00. On the
other hand, limy, o i~ ¢, = —0o. Hence pim(h) = Em(h) if h is sufficiently small
and thus we obtain the upper bound. 0O

1.2 LOWER BOUND

We prove lim,, h*E,,(h) > e, here. When we have finish it, we complete the
proof of Theorem 1. Fix arbitrary r such that e,, < r < e,41. It suffices to show,

H>rh 1+ F

where 1 is an identity operator and rankF < m.
, 2 2 - .
We define J§ € C*(R4) so that (J§)" == 1= 1, (Jfy)"- Let P(®) be eigenpro-
jections onto the cigenspaces of Hy' () \whose corresponding eigenvalues are smaller

than h=°r (hence,S rankP® = m), and let FO) = H{Y p).
By IMS-localization formula (sce [7]), for any € > 0,

(1.3) H=JoHJo+(1—€) > LHP L+ Ji(eH + H—HP)I, = > (VJ)°.
i£0 i#0 ‘

From the definition of F®,
h (#) 7h (?) - 2
(1.4) iy Ho Iy 2 ]( y Jh @ +h T(J(,))

On the other hand, since |z — p;| > ¢h® on SuppJo,

(15) J()ff‘]() Z (J())QO(—-C]’L—ép) Z T‘h—a(.]o)2,
and
HY + H-H > S(-12n 2“5*)”“ th a2z )42
EHy’ + 1 — H —5(—L - |37]’)+1 Z Iz IPH— ( )
=1 la|=2
(1.6) > —ceh ™% — ¢cch ™ — O(iz2“f’),
where o’ 2({' {)1)7 and ¢, ¢. is independent of h .

Substltutmg (1.4)~ (l.()) into (1.3),
H>1—-ce)rh ™1 —-0(L™*)+ F, v := max(c’, 26),

(F=3JuF®Ju, rankF < m). Since € > 0 is arbitrary, we have done.
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1.3 ADDITIONAL ARGUEMENT

We shall show herc that if e, is non-degenerate, the “approximating eigenfunc-
tion”, we used in the proof of Theorem 1, approaches to the “real” eigenfunction
in L?-sensc. We will use this result in Section 2,4. At first, for each I, we find ¢
such that for any m, either e,, = €, or |e,, — e;| > € holds.

Proposition 1.1. Let

plo= L (z— H(R) dz,

271 |z—h—a|=h—2¢

then, ||(1 — P)¥ll2 — 0 (] 0).

Proof. We use the inductive arguement. Assume that the proposition is valid for
any [ for | < k.

Claim. For any | such that e; < ex, P — 0 in L2,

Proof of Claim. If the degeneracy of er is m, Py, —; — 0 in L?(j=1,---,m)
(where ¥, (j = 1,--- ,m) arc cigenfunctions corresponding to €;.). From (1.1),
we see {1, };=1,.. m and moreover, { Py, }j=1,..,m are linearly independent (for
h small). Let {ui;};j=1,..,m be the orthonormal basis of Ran P; (the range of ).
Since { P31, } is linearly independent and contained in Span{ui;}(j = 1,---,m),
we can write cach u; by lincar combination of {Plz/)zj }i=1,.,m and we write u; =

Z ail)”)[}lk'

g3

[)ll‘r/)k = Z(Ii’bk??“j)u’l_j
=1
T e m
=2 (s, 2 alP,) Y ajPuby.
=1 p=1 q=1
From the assumption ot the induction,
Ty m ,10
) . . )
(Vx> alPrdy,) = (e, > aipn,) == 0.
p=1 p=1
m
On the other hand, from (1.1 iy ) 25 0. By combini
n the other hand, from (1.1), (wk,Zapz/)zp) — 0. By combining two, we see
p=1

Py —0(h | 0)in L?. O

Let E;fz be the spectral measure of h*H. From the claim above, for any € > 0,

E(h_oo,ek_€>'(r/’)if — O as h | 0in L% On the other hand, (x, h*Hix) — ex (from
(1.2)). Then it must be ltEéLk_E,8k+E)@b£[|2 —1(h}0). O
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2. ASYMPTOTIC EXPANSIONS OF EIGENVALUES AND EIGENFUNCTIONS

