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§1. Introduction and theorem. In this paper, we consider Davey-Stewartson

system:
(1) i0u + 2w + 602w = alul’u + bud,,
(2) 824 + maﬁ = 8, (]u]?).

Here u = u(t, #,y) is a complex valued function of ¢ € R and (z,y) € R?, and ¢ =
¥(t, #,y) is a real valued function. This system is introduced by Davey and Stewartson
[DS] in 1974, as the equation of 2-dimensional long waves over finite depth liquid.
They considered 1-dimensional progressive wave icw exp[ikz] + complex conjugate,
and u is related to the distortion from this progressive wave. 1 is related to the
velocity potential. And real parameters 8, m,a,b are determined by the wave number
k, frequency w of the first progressive wave, and the depth h.

In theii' work, § < 0 and m > 0, but considering the effect of the surface tension,
(6, m) may become (—,+), (+,+) and (+, —) physically. (See the work of Ghidaglia
and Saut [GS].) We call each of above cases hyperbolic-elliptic case, elliptic-elliptic
case, and elliptic-hyperbolic case respectively.

Elliptic-elliptic case is usual 2-dimensional nonlinear Schrodinger equation with
non-local interaction, and we can comnstruct a unique solution by usual methods.
Since its nonlinear term has non-symmetry, the corresponding stationary problem
is quite difficult, and Ohta [Ohl], [Oh2] discussed this problem by using concentra-
tion compactness methods. Hyperbolic-elliptic case is so-called hyperbolic Schrodinger
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equation. We can construct the time-local solution of it by similar way for usual non-
linear Schrodinger equation, but we can not obtain a-priori estimate for this solution,
so it is unknown that above time-local solution becomes time-global or not.

In this paper, we consider the elliptic-hyperbolic case (8, m) = (4, —), and for the
simplification, we take § = 1 and m = —1. In this case, since (2) is hyperbolic equation
for 9, 9 is not determined uniquely if we impose no condition for the behavior of 3

as |z|, |y| = oo. So, we demand following radiation condition:

(3) | P,V -0 asytz — co.

Under this condition, we can rewrite (2) as following:

(4) $ = 0.K(ju]?), where K(f):= F-X(n — €2 +i0)"'F.

Here, F is Fourier transform from R2 , to R} . By using (4), we rewrite (1) and (2)

under the condition (3) as following:

(5) i0pu = — Ay yu + a|ul’u + bud2 K (|u)?).

2

2,50 but since the second

This equation is a nonlinear Schrodinger equation on R
nonlinear term budZK(|u|?) has so-called derivative loss, then we can not directly
apply the contraction mapping method. Although, by using the compactness method,
there exist some results for the Cauchy problem for (5) with initial data u(0,z,y) =
up € X, where X is some Banach space. (See the works of Ghidaglia and Saut
[GS], Tsutsumi M. [TM].) They obtain a global weak solution of (5), but one can
not obtain uniqueness of the solution. To obtain the uniqueness, we want to solve
(5) using contraction mapping method. So we regard the local smoothing property

of free Schrodinger equation.

The main result of this paper is following.

THEOREM 1. Let a be a real constant and b a real function of (z,y) such that b €
W3<(R2 ) and (r)}/2*b € L°(R2 ) for some € > 0, where W*? := {f € L :
8°f € I? for |a| < k} and (r) = (1+ |2|? + [y|?)}/2. Then, ifuy € X(5) is sufficiently
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small for the norm of this space, where H* = W2, there exists a unique time-local

solution v € X(T) of

i0u = — Ay yu + alul®u + bud2 K(Jul?),
(6)
u(

0) z, y) = ud(z1y)'

Here,

Y(k) :={f € Lz(Ri,y) : z‘slyﬁ’c?:‘a;’f € L*(R?) for ay + a3 + 1 + B2 < k}
=H*(R*) N L;(R?),
I58m={ Y. ll=fef20m05 £ 12 (RY)|2}7,
aitaz+Bi1+Ba<k '

and

X(T) = Xo(T) N Xa(T),

Xo(T) := C([0,T);2(3)),

Xo(T) := {v: 05880 € W™ (Ro; L*([0,T] x Ry)) NWH> (Ry; L2([0,T] x Ro))
fora+ < 3}

Recently, Linares and Ponce[LP] proved the existence and uniqueness of time-
local solution of (6) in the case that b is comstant not only a. They showed if
ug € H*(RZ )N H%(R2 ,; (r)%dzdy) is sufficiently small, then there exists unique
time-local solution of (6) in suitable space. But the spaces which they used are very
complicated and their initial space is too narrow. Here,we show if b decays, one can
construct the solution in more wide space.

