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Simple setting for white noise calculus

using Bargmann space
Yoshitaka YOKOI

§1. Notations

Let E, be a real separable Hilbert space with dim E; =

0
and (-, -)0 be its inner product. Let D be a densely defined

1

selfadjoint operator of EO such that D > 1 and D ° is of

Hilbert-Schmidt type. Further we assume that the eigen system
of DL,
ot i _1 = ] = ¢ o o

satisfies

1 > 2, =2 2

j j+1 (j =0, 1,---)

and that {cj; j =0,1, 2,---} is an orthonormal basis of EO.

The following constants t,, s,, and p, will appear frequently;
t, = -log2/2loghy, i.e., 1/2 = 250,
2s

S, = inf{s; Z?zo 257 < =},

pO =maX(t0, SO)‘

. -1,2 _ ¢ 2
Since D “ligg = Zj=0 xj
For any real number p > 0 write Ep = the domain of DP and

( » ig finite, s, is in [0, 1].

define the inner product (x, y)p for x, y € Ep by

- D P
(x, y)p = (D"x, D"y)g-
Then (Ep, (-, -)p) is a Hilbert space. If 0 = q < p, then Ep c
4Eq. Every Ep contains §j s, and so £ = np>0 Ep is not empty.
Set Mgup = J(&, &)p for £ € E. The system of norms {H&Hp; p =
0} is compatible. Since D! is of Hilbert-Schmidt type, the

space E equipped with the projective limit topology of
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{(Ep’ H-Hp); p > 0} is a nuclear space. We can easily see that

Dp(Ep) = E, for p > 0. For p > 0, let E_p be the completion of

0
EO with respect to the norm || _

"D—p'ﬂo. Clearly, if 0 =< q
Up>0 E_p and let it be
equipped with the inductive limit topology of {(E_

< p, then Eq ¢ E_ < E_ . Let E*
p’ H'H_p); p >
0}. We have E ¢ E0 c E¥. Once the increasing family

{Ep; p € R} of Hilbert spaces is set, the operator p4 (g € R)

acts naturally and isometrically as:

p4: E, — E (surjective) (p € R),

P-q

and so it acts continuously on E* with respect to the inductive

limit topology. We can naturally identify the dual space of E
R).

p (P €R)

Let Hp be the complexification of E_, i.e., H_ = EP+JTTEp.

p p
Then DY extends to an isometry from Hp onto H naturally by

p
with E_

pP-q
setting

pYzx + v~1y) = Dz + /SIDYy for x, y € Ep (p, ¢ € R).

Accordingly the real spaces E and E* also have their
complexifications H and H*, respectively. The letters w and z
are often used for elements of H* or H_p and letters x and y for

ones of E* or E_ where p = 0. Like in the real case, the

p’
operator p? acts as an isometry from Hp onto Hp_q. Hence DY
acts on H” continuously. Obviously we see that

DWW, &> = <, D>

holds for any w € H* and any ¢ € H. Where <-,-> is the

canonical bilinear form. That is, suppose that X is a locally
convex topological vector space and X* the dual of X. Then the
value of z* at r defined by each pair (zx, r*) e X x X*is always
denoted by <x*, x>. This is linear in both arguments r and "

Denote by 9(X*) the space of all polynomials in {<r*. >, T



204

€ X} over C; that 1is,

.<r*, x>, r. € X, ¢c € C}.

* . .
#(X ) = {any finite sum of cHJ j j

If X is a nuclear space or Hilbert space over R or C, then
the n-fold symmetric tensor product of X is denoted by X 1f

~Nn . . .
Tys Tg, vty X, € X, then.®j=1 xj is the symmetrization of

Z,®Xy - OT In particular the n-fold tensor product of r is

ne
denoted by %",

The following notations on infinite-dimensional indices of
nonnegative integers will be used.

¥ = {all sequences of nonnegative integers}.

ﬂo = {n =(ny, ng, ny, +-+); M €4, n; = 0 for almost all j}.

For m, Kk € ﬂo, write m = k if and only if n, = k. (j = 0). For

J J
m, k € ﬂo and a nonnegative integer p, define

pm:(pn07 pn]_’ pn29 ce), Im}| :no+n1+n2+ s,

nak = (nOAko, nlAkl, nzAkz, s,

n .
! = . i n = R J
mn! HJ nJ. and (k) HJ (kj).
For r €e R and m € NO with {m|= n, the symbols er, gém, hIn and
z" are defined as follows: .
rn rn
y\ = . A
45775
en _ 5 &n . _ 3 . ®n .
g = ®"j¢0 cj J = the symmetrization of @nj¢0 Cj J,
2" = Z%(z) = (2™m1) /2 ®M 8Dy por 2 e HY, (1. 1)
n -1/2 oy
hy = b (z) = (2"n1)"1E mop ((x, £/ ) for r € E¥, (1. 2)

Jj'n;

oo . , -1
where {(xj, cj)}j=0 is the eigen system of D

and Hn(u) is the
Hermite polynomial of n degrees defined by

Hp(uw) = (-1)" exp(u®] (d/dw)" exp[-u®].