2.1 PROOF OF THEOREOM 2
To simplify the notation, we write ¢ instead of i(m). Let
Ko = heUOHPUO™ (= h{);

(D), .«
oo parr(d) (i)_l [ o B R ao_.'r
K .= hMWUWYWHU =Ko+ h*V(h x+pl)+||z1 Bl
al=

From the assumption, ' — Ky has an asymptotic expansion near the origin in the
following form as h | 0,

1 =
~ — @) (pB)\lal Lo
(2.1) K — K PP |§| 2aa (hB)lelzo
Let . r
P(h) == — (z — K)"ldz,
Tl Jlz—em|=¢

where we take € sufficiently small such that {z| |z — em| < €} contains no other
e;(J # m). )

Then, by Theorem 1, rankP(h) = 1 for h sufficiently small, and by Proposition
1.1, P(h)¢m — @m (k| 0). Hence it is enough to obtain L?-asymptotic expansion
of P(h)y,,. In fact,

(2.2) 1B, = Iom Dom)
(SD’"L; P(pm)
. 1 ~
(23) U(z)d)m = ~ 1/2 P‘Pma
((zpm.’ P(Pm)

hold and K¢,, has obviously L?-asymptotic expansion under Assumptions (B).
From the definition of P(h) it suffices to obtain L2-asymptotic expansion of (z —

K) 1lo,,.

One can expand (K — 2) "o, as follows.

!
(K - z)_lc,om = ka + 7,
k=0

where

fr = (=1D)*(Ko = 2) V(Ko — 2) 7 Fom,
and

r = (1)THE = )7 V(K ~ )7 o,
We shall estimate the L2 norm of o and r;. Write V = V] + V5, where Vi(z) =
wac\ug;:1 B¢ Vo(e) = Vixur_ s (xa Is the characteristic function of A and B} :=
{al o= p;] < 2}.).
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Claim. |[fx|2 = O(WP%), |r|? = ORPUHD),

Proof of Claim. Due to the induction. We assume ||[V (Ko —1)"*pml2 = O(RPF).
At first we consider the contribution of V5. By the Sobolev’s embedding theorem,
(1) When d < 3, H}(RY)GL®(R%). From (2) of Assumptions (B), Vo €
L?(R%). Hence Vo(Kg — 2z) "9 € L%(for any 3 € L?).
(2) When d = 4, xx(Ko — 2)"1 € L™ for any r < oo and for any compact
set K. And if p < 2, there exists § > 0 such that V5 € L?2+5. Hence
Va(Ko — 2)" 1 € L2(R%) by the Holder’s inequality.
(3) When d > 5, H*(RY)GLI(R?) (where % = % - %). Hence if p < 2,
Va(Ko — z) "' € L2(R%) by the Hélder’s inequality.
Combining above we obtain,

O(eld4=2p) /2 pBkY, ifd <3,
IVa(Ko — 2) 7HV (IS0 — 2) 7 Femlle = { O(eU=C+OAN2/2+OpBkY - if d = 4,
O(ed1—p/2)4/dp BkY if d> 5.

If we take a suitable constant Cy > 0 (dependent on the dimension d), and put
€ = hBCall+D)  then we obtain

(24) IVa (Ko = 2) 7 [V (Ko = 2) 7 Fomlla = O(RPHHY).
If we take € as above, we can write (from (2.1)) for any N € N,
Vi =Qn(hiz) + Ry (k) + S(h; z),
where Qn (h; z) is a polynomial of = and h? of degree at most N, and
|IRn| < C’h“‘PﬁCd(l"’l)IhﬁxlN‘i'l,

(2.5) |Qn| < CRA(L+ |2 )Y,
1S| < ChPlz|~ (P~ D,
We take N sufficiently large such that
(2.6) B(N + 1) — pBeq(l + 1) > (L + 1).
Lemma 2.1. Foranyl € R, (1+|z))'(Ko—2)"Y(1+ |z|)~" is a bounded operator.
For its proof, we refer to [3].
Put A := (1 + |z|]). We can write Vi(Ko — 2)" V(Ko — 2)"*pm =
(A=) AY (Ko — 2) T TATY(ATV)A (Ky — 2)"1A720 ... Alk+Dby, By lemma

2.1, AP*(Ky — z)7'A~?" is a bounded operator. On the other hand, by (2.5),
lA=%(QN + Rn)|| = O(1P) for suitable b. Hence

Vi (Ko — 2) T V(Ko — 2) " fpmls = O(RPEHD),
Combining this with (2.4), we obtain || fxy1lle = O(RPK+1),
The estimate for r; is similar. This proves the Claim. O
We set fi := (—=1)*(Iy — 2) QN (Ko — 2) " })*pm. Hence, by (2.4),(2.5), and
(2.6), and as the above argucment, we obtain
I f = Jilla = O(RFUHD).