Originally, Davey-Stewartson system is introduced for a kind of 2-dimensionalization

of 1-dimensional cubic nonlinear Schrodinger equation:
(7 i0u = —Au+ A|u|?u,

and in case that parameters §, m, a and b satisfy some relations, it becomes a soliton
equation as like as (7). So, there exist several works which one deals it as a soliton
equation, (e.g. [AbFo|, [AnFz|, [BC], [FS]), but in this paper, we consider more general

situation, and we use functional analysis methods.
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§2. Proof of theorem. First, we change the variables z,y for ' = %(y + z) and
'= %(y — z), and rewrite the equation (6). The rewritten equation is
® i
i = = Anyutalalu+bu( [ o luenPde+ [ tululenan),
x Yy
4(0, 2, y) = uo(z,y).
Here, to simplify the notations, we denote again by #,y in place of ',%y'. The corre-
sponding integral equation for (8) is
¢
u(t) = U(t)uo — z/ U(t — s)N(u(s))ds,
(9) % oo | o |
V) = afufurbu( [ ol n)Pd+ [ dulatamlan),
£ Yy
where U(t) := exp[itA,,] is free Schrodinger propagator. Since (8) and (9) are
equivalent if u € X(T), it suffices to prove that (9) has a unique solution » € X(T').
Now, remark that the free Schrodinger propagator U satisfies following well-known
estimates.
LEMMA 2. (1) U : ¢ — U¢ is a bounded operator from X(k) to C([0,T]; =(k)) for
any k € N, and
1U; C([0, T]; B(k))I| < C(1 +T*)||¢; Z(R)I.

(2)S:f—Sf:= fot U(t — s)f(s)ds is a bounded operator from L([0,T]; £(k)) to

C([0,T); =(k)) for any k € N, and

IS £;C([0, T B(R))|| < C(1+T*)|If; LH([0, T); B(k))I.

Moreover, S satisfies following key estimate.
LEMMA 3. S is a bounded operator from L' (R,; L*([0,T] x R,)) to
Wt (R,; L*([0,T] x Ry)), and

1SF;Wh (Re; L2([0,T] x Ry)) || < C(1+ T)|If; L' (Ro; L2([0, T] x Ry))].

This estimate means if f decays for z-direction, then Sf becomes more regular
with respect to z-variable than f at least locally. That is, this estimate means some

kind of local smoothing effect of S.
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Then, we define following auxihiary space:

Y(T) = Yo(T) N Ya(T),
Yo(T) := L*([0, T]; (3)),
Y,(T) := {v:0200v € L' (Ro; I*([0,T] x Ry)) N L*(Ry; L*([0, T] x R,))
fora+ 8 < 3}.
Lemma 2 and Lemma 3 show the operator S maps Y (T') to X(T). |

Next, we estimate the nonlinear term N(u). Let Ny(u) := bu [~ 8,[u(&, y)|?d¢.

Remark following facts:

(1) By Sobolev’s inequality, we have
IF; P(RY)|| < ClIf; H'(R?)|| for1/p=1/2-4/2, 0<s<]1,

and

1£; L= (R2)]| < Cif; B (R?)]].

From here, € means a certain small positive number.

(i) By Holder’s inequality, we have
If; L2 (RY)|| < Cll(=)*** £ LYRT)|| for s/n=1/p—1/q.
(ii1) For any p € [1, oo,

If; Z* (Ro; LP([0, 7] x Ry)) || = |If; L* (Ry; L7([0, T] x Ra)) |
= |I£; 27([0, T); L*(R?))]| = I1£; Z2([0, T R?)|.

(iv) fa+ B < k, then
()08 o F; L2(R)|| < C|If; Z(R)|I.