A is the smallest o-algebra containing all cylindrical sets
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of E*. Here, cylindrical sets of E" are subsets of E¥ of the
form:

R
{r e E7; (<x, &>, -+, <z, §.>) € B}

where n is any integer = 1, Bn is any n-dimensional Borel set,

and 51’ RN En are any elements of E.

§2. The space of white noise functionals (L2), the Bargmann

space (%0) over a nuclear space, and Gauss transform G

The functional C(&) = exp[-%"gug] of & is positive
definite and continuous on the nuclear space E. By
Bochner-Minlos' theorem there exists a unique Gaussian

probability measure u in the measurable space (E*, #) such that

f v expl T, ©1 dux) = co),

S

(Minlos [M]). Since D ° for s > s, is of Hilbert-Schmidt type,

u(E_S) = 1 holds. Hence, when a functional is defined on E_S
for s > s,, then we may consider that it is given u-a.e. on E¥.

The space LZ(E*, 2, u) is called the space of white noise
functionals and denoted by (L2) (Hida [H1], [H2]). Then ?(E*),
the space of all polynomials in {<Kx, &>; & € E} over C, is dense
in (L2). {hm; n € NO} is a complete orthonormal system of (L2).
From now on let CONS stand for complete orthonormal system.

Let us consider the product measure v = u x u in the space
H* = E* + JZIE*. Then the system {z"; m € N} of (1. 1) is
orthonormal in the space L2(H*, V). A Bargmann space (%0) is
the closure of 9(H*) in L2(H*, v), where ?(H*) is the space of
all polynomials in {<z, &>; & € H} over €C. It is well-known

that the space of all entire functions, %(C"), which are defined

on C and square integrable with respect to

dg(z) = (27) " exp[-(2Z2)/2] (v=1/2)" dzdz
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is closed in L2(Cn, dg(z)), (see Bargmann [B1]). (%0) is an
analogue of %(Cn) in passing from c" to the infinite dimensional
space H*. But the element of (%0) is in general not analytic in
H*. Nevertheless (%0) is isometrically isomorhic to a normed
space consisting of specific analytic functionals in HO (see
Kondrat’ev [K2]). If we introduce a nuclear rigging () c (gp)
c (%0) c (g_p) c ($ ), we can see this situation more clearly.
The construction of the nuclear rigging and the problem of
analytic functionals will be discussed in detail in 83, (see
also Berezansky and Kondrat’ev [B-K]).

Now let us dicuss the map G from ?(E*) onto 9(H*) defined
as fbllows: every o¢(x) € ?(E*) can be naturally and analytically
extended to ¢(z) € 9(H*) replacing <x, &> by <z, &>. We can

define a map G on ?(E*) by

Go(w) = fE* o(x + w/v2) du(x) for ¢ € F(E¥). (2. 1)

Then obviously, G¢ belongs to 9(H*). Its inverse map G-1 is

given by
G lr(x) = fE, F(VZ(z + ¥=Ty)) du(y) for f e #(H"). (2. 2)

Actually, we can see that

- S0 n _
Gh]n =z and G "z = hm‘ (2. 3)

Since {hm; n € NO} and {zm;

n € No} are CONS’ in (L2) and (%0)
respectively, the map G extends to an isometry from (L2) onto

(Bg) -
2
G =
The map G given by (2. 1) is often called Gauss transform

([B&K],[H2],{K2]), so we also call this isometric isomorphism

G:?(E') e 9(H*) or its extension from (L2) onto (%0) Gauss
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transform. The integral expression (2. 1) of G (resp. (2. 2) of
G—l) is not wvalid on (L2) (resp. on (%O)). But we will show in
a forthcoming paper that these expressions can extend to the

ones between much wider spaces than ?(E*) and 9(H*).