Noting that f/ is a polynomial of h?, we obtain the asymptotic expansion of (K —
2) tom. O :
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2.2 Proor or THEOREM 3

Lemma 2.2. Let C(h) be a k x k Hermitian matriz whose entries have asymptotic
expansions of h. Then the eigenvalues of C(h) also have asymptotic expansions of

h.

For the proof, we can refer to [1].
Let P, be the projection onto the subspace which is spanned by the eigenfuc-

tions of H corrcsponding to the eigenvalues E,, - -+ , Emyk—1. Hence, by using the

eigenfunctions of H éi) corresponding to the eigenvalue h™%e, it follows that ,

(2.7) (i, Prnips) — bij

as h tends to 0 (by Proposition 1.1).
Thanks to the same arguement as the proof of theorem 2, one can prove that

D= (Yi, Puipy),  Hij = (i, HPy;),

have asymptotic expansion of hf. And from (2.7), A;; = 6 + o(h#). Hence
C := A~Y2HA~1/2 has asymptotic expansion of h®. Therefore, by Lemma.2.2,
Ep, -+, Emir—1 also have asymptotic expansion of h8. O

Theorem 4 and its corollary follows easily from the proof of Theorem 3.

3. EXPONENTIAL DECAY OF EIGENFUNCTIONS

In order to prove Theorem 5 and Theorem 5°, we obtain the exponential decay
of the eigenfunction corresponding to the lowest eigenvalue of H. From now on, we
assume the number of the singular points is two (n = 2): a,b € R%.

Proposition 3.1. There exist Ry > 0,C > 0, and D > 0 such that if |z| > Ro
and h is sufficiently small,

hpo(h )] < Ce~Plel/A

Proof. Take Ry > 0, § > 0 such that, if |z| > Ro/4 and h is sufficiently small,

62
(3.1) V(z) = 75 = Eo(h) < 1,

(That is possible since V' (z) is bounded below far away from the origin and Ey(h) =
O(h™%).).
Let ¢ be a function which satisfies,
(Depel® 0<¢(s)<],
(2) p(z) ==z, if |z|< Ry,
(3) p(z) =0, if |z|>2Ry,

for a constant I3, > 0.
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We set p(z) := 6p(|z])/h?/C=P) (z € RY). Then it follows that |Vp(z)|? <
82/h*, p(z) is bounded, and is smooth in the complement of the neiborhood of
the origin. Let 9 be a R-valued fuction such that its support is contained in
{z| |z| > Ro/4}. From (3.1), for sufficiently small h, we obtain

¢y, (H = Eo)e™""p) 2 (4, (V = (Vp)? — Eo))
02) > 13

Therefore, if we define a function 7 on R? such that,

(1) 1- n € Cgo’
(2)n=0, if |z|<Ro/4,
$)n=1, if |z|> Ro/2,

and if we sct ¥ := e/ My, it follows that

(3.3) (e, (H = Eg)e™P"p) = h?(**/Mmpo, —2(Vn) (Vo) — (An)3o).

Since the RHS of (3.3) is independent of R;, we can take R; go to infinity and let
p = 8|z|/h?/(2=P). On the other hand, if we note that ||1oll2 = 1 and ||Vl =
O(h™1), we obtain ( from (3.2),(3.3)),

/ 626|$l/1L[’!¢0|2dI S Ch€6R0/hﬂ.
lz|>Ro /2

Hence .
/ e81=1/4° 1o 2 dz < Ch.
[z]|>Ro
Since g is subharmonic on {z| |z| > Ry}, the value of 1o on z is bounded by the
integral of itself over the unit ball around . Therefore we obtain the conclusion. O
Proposition 3.2. For any € > 0, I}g > 0, and k > 0, there exists a constant

Ce Ry, > 0, such that if |x| < Ry, |z —al > K, | — bl > k and h is sufficiently

small,
min(p(z, a), p(z, b)) (1 — 6))
h .

|'§[1()(1L;-'L')I < Ce,li’.o,n CXpP <""

Proof. Let ¢(z) := min(p(x,a), p(z,b)). Then,

1
1B(x) — 3(y)] < / d0\/V {0z + (1= 0)y) |z - yl,

for z,y € {z| V(x) — Ey > 0}. Hence for any € > 0, R > 0, we can find § > 0 and
o(z) (by convolution and cutoff), such that if |z| < R,

(1 —e)@(z) < p(z) < (1+€)¢(z),
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|Vp(z)| < (1= 8)y/V(z) — Eo.