We have to estimate ||N1(u); Yo(T)|| and ||N1(2); Yo (T)|| by ||u; X]||-
Let u € X(T). Then we have |ju; C([0,T7]; £(3))|| < oo and ||8%u; L= (R.; L2([0,T] x
R,))Il < oo.
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Remark if we differentiate N;(u) with respect to z, the term which this differenti-
ation operates integral factor is low order. So, we only consider the derivation with

respect to y. By Leibniz’s rule, we have

12 > '
= 3 —————921b 82w / Re{ 07> u(¢, y) 0y +u(€, y) pdE.

Tvelove lava!
o1:02loglag!
ajtoaztastas=3 1-x2-Ct3:as

Taking care of the derivative order, we use following term. We denote

0716 0y%u f:o O3t u(¢, y)05u(€, y)dé by (a1, 02,03 + 1,a4)-term. Then, appear-

ing terms in 87 N1(u) are following: (0,0,4,0), (0,0,3,1), (0,0,2,2), (0,0,1,3), (0,1,3,0),

(0,1,2,1), (0,1,1,2), (0,2,2,0), (0,2,1,1), (0,3,1,0), (1,0,3,0), (1,0,2,1), (1,0,1,2), (1,1,2,0),

(1,1,1,1), (1,2,1,0), (2,0,2,0), (2,0,1,1), (2,1,1,0) and (3,0,1,0). But since third and

fourth factors have even role, we can quit (0,0,1,3), (0,1,1,2) and (1,0,1,2)-terms.
Firstly, we estimate ||Ny(u); L1(0,T;%(3))||. First, (0,0,4,0)-term is estimated as

1,
bu / N 83wudg¢; L*([0,T] x R?)
<T*/*||p; L:’Illlu; L*(Ra; L= ([0,T] x Ry))||
/:, 0y wudt; L™ (Ra; L*([0, T] x Ry)) “
<CTY?||b; L=||||(=)*/***w; L=([0,T] x R?)[|[|0)ww; L* (Ras; L*([0, T] x Ry))|
<CTY?[1b; Z=||[|(2)*/**u; L=([0, T] x B)||[|05w - (2)*/***%; L*([0,T] x R?)]|
<CT?||b; L= ||||(=)Y/ *+*; C([0, T]; H**(R?))|

x (|03 u; L (Ry; L([0, T] x Ra)) [lI[(=)*+*w; L (Ry; L2([0, T] x R.)) ||
<CT'2|[b; L=|||(=)*/***w; C([0, T); H***(R?))|

x [|8yu; L% (Ry; L2([0, T] x Ro))[|[|()2/2* ()" >+ u; L=([0, T] x R?)||

following:

bu / btwade; M0, T; L*(R?))

STl/z

X

<CT'?||b; L= ||[|w; C([0, T}; B(2))llllw; Xall
x [I(=) 2+ (y) 2+ w; C([0, T); H'(R?))|
- <CTY?|b; L= ||llw; C([0, T1; B(2)) | C([0, T; 2(3)) 13 Xell-
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By similar way, the setimate of (0,0,3,1)-term is

bu / 63ub, wd¢; L*(0, T; L*(R?))

<CT*/*||b; L= ||[|w; C([0, T]; 2(2)) 1111020, T; L* (Ra; L2([0, T] x Ry))||
<CT?|jb; L=||||w; C([0, T); Z(2)|[| 65w - (=)*/**48,; L([0, T] x R?))|
<CT/?|1b; L[|u; C([0, Tl; £(2))|[[163u; C ([0, T]; Z(R))]

x [|(=)/2+¢ 8, u; L*([0, T]; L= (R?)))
<CT|b; = ||lw; C([0, T]; Z(2)|[|65w; C([0, T]; L*(R?)) |

x [|(=)/*+¢ 8, %; C([0, T); H'**(R))|
<CTI|; L*||||w; C([0, T]; Z(2))ll1w; C([0, T}; £(3))|1-

Next, (0,0,2,2)-term is estimated as following:

<CT'?|)b; L%l C((0, T 2(2)) Ml 8gw; L* (Ra; L2((0, T) x Ry))||?

- <CTM? |16 L llju; C([0, T; B(2)) || (=) 4+ 62u; L*([0, 7] x B[]

bu / " |02uf?dg; 110, T; I3(R?))