§3. The Gel’ fand triplet ($) ¢ (%0) c (¥ ) rigged by the

operator A(Dp)

Let D be the self-adjoint operator of Ho introdﬁced in §1.
Since DP act on H* naturally and continuously, we can define
operators A(Dp) on ?(H*) by

ADPYF(z) = F(DP2) for f e 2HY), (3. 1)

where z € H' and p € R. Let f(z) =11 <z, §j> € 9(H*). Then,

n
J=1
by the relation

AMDPYF(z) = T <Pz, g =0 <z, DP§j>

n n
j=1 Jj=1

we see that {(l—pm, zm); n e Nb} is an eigen system of A(Dp):

ADPYZP () = [n x;P"j) 2"(z) = 2 PPzM (7). (3. 2)

J
As is easily seen, 9(H*) is a pre-Hilbert space with the inner

product
A@PYr, ADPYEY (o ) = [ o (MOPIF(2))A(DP)g(2) dv(z). (3. 3)
0 H
We will denote its completion by (%p) and the inner product by
(r, g)(% ) As well as in the case of Dq, we can see that the
p

oprator A(Dq) is an isometry from the Hilbert space (%p) onto

the Hilbrt space (%p_q). We can easily see the following:

PROPOSITION 3. 1. For any p € R, {APPz"; n « Ko} is a CONS
of (%p). And hence any f € (%p) can be expressed in the form

S = Iney, cpZ" (3. 4)

with coefficients {cm; n € NO} satisfying
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2 _ -2pn 2
Furthermore, we have that for f e« (%p) of the form (3. 4)
a - -qm n
AN(DY)r = zmeﬂo 2 chZ € (%p_q). (3. 6)

By the proposition, we can identify (%_p) with the dual

space of (%p) and get, for p > q > O,

(8,) € (Bg) © (Fp) © By < (§_)-

1

Since D ° is of Hilbert-Schmidt type, it follows that for any p

€ R and for any s > s,

2nek, Hl(p*s)“z“u%%p) =1 (1 - xﬁs)‘l < oo, (3. 7)

This shows that the canonical injection from (%p+s) into (%p) is
also of Hilbert-Schmidt type. If we write

o0 o0

(¥) = 0 g (F,) and (§) = v (B_,), (3. 8)
then the dual spacé of ($) is (¥’ ). Thus we obtain a Gel’ fand
triplet (§) c (%0) c (). The following is known: the triplet
of this type has a "holomorphic realization" given by analytic
functionals of at most order 2 (ref. [B-K],[K2]). Within our

setting let us reform this as:

PROPOSITION 3. 2. For any p € R, [ € (%p) with the

expression (3. 4),

> c 2" (2) (3. 9)

meﬁo
converges absolutely and uniformly to a functional f(z) on any

bounded set of H_p. The limit functional f(z) satisfies

(3. 10)

I7(2)1 = exp3lz1? ] Il ) for any z € H_p,.

Further f(z) is not only continuous but analytic in H_p in the

sense of [H-P] (E. Hille & R. S. Phillips).
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PROOF. By Schwarz’ inequality and (1. 1), we have that

for any z € H_p

n
Znef/o lcmz (z)1

= =0 2\n|=n 'szm(z)l

_ &n n -1/2,8n
= 2p=0 Zn|=n !n<* » (27 ml) el

1/2

- 1 ® ®
| 2 pm(gé) |<Z®n lpmc®m>l

T (2T ,

ZIln|=n lCm
< ISl (g ) exp[%uzugp].
p

Therefore the series converges to a continuous functional J on

H_p absolutely and uniformly on any bounded set of H__ and f

P
satisfies (3. 9). The finite sums of the right hand side of
(3. 4) are functionals analytic and locally uniformly bounded in
H_p in the sense of [H-P]. Applying Theorem 3. 18. 1 of [H-P],
we have the analyticity of f in H 5 g
PROPOSITION 3. 3. If p > s, and f € (%p), then the
functional f in PROPOSITION 3. 2 is a unique continuous version
of f in H_,; that is J(z) = f(z) holds for v-a.e. z ¢ H* .
Besides if p > q + s,, then f(qu) coincides with the continuous
. q .
version of A(D*)f(z) in H_p+q.
PROOF. f, as the Lz—limit of (3. 4), is v-a.e. defined and
square-integrable in H*. Since v(H_p) =1 for p > S, [ is
equal to f v-a.e. in H*. Since every non void open set in H_p

has strictly positive v-measure, the continuous version of f is

If p > s + q and z € H_ then DYz €

. . ‘0
uniquely given in H_ p+q’

D
H_p and p - q¢q > s,. Therefore we see that
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c zm(qu)

?(qu) = Zne/VO n

JE -qn n
- zne/VO A CnZ (z)

converges uniformly on any bounded set in H_p+q. Thus we have

the last assertion. 5

For p < s, and f € (%p). the functional f analytic in H_p

does not mean a version in the sense of v-a.e. because of v(H_

o)
= 0. However, the version f recovers f by means of Taylor
coefficients (ref. [B-K], [K2]).