Hence, for any x > 0, and if |z — a] > &, |z — b| > K, we see that

V() = Eo — (V)% > (26 — 6%)(V(z) — Eo) + Eo — Eo
> Cé,x5

for h sufficiently small. Where the second inequality follows from the fact that by
Theorem 1, —Ey = O(h™%) and Ey — Ey = o(h~®). Therefore, if we take 1 so that
its support is contained in {z| |z — a| > k, |z — b] > k}, we have, by following the
same arguement as (3.2),

(er/"4p, (H — Eo)e™?"p) > cs «llII3.

On the other hand, there exists kg determined by k such that, if |y — a| < kg or
ly—>b| < ko, then p(y) < ep(z). By the method used in the proof of the Proposition
3.1, we can obtain

on |z|< R,|lz —a|>k,|z—-b] > k.

1o (h;z)| < Cexp (—(1——;)2—@>

O

Secondly, we consider the lower bound of .

Lemma 3.3. Let €y be the lowest eigenvalue of — A on the (d—1)-demensional unit
ball with Dirichlet boundary condition and let 1) be the corresponding eigenfunction
(n is normalized so that |n|lec = 1). And let d := minjy<1/2n(y). Let Do be a
cylinder in R4 such that,

Dy = {z =(z1,z1)] 0<z1<a(l+9), |zo| < R}
Let Q(z) be such that which satisfies AQ(z) = W (z)Q(z) on Dy and W > 0, 2 >0
there. Let o’ :=sup,¢p, {€oR7? + W(z)}. Then the following estimate holds.

min{Q(z)| 1 =a, |z1| < g} >de™ (1 - 6_25““) min{Q(z)| z; =0, |z.| < R}.

For its proof we can refer to [2].

Proposition 3.4. Assume that any € > 0, ||Jo%oll2llJsoll2 > C.e~¢/h’ for a

constant C. > 0. Then for any € > 0, any compact set K(C RY), there erists a
constant Cr ¢ > 0 such that if x € K,

_ V=ceomin(|z —a|,|z - b])(1 + 6))
h8 '

[Yo(h; )| > Ci e exp (

By estimating p;,(x, a) from below, we immediately obtain,
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Corollary. Under the same conditions as Proposition 8.4,

min(Ph(m: a),ph(z, b))(l + 6)) .

"l,b()(h; ’L)i Z Crc,e exp <_ h

Proof of Proposition. There is a constant C > 0 such that V(z) — Ey > 0 if
|z — a] > ChP. Moreover, from the proof of Lemma 4.3 (in Section 4), for any
C;1 > 0, we can find a constant Co > 0 such that if |z — a| < C1h®, then [¥o] > Ca.
Hence, we take a cylinder D so that its bottom starts at the position whose distance
to a is Ch® and its top is at 2, and its radius is RhP. Then, there exists a constant
C’ (determined by C and R) such that on the bottom of D, || > C’. Thus we
can apply Lemma 3.3 to D and 1. The conclusion is that, for any € > 0, there
exists a sufficiently small § > 0 such that for sufficiently small h,

w)()(h; .’L')l > ([@_0‘(1—0‘5) (1 _ e—?éaa) Cl,
where o? := coR7?h™% + sup,cp h™2(V(x) — Eo). By taking h sufficiently small,

we can let ¢=2%¢¢ < 1/2. Morcover, by taking R sufficiently large, we can take
eoR™? < 2. Using that —Ey = O(h™?) and the result of Theorem 1, we conclude,

o (h; )| > Cexp (—v/—eoh™Plz — a|(1 +¢)) .
The uniformity with respect to z is obvious. 0O
4. T PROOF OF THEOREM 5.