<OT|b; L= |lllu; C([0, T); B(2))lll(2)*/*+* 0w; C([0, T]; L*(B?))]?
<OT|b; L |[[lu; C(10, T]; £(2)) Il (=) 4+ 65 w; ([0, T); HY/*(R?))
<CT|l; L*|lllw; C([0, T]; B(2))ll]|w; C([0, T); B(3))1I*.

Since second factor is estimated by C([0,T]; ¥(2))-norm not C([0,T}; X(3)), (0,1,3,0)-
term and (0,1,2,1)-term can be dealt by similar way. Besides, the estimate of (0,2,2,0)-

<T21b; L[|67w; L* (Ra; L3([0, T] x Ry)) [[1629; L (Res; L([0,T] x Ry))|

term is

”b@:u / Ojuﬁdf; LY(0,T; L*(R?))

<CT2)b; L2 |[|()*/ &+* 82u; L3(0, T) x R2)||[|62w; L%([0, T] x R?)|
x [[u; L%/% (B3 L=([0,T] x R)) ||

<CT|b; L= ||| (=) *** 82u; C([0, T1; L3 (R))||1|02w; C([0, T); L8(R?))|
x ||(2)%/6%u; C((0, T); L=(R?))]
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<OT|b; L2 [[[(=)/*** 65 w; C([0, T]; HY*(R?))||[16]; C([0, T); H*/*(R?))]|
x [|(=)*/**w; C((0, T); H**(R?))||
<OT|lb; = (R?)|l||=; C([0, T1; Z(3)I1? [u; C([0, T}; (2)) -

Since fourth factor is estimated by C([0,T]; £(2))-norm, (0,2,1,1)-term can be dealt

with similar way. Furthermore, (0,3,1,0)-term is

bﬁ;’u/ 8,wud¢; L'(0,T; L*(R?))

<I18; Z=||l16y%; C([0, T]; L*(R?))]]

/ 8, wide; L*(0,T; I°(R?))
<T[b; * ||} C([0, T]; Z(3)) |6y w7; L* (Ra; L= ([0, 7] x R,))]|
<CT||b; L*||}»; C([0, T); B(3))I11|8yw; L= ([0, T] x R?)]|
x [[=) s L([0, T] x R2)))|

<CTIlb; = lflw; C ([0, T]; B(3))Ill|8yw; C([0, T]; H*+*(R))|
x [[{2)***u; C([0, T]; H'**(R?))|

<CT||b; L|||J»; C([0, T]; B(3))II°-

The estimates for the terms which have non-zero derivative’s order to b with respect

to y are easier than non-derivative terms, so we omit them.

Next, we consider the estimation for the term which has weight of the spatial

variables. We only need to estimate following term.

<Ny o0, 7 2 @o [ 0y (0,7 1% ()

(r)3bu / ” 8, wwdé; L1(0,T; L*(R?))

<T|b; L*|lllw; C([0, T1; B(8)) 1|0y u; L' (Ra; L2([0, T] x Ry))|
<CT|lb; L [[lu; C([0, T]; Z(3))Illl 0y w - (=)™ *%; L ([0, T] x R?)]|
<CT|b; L ||[lw; C([0, T]; Z(3))I[118y 5 L ([0, T] x RA)|[l|(2)"*; L= ([0, T] x R?)]|
<CT||b; L l|lw; C([0, T]; Z(3))I[[18yw; C([0, TT; H*+*(R?))|
x [[{z)"**u; C([0, T); H*(RY))]]
<CT|[b; Z=|[lw; C([0, T]; (3))II°.
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Then, putting together above all estimates, we obtain
N1 (u); Yo(T)|| < C(T + )| L ||[}; X ||*.