If £ € (¥), then f(z) can be defined on H_, for any p > 0
and so f(z) is defined in H*. Moreover, if p > q, then the
continuity of f(z) in H_p implies the one in H_q. It follows
from this that f(z) is continuous in z € H* with the inductive

limit topology of H* = lim H_p. But we omit the proof. Besides
we can say that fF(z) is not merely entire of at most order 2 on

any H__ (p > 0) but also of minimal type, as we see in the

P
following as a corollary of PROPOSITION 3. 2 (ref. [B-K], [K2]).

COROLLARY 3. 1. If f € (%), then for any p > 0, any k > 0,
and for any z € H_p we have

FECO TR P PP exp[£25% 1212 1. (3. 10)
Pt

PROOF. Let z € H_p. Then this is clear from (3. 10) and

2
1202 ek

2k 2
s g0 Mz .

a

§4. The triplet (¢¥) c (L2) c (¥’) derived by Gauss transform
from the triplet (g) c (%0) c ()

In this section, we begin by reconsidering G as a map from
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#(E*) onto #(H*). Next, we define operators {[(DP) = G_lA(Dp)G;
p € R} which act on ?(E*). Using these operators we construct
the nuclear rigging of white noise functionals:

(9) € (9,) © (LF) € (¥_,) < (9"). (4. 1)

It will turn out that the rigging (4. 1) is obtained as the

image of
(%) € (8p) < (Fg) < (F_,) < (F)
by the extended a1,
Let us define the operator F(DP) from ?(E*) onto itself. G

is an isometry from ?(E*) onto Z(H):

(7™ 10 (12)) Toomerrrs (P(HT). "‘“(%O)); (4. 2)

A(DP) maps #(H*) onto #(H*). Therefore we can define I'(DP) for

each p € R by setting
roPye = G IADP)Gy for ¢ € F(EY). (4. 3)

Then, it is easy to see that ?(E*) is a pre-Hilbert space with

the inner product

(rPye, T@Pye) , = | , (FOP)e(@))rP)p(x) dulz). (4. 4)
(L™) E
Let us denote its completion by (fp) and the inner product by

(¢, ¢)(y ) We evidently see that (90) = (LZ), Corresponding
p
to the eigen system of A(Dp), F(Dp) has the eigen system:

r(oPyn (x) = (nj X;p"j)hm(x) = 27PPp_(x). (4. 5)

This follows from (2. 3) and (3. 2):

ADP)ZP(z) = (nj x;P”j) 2" (z) = A7POZN(z).

The system {h n € NO} is a CONS of (L2), SO we can easily see

n’
the following.
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PROPOSITION 4. 1. For any p € R, {xpmnm; n € #5} is a CONS

of (Vp). And hence any ¢ € (Vp) can be expressed in the form
¢ = zmeﬂo thm (4. 6)
with coefficients {cm; n € NO} satisfying

- AR 12 ¢ e (4. 7)
0

Furthermore, for any p and q € R, F(Dq) can extend its domain to

2
uwu(yp) Tnes
(Vp) as an isometry from (fp) to (yp_q) satisfying that for ¢ €
(Vp) of the form (4. 5)

AWM b e (9

dyy =
L(D*)e = Zmeﬂo n'n

p_q). | (4. 8)

By the proposition above we can identify the dual space of
(Vp) with (9_p) for p €e R. 1In fact, the bilinear form, <%, ¢>,
of (¢, ¥) € (¢,)x(#_,) is realized by

B, ¢> = fE* (roPys(x))r(dP)¢(x) du(x). (4. 9)

Let us write

o0 [~ o]

(#) f N p=0 (Vp) and (¥’) = V=0 (V_p). (4. 10)
From (3. 7) it follows that, for any p € R and any s > s,,

(p+s)mn , -y2 - _oa2sy-1
Zmeﬂo ||]. hm"(yzp) - HJ (1 'ZJ ) < .