THE UPPER BOUND

Lemma 4.1. Let f be a C! function which is uniformly bounded. Then

(4o, (H — Eo) fo) = h*((V Yo, (V o).

For its proof, we can refer to [2].

We set,

_ ph(a:,a) ” ph(.’L‘,b)
pn(a,b)

Fix any § > 0. By convolution, we can find a function ds(z) which satisfies,

dy(x) :

ds(x) € C°, |dj —ds| <& (uniformly in h).
Fix any a > 0, and take a smooth function h(z) on R so that,

{ -1, on (-o0,—0),

1, on (a,00).

hx) =

We set g(x) := h(ds(z)). Then g(z) € C*®(R?), and SuppVyg is contained in a
neiborhood of the geodesic bisector of a,b (i.e., is contained in {z| d(z) = 0} =:
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By.). Since mingep, {min(pn(z,a), pr(z,b)} = 3pn(a,d), we can see that, for any
€ > 0, and sufficiently small «, 6 > 0,

1
. . > 2 —e)
(41) Ieb{{;}l}}ﬁvg{Ulul(/)h(.’lf,a),/)h(.’E,b))} = 2ph(a7 b)(l 5)

Now, let
<g>u= [ guds, f@)i=g@)-<g>n.
Then (f1o,%0) = 0. Thercfore, by Lemma 4.1, we obtain

W2 ((V f)o, (V f)bo) .

4.2 E,—Ey<

(4.2) ! 0= (o, fo)
Claim. For anye > 0, _
(4.3) (fo, fpo) > Cee™/M.

Proof of Claim. Supposc that there is a constant C > 0 such that (fvo, fo) <
Ce=*/*" . Assume that there is a sequence {hn}, hn | Osuchthat < g > > 0. Then
|f(z)] > 1 ncar the nciborhood of b. Hence || Jyiboll2 < Ce~</2h%. On the other
hand, if < g >, <0, then ||[Jo¥oll2 < Ce~</?h" But this breaks the assumption
of Theorem 5. [J

Claim. Ifz € K (a compact set of R%), |Vds| < Ck for a constant Cx > 0.

Proof of Claim. Let ps be a convolution of pn(z,a). We can write,

_ Vos(z,a) = Vps(z,b)

(4.4) Vdg (51) ph(a, b)

Since z € K, we can find M > 0 such that

(45) IV/)&(.’L',(L) - vﬂé(l';b)l <2 V M — EO'

For a suitable € > 0, V(z) > m, on |z — a| > € and |z — b| > €. Therefore,

(4.6) p(a,b) > la —bjy/m — Eo.

Combining (4.4) ~ (4.6), we obtain the conclusion. 0O

We estimate £y — Ey using (4.2), (4.3), the claim above, Proposion 3.1 (to
estimate it in the arca far from the oirigin) and Proposition 3.2. We have, for a
constant C > 0,

h
from (4.1), < Cexp (_/)(a, 2 6)2) :

h

El _ E() S C'exp (_zmlnIESUPPVQ{mln(p(x) a)’p(xi b))} (1 _ E))

This proves the upper bound in Theoremn 5.

81



82

SEMICLASSICAL ANALYSIS OF SCHRODINGER OPERATORS

4.2 LOWER BOUND

Lemma 4.2. Let {W, }n=1,2,... be a sequence of functions such that they and their
derivatives converge to that of a function Wy, locally uniformlly, and satisfy

(_A + "Vn)/‘r’:n = Ly Pn, (~A + Woo)‘Poo = LooPoo-

2
loc*

Assume that E,, — E, and ¢,, = Qoo in L Then, ¢, — Yoo locally uniformly.

For its proof, we can refer to [2].

Lemma 4.3. Let ¢ (h;x) be the normalized eigenfunction associated to the eigen-

V1 (x)
Yo(z)

Then there exists a constant C > 0 such that

value Ei, and set gn(z) :=

for sufficiently small h,
If lzg—al<hP, gn2>C.
If lz—bl<hP, gn<-C.