Secondly, we consider Y,-norm. In this norm, we have to estimate ||0, ,N1(u);
L'(R,; L*([0,T] x Ry))|| and {|05,N1(u); L1 (Ry; L%([0,T] x R,))||. For the same
reason in the previous estimates, we only consider The derivation with respect to e,
and we omit the estimation for the terms whose first number is zero. First, (0,0,4,0)-

term is estimated as following:

bu/:o 0jwudé; L' (Ra; L2([0, T x R,,))l'
<Ilbu; L' (Ra; 2([0, 7] x Ry)) 1020 I (Ra; L*([0,T] x Ry)) |
<Cb; L[| (@)+*u; L=(0, T] x R?)[[18%w - (2)M/*+; L2(0, T] x R2))|
<C16; L lllu; C([0, T1; Z(3)10fw; L (By; L([0,T] x R,))|
x [[(@) /% ¢u; L* (Ry; L([0,T) x Ra))]|
<C1lb; 2= lfu; € ([0, T1; E(3) 182w I (Ry; L([0, T] x Ra))l|
X [[(&) 13+ (y) 13+ u; 1[0, T) x BY)|
<C18; L llfu; C ([0, T1; (3))|7/162; I (Ry; Z2(10, 7] x Ra )l

and

b'u,/- G;uﬂ'df; L'(R,; L*([0,T] x R.))

gC”b(y)l/”‘u/ 0, wud¢; L*([0,T) x R?)

<O|1b; Z=||(g)*/***u; L* (Ra; L= ([0, T] x Ry))[|l10)%; L (Ra; L2([0,T] x Ry))]|
<Clb; Z=|lll(=)*/2** (y)/***u; L=([0, T] x B)|||0gw - (&)*/***m; L*([0, T] x R?)|
<ClJ&; L= ||llw; C([0, T]; Z(3))I]1165w; L™ (Ry; L*([0,T] x Ra))|l

x [[(2)!/ 3+ u; L (Ry; L%(10, T] x Ra)) |
<Cll; L*||l}w; C([0, T]; Z(3))lll6gw; L (Ry; L*([0,T] x Ra)) |

x [|(=)/2* (y) ¥/ **u; L=([0, T] x R?)|
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<08 L= |lllw; C([0, T); Z(3))|*[18w; L= (Ry;5 L*([0,T] x Ry)) |-
Next, the estimate of (0,0,3,1)-term is
bu/ 83udyudé; L' (Ra; L2([0,T) X B,y))“

<[lbu; L* (Ra; L=([0, T] x Ry)) |[[|8 28, @; L (Ra; L*([0, T] x Ry))]|
<O[b; Z=|lll{=)**u; L2 ([0, T] x B?)||[|67udy (2)*/>*7; L*([0, T] x R?)|

<Cllb; L=[lI{=)"**w; C([0, T]; H' < (R*))[18y%; C([0, T; LZ(RZ))II

x |[(=)*/2* ¢ 8yu; L2([0, T]; L=(R?))||
<CTY?|jb; L= |||lw; C([0, T1; (3))I®,

and

bu / 83udyudé; L' (Ry; L2([0,T] x R,))

<C|lb; L l[|w; C([0, T1; (3))II[|0y - 8,%; L (Ra; L*([0, T] x R?)) |

<CTY?||b; L= |||1u; C((0, T1; 2(3))|*.
Similarly, the estimate of (0,0,2,2)-term is
bu [ 10l 1R (0,7) < By)|
<C|1b; L= |[|w; C([0, T); Z(3))]11107w; L* (Ra; LA([0, T] x Ry)) )*
<Cl1b; L= |[[w; C([0, T]; Z(3))Il[I{=)/4** 87 w; L*([0, T] x B?)||?
<CT'?|jb; =||||w; C([0, T); Z(3))l[|(2)/*** 83 w; C([0, T]; H/*(R?))||?

<CTY*||b; L ||}; C([0, T]; Z(3))II%,

and

bu / |62ul2dé; LM (Ry; I2([0, T]  R.)

<CT'?||b; Z=||[lw; C([0, T; B(3))II°-
Moreover, the estimate of (0,1,3,0)-term is

b0, u / " 0, wud€; L' (Ry; L*([0, 77 x Ry))“
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<[|68yu; L' (Ro; L=([0,T) x Ry)) |[|0;%; L (Ra; L*([0,T] x Ry))||
<Cli(2)*b; L ||||(=)'~* 8, w; L= ([0, T] x R?)||||85; C([0, T]; LA(R?))]|

x [|[(=)/**u; L2 ([0, T); L= (R?))|
<CT'?||(z)*b; L||[|(=)"~*8yw; C(([0, T); H**(R?))||l4; C([0, T; =(3))I|”
<CT'Y?||(2)*b; L= |||lw; C([0,T]; B(3))I°.

