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LONG-RANGE SCATTERING
FOR THREE-BODY STARK HAMILTONIANS

東大数理科学 足立匡義 (TADAYOSHI ADACHI)

1. INTRODUCTION

Suppose that a system of three particles interacting on each other via the pair
potentials $V_{jk}(r_{j}-r_{k}),$ $1\leq j<k\leq 3$ , is put in a constant electric field $\mathcal{E}\in R^{d}$ ,
$\mathcal{E}\neq 0$ . If the mass and charge of j-th particle, $j=1,2,3$ , are $m_{j}$ and $e_{j}$ and we
denote its position vector by $r_{j}\in R^{d}$ , the motion of the system is governed by the
Hamiltonian

$\tilde{H}=-\sum_{j=1}^{3}(\frac{1}{2m_{j}}\triangle_{r_{j}}+e_{j}(\mathcal{E}, r_{j}\rangle)+\sum_{1\leq j<k\leq 3}V_{jk}(r_{j}-r_{k})$ , (1.1)

where \langle $x,$ $y$ ) $= \sum_{j=1}^{d}x_{j}y_{j}$ for $x,$ $y\in R^{d}$ .
The purpose of this article is to study the scattering theory for the system in

the case when $V_{jk}$ is long-range: $|V_{jk}(y)|=O(|y|^{-\rho})$ as $|y|arrow\infty$ for some $0<$

$\rho\leq\frac{1}{2}$ To state our result, we need introduce some notations. First we remove
the center of mass motion from $\tilde{H}$ . This is achieved as follows: We introduce the
metric $r \cdot\tilde{r}=\sum_{j=1}^{3}m_{j}\{r_{j},\tilde{r}_{j}\}$ for $r=(r_{1}, r_{2}, r_{3})$ and $\tilde{r}=(\tilde{r}_{1},\tilde{r}_{2},\tilde{r}_{3})\in R^{d}$ and define
$X= \{r\in R^{3d}|\sum_{j=1}^{3} mjrj=0\}$ and $X^{\perp}=R^{3d}\ominus X=\{r\in R^{3d}|r_{1}=r_{2}=r_{3}\}$ . Then
$L^{2}(R^{3d})$ is decomposed into $L^{2}(X)\otimes L^{2}(X^{\perp})$ and, accordingly, $\tilde{H}$ can be written in
the form

$\tilde{H}=H\otimes Id+Id\otimes T^{\perp}$ .

Here

$H=- \frac{1}{2}\triangle-E\cdot x+\sum_{1\leq j<k\leq 3}V_{jk}(r_{j}-r_{k})$ , $T^{\perp}=- \frac{1}{2}\triangle^{\perp}-E^{\perp}\cdot x^{\perp}$, (1.2)

$\triangle$ (resp. $\triangle^{\perp}$ ) is the Laplace-Beltrami operator on $X$ (resp. $X^{\perp}$ ), $x$ and $E$ (resp.
$x^{\perp}$ and $E^{\perp}$ ) are the projections of $r$ and $(^{\frac{e}{m_{1}}\mathcal{E}},e_{-\mathcal{E},-\Delta_{3}}\simeq_{2}e\in R^{3d}$ to $X$ (resp. $X^{\perp}$ ),
respectively. We write $V= \sum V_{jk}(r_{j}-r_{k})$ . If $E\neq 0,$ $H$ is called a three-body Stark
Hamiltonian and $H_{0}=- \frac{1}{2}\triangle-E\cdot x$ the free Stark Hamiltonian. We are concerned
with $H$ and $H_{0}$ only.
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For each pair $\alpha=(j, k)$ , we denote by $X^{\alpha}$ the configuration space for the relative
motion of j-th and k-th particles: $X^{\alpha}=\{r\in X|m_{j}r_{j}+m_{k}r_{k}=0\}$ and $X_{\alpha}=$

$X\ominus X^{\alpha}=\{r\in X|r_{j}=r_{k}\}$ is the configuration space for the motion of the third
particle relative to the center of mass of the pair $\alpha$ . We denote by $x^{\alpha}$ (resp. $x_{\alpha}$ ) the
projection of $x\in X$ to $X^{\alpha}$ (resp. $X_{\alpha}$ ) and write $V_{\alpha}(x^{\alpha})=V_{jk}(r_{j}-r_{k})$ .