Proof of Lemma 4.3. Let &,,&, be the eigenstates associated to the lowest eigen-
values of the Hamiltonians whose potentials are the first term of the asymptotic
expansions of V arround a, b respectively. Then &,, &, are written as follows,

Eu(lsx) = W2 Pk (WP (x — a)),

E(hyz) = 24Py (h=P(z — b)),

where K,, ki, are the eigenstates corresponding to the lowest eigenvalues of hg,a), héb)
respectively. Let P, be a projection to the subspace spanned by &,,&,. It is easy
to see ||(1 — Pyn)¥jll2 — 0 (j = 1,2) as h tends to zero. (due to a similar arguement
to Proposition 1.1) Therefore, there exist a(h) > 0, B(h) > 0, such that

(4.7) o?+ 30 =1, |y —afa—PB&ll2 >0 (h10).
Since v is orthogonal to g,
(4.8) 1 — BEa + abplla — 0 (R ] 0).

By the assumption of Theoremn 5, a- 3 is bounded below. Hence a and g is bounded
from above and below. If we set

on = h¥2a(h) "o (Fz + a),

G = h*PI2B(R) " g (WP + a).

Then from (4.7) and (4.8), ¢, @1 converge to k, in L} . Furthermore, it is easy
to see that K¢y = hW“Eyypn, and K¢, = h*E16r. Thus we can apply Lemma
4.2. Then ¢ — Ka, ¢n — Kq as h tends to zero. Thus we see that |gn — g] -0
uniformly on {z| |z — a| < 1P} and similarly |gs + %l —0on {z| |z -b < RA}. O
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Now, we are ready to prove the lower bound part of Theorem 5. Estimating
pr(a,b) from below, we see that it is enough to show that for any € > 0, there
exists a constant C > 0 such that

Ei — Eg > Cexp(—+v/—eoh™P|a — bl(1 + €)).

Let v be a straight line from a to b. Then, max;¢,{min{|z —al,|z—b|}} = J-"‘T_b-l.
Thus for any € > 0, there exists a positive constant § such that

(4.9) max{min{|z — a|, |z — b|}| dist(z,v) <} < Ja ; bl (1+e€).
Here we use Proposition 3.4. It follows that

(4.10) ]z/)0|2 > Cexp(—\/—eoh"ﬁla —bl(1 + ¢€)),

for x € T, := {x| dist(x,v) < §}. Taking T, sufficiently small if necessary, we can
find smooth coordinates y = (y1,y.1) so that

Te = {yl| lypL| £ 1},

v C {yl yoL = 0},

and a = (0,0), b = (1,0). Since these coordinates are smooth and 7~ is a straight
line from a to b, we can find C > 0 such that for suffciently small h,

{ylyr =0,lyLl < ChP} C {z| |z — a| < hP},
{yly1 =1, lyr] < ChP} C {z] |z —b] < K}
Let T .= {y| |y.| < ChP}. From Lemma 4.1 and the definition of g,

Ey — o= / IV g1 2 ol?de

> 2 / IV gn 2 ol2dz.
T(h)

We substitute (4.10) into this and change the variables from x to y. Since Jacobian

is bounded above and below, |Qﬂ] is bounded below by C| ~|. Therefore,
a
(4.11) E; — Ey > Cexp(—v—eoh™P|a — b|(1+¢€)) dyl/ dy, gh
Iy I<Che oy

On the other hand,
2

1
(4.12) 1980, 9.1) — g (L y1)? = | / dyl(f’ﬁﬁ)(yl,yl)

<[ o]
0

dy

The last inequality is due to the Schwarz inequality. By Lemma 4.3, if |y, | < ChP,
the LHS of (4.12) is bounded below by (2C)2. Therefore, we get

E, - Ey> Chﬂ(d"l)e:cp(—\/-—eoh“ﬁla —bl(1+¢)).

a
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5.APPENDIX. THE PERIODIC POTENTIAL

It is known that if the periodic potential have negative singulafities, the spectrum
of the Schrodinger operator have the band structure. We will see that the width of
the lowest band have an asymptotic similar to that of Theorem 5’. The strategy is

due to [8].
Assumptions of V(x).

(1) There arc ay,az,- - ,aq € R%, mutually independent, such that V(z+a;) =
(2) V(z) has an asymptotic expansion around a € L := {nja;;n; =0,£1,---}
in the following form,

1 = o
V(.’E) ~ —I—x—_—a—lm 'alz—l aa(x - a) .
(3) V(z) € C*(R*'\ L)
(4) Itd<3,p<d/2 Ifd>4,p<2
Now we shall dccompose H(h) := —h?A + V(z) on L?(R%) into the direct
integral.
Definition.