In this term we use the decay of b. The estimate of ||bd, u f:o O3wud; L' (Ry; L2([0, T] x
R.))|| is similar. Besides, the estimate of (0,1,2,1)-term is

’ ba,,u/oo 02ud,ude; L' (Ro; L2([0,T) x 131,))“
<168y u; L (Ra; ([0, T] x Ry))[[[16208,@; L* (Ra; L*([0,T] x Ry)) |

<C|j&; L= |||(2)*/***8,u; L*([0, T] x R?)[|[|0]w(=)*/***8,%; L*([0,T] x R?)||

<CT'?|jb; 1°|||(=)®/ *+* 8yw; C([0, T); HY/* (R?))|[163%; C([0, T); L*(R?)))
x ||(z)®/ 4+ 8,u; C([0, T); L°(R?))|

<CT'?||b; L=||||2; C([0, T Z(3)II°,

and

‘ b, u / ~ 82udyudé; L' (Ry; L2([0, T] x Ra))
§||b<y>1/:*‘0yu; L' (Ro; L*([0, T) x Ry)) [|105u0,w; L' (Ro; L*([0, T] x Ry))||
<C||5; L= ||[[{=)M/** () 7+ 8,u; L*([0, T) x R?)||[|0] (=) **8,w; L*([0, T] x R?)|
<CT'?||b; L= |||(2)*/*** 8, w; C([0,T; H*(R?))|]116]w; C([0, T); L*(R?))|| -

x |[(@)*/** ¢ 8,u; C([0, T); L= (R?))]

<CT*?||; L=||||w; C([0, T}; Z(3))|1°.
Similarly, the estimate of (0,2,2,0)-term is

Hba;u/ 02uudé; L' (Ro; L2([0,T] x Ry))

<[1b07u; L' (Ra; L¥/°([0, T] x Ry))[[105%; L (Ra; ([0, T] x Ry)) |
<Cl1b; Z=|[I{)*/***87u; L/3([0,T] x BR?)||[|0]w(2)"/**%; L*([0,T] x R?)]|
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<OTY3b; L|(2)*/*+02; C([0, T); HY AR 102; C([0,T); E4(R2)|
x [[(=)"/*+; O([0, T); BV (R?))]
<CTH?[lb; 2l[[u; ([0, T); B(3))

The estimate of ||b02u [ 02uud¢; L' (Ry; L2([0, T x R.))| is similar as above esti-

mate. And the estimate of (0,2,1,1)-term is similar as above term’s one. At last, the
estimate of (0,3,1,0)-term is

<IIbdgu; L* (Ra; L*([0, T] x Ry)) [[[10yw; L (Ra; L2([0,T] x Ry)) |

bOSu / 0, wadg; L' (Ra; L2(0, T] x R,))

<C||(2)/2*<b; L= ||[|03w; L2([0, 7] x R?)||[|8,u - (=) +7; L=([0,T] x R?)]|

<CT?*||(=)/***b; L||||lu; C([0, T}; Z(3))ll118,w; C([0, T); L= (R?))| |
x [|(&)**u; C([0, T]; L= (R?))]|

<CTYZ||(2)!/2*b; L] l[u; ([0, T]; Z(3))II*-

In this term, (r)Y/?2*¢b € L°(R?) is needed. The estimate of ||bO3u [ O, wudg;
L*(R,; L*([0,T) x R,))|| is similar. Then we finished all estimates. |

From above estimates, we obtain
V1 (u); V(T < C(1 + T)llu; X(T)|1°.
Similar calculation shows
[1V1(w) = N1(0); Y(T)]| < C(1+ T)(Ilu; X(T)I* V [lo; X(T)I*) v — w5 X (T)]]-

Since the spaces are symmetric with z and y, the estimate of Nj(u) :=
bu fyoo Os(|u(z,n)|?)dn is same as Ni(u). The estimation of a|u|?u is easy, so we

omit this estimate. Thus we have
[N (u); Y(T)|| < C(1 + T)jw; X(T)|1%,
and

[V () = N(v); V(D) < O+ T)(|lu; XTI V [|o; X(T)I*)llw — v; X(T)]I.
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By virtue of Lemma 2 and 3, we get
1SN (u); X(T)|| < Co(1+ T*)|lw; X(T)|%,
and
1S (N (w) = N(2); X(T)| < Co(1 +T*)(lles X(T)* V Il X(T)I*)lw — 5 X (D,

for some Cy < co.