We say that $V= \sum_{\alpha}V_{\alpha}$ satisfies the condition $(V)_{\rho,\mu}$ if, for each pair $\alpha,$
$V_{\alpha}$ is a

real-valued $c\infty$ function and satisfies the following conditions:

(V 1) $|\partial_{x}^{m_{\alpha}}V_{\alpha}(x^{\alpha})|\leq C_{m}(x^{\alpha})^{-\rho-\mu|m|}$ for some $\rho>0$ and $\mu>0$ ,

$(V2) \sum_{\alpha}\frac{1+|\omega_{\alpha}|}{|\omega^{\alpha}|^{2}}\sup_{x^{\alpha}\in X^{\alpha}}|\omega^{\alpha}\cdot(\nabla^{\alpha}V_{\alpha})(x^{\alpha})|<|E|$ ,

where $m$ is any multi-index, $\omega=\frac{E}{|E|}\{x\}=(1+x^{2})^{\frac{1}{2}}$ and $\nabla^{\alpha}$ denotes the gradient on
$X^{\alpha}$ . When $V$ satisfies $(V)_{\rho,\mu}$ , both $H_{0}$ and $H$ are essentially self-adjoint on $C_{0^{\infty}}(X)$ ,
and we denote their closures by the same notations.

The main result of this article is the following theorem.

Theorem 1.1 (Asymptotic Completeness). Suppose that $E^{\alpha}\neq 0$ for all pair $\alpha$

and $V$ satisfies the condition $(V)_{\rho,\mu}$ with $0<p \leq\frac{1}{2}$ and $\rho+\mu>1$ . Then the modifed
wave operators

$W_{0}^{G,\pm}=s- \lim_{tarrow\pm\infty}e^{itH}e^{-\{itH_{0}+i\int_{0}^{t}V(\frac{E}{2}\tau^{2})d\tau\}}$ (1.3)

exist and are unitary operators on $L^{2}(X)$ . Moreo$1^{\gamma}er,$
$W_{0}^{G,\pm}h$ave the intertwining

property
$e^{itH}W_{0}^{G,\pm}=W_{0}^{G,\pm}e^{itH_{0}}$ , $t\in R$ . (1.4)

Remark 1.2. For long-range potentials, it is known that in general, the usual wave
operators

$W_{0}^{\pm}=s- \lim_{tarrow\pm\infty}e^{itH}e^{-itH_{0}}$

does not exist even for two-body case (see Ozawa $[0]$ ).

Remark 1.3. The condition that $E^{\alpha}\neq 0$ for all pair $\alpha$ means that the electric field
$\mathcal{E}$ is effective on each pair separately, which leads to the unitarity of $W_{0}^{G,\pm}$ . N-
body systems with different $\sim_{i}^{e}mj=1,$ $\cdots N$ , can be treated by our method and

the modified wave operators $W_{0}^{G,\pm}$ for such systems exist and are unitary under the
additional assumption that $V$ satisfies the condition corresponding to $(V)_{\rho,\mu}$ with
$0< \rho\leq\frac{1}{2}$ and $\rho+\mu>1$ . However, we shall restrict ourselves here to three-body
systems for simplicity.
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When $E^{\alpha}=0$ for some pair $\alpha$ (note that only one $E^{\alpha}$ can vanish if $E\neq 0$ ), the
Hamiltonian for the pair $\alpha$

$H^{\alpha}=- \frac{1}{2}\triangle^{\alpha}+V_{\alpha}(x^{\alpha})$ ,

where $\triangle^{\alpha}$ is the Laplace-Beltrami operator on $X^{\alpha}$ , can have bound states and the
scattering for $H$ may be multi-channel scattering. Such systems are now under inves-
tigation.

Remark 1.4. The condition (V.2) that the pair interactions are small compared with
$|E|$ is necessary for us to prove the Mourre estimate and one of propagation estimates.
We want to eliminate this condition eventually.

Remark 1.5. The superscript $G$ of the modified wave operators $W_{0}^{G,\pm}$ indicates that
the modification is of Graf-type (see Graf [Gr2] and Jensen-Ozawa [JO2]). In [Gr2],

Graf proved the existence and the asymptotic completeness of the modified wave
operators $W_{0}^{G,\pm}$ for two-body systems under the condition that $V\in C^{1}(R^{d})$ and
$\nabla V(x)=O(|x|^{-1-\epsilon})$ as $|x|arrow\infty$ for some $\epsilon>0$ . Our assumption $\rho+\mu>1$

corresponds to this condition.