(1) We say a mesurable set C C R is a fundamental cell if and only if, (a) For
any a € L, C + a and C are disjoint. (b) R%\ Uaer(a + C) has measure
zero.

(2) A fundamental cell W is a Wigner-Seitz cell if and only if,

W = {z] z is the nearest point to the origin among all a € L with respect
to the Euclidian metric}.

(3) We define the dual lattice of L (denoted by L*) if and only if,

1
kel 2—k-a€Z foranya € L.
T
(4) The Brillouin zone B is defined as the Wigner Seitz cell of L*.

We take any fundamental cell: C. For each & € B, we define Hilbert space Hx
as follows,

He = {feLl, |fz+a)=¢e**f(z), forallae L}

For f,g € Hj, we define the inner product,
<f.9>= [ Fa@ala)de.

For g € L?(R¢%), we define fi, € My using the Fourier transform,

) =c > gb( -k - K),

KeL+
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where ¢ = (27)4/?[vol C]~1/2. This gives an isomorphism between L?(R¢) and
I8 Hydk. The fiber of H is,

Dy, := {f € Hy| the Laplacian of f (in the sense of distribution) belongs to Hg}.
And for f € Dy, we define

(H (h; k)f) (z) == =h*(Af)(z) + V (2) f(2).

From the Assumption, H(h; k) is self-adjoint on Dy, and has compact resolvent,
and

H(h) = /;3 H(h; k)dk.

Let go(h; k) < e1(h;k) < --- denote the spectrum of H(h; k). Hence, b,(h) :=
UkeB €n(h; k) is the n-th band of H. The similar arguement as Theorem 1 proves
(for detail, see [8]),
Theorem A.1. Let e9 < e < --- be the eigenvalues of hy = —A —
m,l,—g > laj=1 GaZ®. It follows that
2

limh%en(h; k) =en, a= ——p—,

hi0 : 2 — P
and the convergence is uniform with respect to k.

We see from Theorem A.1, that the width of each band behaves |b,(h)| — 0 as

h tends to zero. We shall estimate |bg(h)| in more detail.

Theorem A.2. For any e > 0, there exist constants Cy ¢, Cy . such that

Croexp (Y minlal(1 +9)) < o(h)] < Caeexp (- Y minlal(1 - ) )

where = TE’;

The method of its proof is basically the same as [8]. To prove Theorem A.2,

we need the exponential decay of the eigenfunction 1y associated to the lowest
eigenvalue of H(h;0).

Theorem A.3. For any e > 0, K > 0, there exists constants C ,,Cc such that

Yo < Ce,exp (— 'h_ﬁeo min |z — a|(1 — 6)) on min|z —a| > &,

and

Yo > Ceexp (— h—ﬁeo Lnelil |z —al(1+ s)) .

Acknowledgements. The author is deeply thankful to Proffesor S.Nakamura for
his fruitful disccusions.

85



86

SEMICLASSICAL ANALYSIS OF SCHRODINGER OPERATORS

REFERENCES

. B. Simon, Semi-Classical Analysis of Low Lying FEigenvalues I, Non-degenerate Min-
ima:Asymptolic ezpansions, Ann.Inst.Henri-Poincaré 38 (1983), 295-307.

. , Semi-Classical Analysis of Low Lying Eigenvalues 11, Tunneling, Ann. of Math. 120
(1984), 89-118.

. , Schrédinger Simigroups, BulLAMS 7 (1982), 447-526.

. B. Helffer and J. Sjostrand, Multiple Wells in the Semi Classical Limit I, Comm.P.D.E. 9
(1984), 337-408. v

. J. M. Combes and P. Duclos and R. Sciler, Krein§ formula and one demensional multiple
well, J.Funct. Anal. 52 (1983), 257-301.

. , Convergent Ixpunsions for Tunneling, Comm.Math.Phys. 92 (1983), 229-245.

. H. L. Cycon and R. G. Froese and W. Kirsch and B. Simon, Schrodinger Operators, T.M.P.,
Springer Verlag, New York, 1986.

. B. Simon, Semi-Classical Analysis of Low Lying Eigenvalues I1I, Width of Ground State Band,
Ann. of Phys. 158 (1984), 415-420.