Moreover, by using Lemma 2, we have
1T w0; Xo(T)|| < Co(1 +T?)|uo; B(3)|l,
and

[T wo; Xo(T)|| <C||(r)/2+¢ 0%  Uno; L*(R?)|
<CTy"*(1 + T%)||uo; 3(5)|!-

Now, we take § > 0 sufficiently small such that 4Co6% < 1. Then, if Col|ug; X(5)|| <
§/2and T < 1, ®(u) := ‘Uuo — 2S(N(u)) becomes a contraction in closed ball B :=
{v € X(T) : ||u; X|| < 8}. Thus there exists a unique fixed point of in‘X, and this
fixed point u is the solution of (9). This proves the theorem. i

§3. Proof of Lemma 3. In this section, we prove the key estimate Lemma 3. We
first remark that
CSf=—iF  (r+ &+ —i0)  Fay f

if f(t,z,y) = 0 fort < 0. Here, F;,, is Fourier transform with respect to whole

space-time variables (¢,z,y). In fact, simple calculation shows
0
fi;lm(r +&+ 9’ ~ io)hlftmyﬂt:o - _i/ U(—s)f(s)ds,

— 00

and then,

0
_ift;,l’y(r + 62 + .,72 _ i(])—lf't,a,’yf =S5f— / U(—s)f(s)ds.
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This shows our claim. ‘
First, we prove that ftT;,yf(T + €2 + n* — i0)"1F; ., is bounded operator from
L'(R.; L*(R; x Ry)) to L (R,; L*(R, x R,)). By Plancherel’s equality, we have

Slelll; ”ft-,-;cl,yg(f + £2 + 772 - io)-lft,:v,yf; Lz(B't X Ry)”

= sup |7 (r+ & + 77 —i0) ' Fo f; L(R, x Ry)|
1S

= sup
zER

[ 62 = &5 (e £)(r, 51 m) 5 T (R ¢ Ry

Here,
, . § exp[izé]
Gann) = [ e o e

Direct calculation shows G is uniformly bounded with respect to z, 7,7, then we get

Slelgllf{i,yé(f-k £+ 0" —i0)" Feoy f; I (Re x By )|

<sup /R 1G(e = & 7,0)(Fey £)(r, 5, ); I(Ro x R,)|d

<c /R (Fen )2, ) L*(Ry x Ry)||de

=C [ 172 B (Re x By ) d
R
—C|lf; I* (Ra; L*(Re x R,))].

This shows our claim.
Now, take ¢ € C§°(R) such that ¢ = 1 on some neighborhood of 0, and decompose
Sf=S¢(—i8.)f + S(1 — ¢(—i8,))f. Then, since 1 — ¢(£) = 0 on the neighborhood

of £ = 0, we have similar estimate for this term. On the other hand, since

S6(-i02)1 = [ explit —5) Anslb(-i0L) f(e)ds,

we have

1Sé(—ida) £; L*([0,T] x Ry )|

/ﬂ expli(t — 8)62)¢(~i0.) expli(t — )62]£(s)ds; L*([0, T] x R,)
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Now, we put H(r,z) the integral kernel of the operator exp[ird2]¢(—i8,). Then, we

have

0 2) =g | [ espliat — rEl o)
1
<5 [ 16(0)1d€ < o,

and
sup ||S¢(—i0s) f; L*([0,T] x R,)||
z€R

<sup| [ [ dslae - 0,2 - ) explite - )3515(e,5, 5 R )i 22 < 0,7 |

seER

<o ["do [ dal(e— o2 = 815005, 5 PR 2 € 0,7

z€ER

<oupl [ as( [ (a2 - 3)pas) 5 (0] x Ry Eoe € [O,T])”

»ER

< sup / ( / "4 sup |H(sz - i)l’dt) Y 8 9220, 7] By

zcRJR s€[0,8]

<sup [ T sup s,z = ) 1555 L0, T) x By )03

zeRJR s€[0,T]

<T  sup |H(s,2)||If; L' (Ra; L2([0,T] x Ry))||-
(s,2)€[0,TIxR

This means our desired result. |
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