Remark1.6. Under the assumption as in Theorem l.l, we can prove that the Dollard-
type modified wave operators

$W_{0}^{D,\pm}=s- \lim_{tarrow\pm\infty}e^{itH}U_{0}^{D}(t)$ (1.5)

exist and are unitary operators on $L^{2}(X)$ , where $U_{0}^{D}(t)$ is the propagator generated
by the time-dependent Hamiltonian

$H_{0}^{D}(t)=H_{0}+V(pt- \frac{E}{2}t^{2})$ , (1.6)

i.e. $\{U_{0}^{D}(t)\}_{t\in R}$ is a family of unitary operators such that for $\psi\in \mathcal{D}(H_{0}),$ $\psi_{t}$ $:=$

$U_{0}^{D}(t)\psi$ is a strong solution of $i \frac{\partial\psi_{t}}{\partial t}=H_{0}^{D}(t)\psi_{t},$ $\psi_{0}=\psi$ . For two-body case, Jensen
and Yajima [JY] proved this when $d=1$ and $\mu=\frac{1}{2}$ But we need the assumption
$\rho+\mu>1$ .

Remark 1.7. For short-range case, when each pair potential $V_{\alpha}$ satisfies $|V_{\alpha}(x^{\alpha})|=$

$O(|x^{\alpha}|^{-\rho})$ as $|x^{\alpha}|arrow\infty$ for some $p> \frac{1}{2}$ the multi-channel scattering mentioned in
Remark 1.3 has been studied by Korotyaev [Ko] and Tamura [T2] (see Tamura [T3-4]
for general N-body case).

Remark 1.8. When $E=0$ , the problem of the existence and the asymptotic com-
pleteness of the multi-channel wave operators has been recently solved for short-
range potentials as well as for a class of long-range potentials (cf. Sigal-Softer [SS1],
Graf [Grl], Kitada [Ki1-2], Tamura [T1] and Yafaev [Y] for short-range case, and
Enss [E], Derezi\’{n}ski [D1-2], G\’erard [G] and Wang [Wa] for long-range case).
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2. AN OUTLINE OF THE PROOF OF THEOREM 1.1

In this section, we give an outline of the proof of Theorem 1.1. For brevity, we omit
the proof of the existence of the modified wave operators $W_{0;}^{G,\pm}$ When we admit the
existence of $W_{0}^{G,\pm}$ , the intertwining property (1.4) can be proved by the standard
way.

First we need the following proposition.

Proposition 2.1. Assume that $V$ satisfies $(V)_{\rho,\mu}$ with $\rho+\mu>1$ . Let $J\subset R$ be any
bounded interval. Then for $\psi\in RanE_{J}(H)$ , there exist $\psi_{0}^{\pm}\in L^{2}(X)$ such that

$e^{-itH}\psi=U_{0}^{G}(t)\psi_{0}^{\pm}+o(1)$ as $tarrow\pm\infty$ . (2.1)

We should note that this proposition is a key step for the proof of the asymptotic
completeness of $W_{0}^{G,\pm}$ . The property stated in this proposition is called asymptotic
clustering by some authors ([SS2], [DG] and [Ki2]). The proof is completed by proving
some propagation estimates, but we omit it.

Now we shall show the asymptotic completeness of $W_{0}^{G,+}$ only. For $W_{0}^{G,-}$ , the
proof is similar. In virtue of Proposition 2.1 and the existence of the modified wave
operator $W_{0}^{G,+}$ , we see that for $\psi\in RanE_{J}(H)$ , there exists $\psi_{0}^{+}\in L^{2}(X)$ such
that $\psi=T/V_{0}^{G,+}\psi_{0}^{+}$ , which implies $RanE_{J}(H)\subset RanW_{0}^{G,+}$ . If we note $W_{0}^{G,+}$ is an
isometry and $J\subset R$ is any bounded interval, this implies that $W_{0}^{G,+}$ is a unitary
operator on $L^{2}(X)$ . This completes the proof of Theorem 1.1.
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