Thus we have a nuclear rigging

(#) c (9,) < (L?) < (#_,) < (97), p > 0. (4. 11)
Clearly (¥’ ) is a dual space of (¥). We call (¢) the space of
test white noise functionals and (¥’ ) the space of generalized
white noise functionais, as usual. |

Let p €e R. It follows from (4. 2) that for any f e ?(H*)

-1 _ Py~-1 - P -
g fu(yp) = IT(D")G fH(LZ) = [IA(D )fu(%o) = "f"(%p)'

Therefore G_1 can extend uniquely to an isometric operator G;l
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from (%p) onto (?p). The extensions {G;l; p € R} are consistent.
-1
q
have a unique continuous extension from (¥ ) onto (¥’ ), which we

1

That is, if p < ¢, then G;l coincides with G on (%q). So we

denote by the same symbol G~ It satisfies that for any f, g €

(%p) and any p € R

-1 -1
6 6Ty ) = (B (g ) (4. 12)
(#,) (3,)

Moreover, we can easily see that for F € (%_p) and [ € (%p)
G IF, ¢7lp = <F, P> (4. 13)

The above nuclear rigging is the same as the usual rigging
of white noise calculus, as we see in the following. Let us put
for n =0, 1, 2, +--

?n(E*) = {¢; ¢ € ?(E*), the degree of ¢ = n},

—_ _ 2 _ *
?n = (L®)=-closure of ?n(E ),

%n = 9n e ?(n—l) (n = 1), and %0 =.C,

where ?0(5*) = 50 = C. Then <x°0, fp> is well-defined as an
= &n . _ .
element of ?n for any fn € HO and {hm, n e ﬂo and In| = n} is
an orthonormal basis of %n for each n = 0. It is well-known
that (L2) has Wiener-Itd decomposition
2 _ )
(L%) = 2p=0 ® %,
Let us put
Fn(H) = {any finite sum of @?zlgj; Ej e H (1 = j = n)},
Z, = {any linear combination of cém/JﬁT; Inl = n},
®(H) = {(f)p=g’ fp = O for almost all n = 0 and f, € F (H)},
and
® = {(fp)p=0} fp = 0 for almost all n = 0 and f, € Z,}.

Clearly ©® ¢ ®(H) and ¢ is dense in ¢ Let ®_ (p € R) be the

0 P
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®&n

ith
D wit

Fock space defined as a direct sum of Hilbert spaces H

weights vn! (n = 0). That is,

Then it is easy to see that the Fock space ®p (p € R) coincides
with the completion of ®(H) by the inner product

—_ —_ o0 ~

(770 & = Znoo ™' Un» &n)pon

= oo nt (0P £, (0PN gn)Hgn (4. 14)
where 7= (fp)neg and B = (8,)7.o € ©(H).

The Segal isomorphism IS from QO to (L2) is defined by

I ((F)mg) = o 1<z, o1, (4. 15)

on

where :<x ", fn>: denotes the orthogonal projection of <x®n

N
to the space %n for each fn € Hgn. Let us assure ourselves that
IS is well-defined. First we note that the right hand side of
(4. 15) is a finite sum if ?* = (fn)‘:=0 is an element of ¢ or

®(H). If we apply the formula

n _ n (2Kk)!
(2u)™ = 2opn (ZK) k1 Hpoog (W)
to <x®n, cém/JﬁT>, then we have

x®, ®N/URT> = S, o (m )iﬁkliz‘k((m—zm)!/m!)l/z h

ok) KI n-2k (%) -

But {hm; iInl = n} is an orthonormal basis of %n for each n =2 0
and these bases are mutually orthogonal for different n = 0;

hence we have

R E ALYy D hp () (m € 4g),

i.e., IS((O, cev, 0, ¥/ mT, 0, -.-)) = h . (4. 18)

In addition we have
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o, ---, 0, 0/ umT, o,'---)llcI>o = lagl ;2. (4. 17)

This means that IS can be well-defined as an isometry from @0 to

(L%).

PROPOSITION 4. 2. For p € R, the Hilbert space (Vp)
coincides with the completion of {IS(?*); 7 € ®(H)} by the
inner product
)y - (4. 18)

— — =
U F), 18N, = (7, )

PROOF. By PROPOSITION 4. 1, the set

? = {ZmeJ cnlins J (finite subset) c NO, c_. € C}

n

is demse in (¥,). Since (AP (nt/nt)1/2:80. 0| = n} is a CONS

of Hin for each n = 0, the set {IS(?*); 7 e @} is dense in the
completion of {13(7ﬁ); 7 e F(H)} completed by (4. 17). Further

by (4. 18) we have IS(Q) = #. Therefore the assertion is true. g

COROLLARY 4. 1. If p = 0 and F_ e ®,. then 15(7*) is
defined as an element of (L2). Hence the space (Vp) coincides
with the totality of {15(7’); 7 e o))}

PROOF. This is clear from @p c ¢0 for p = 0. o

In the following we consider several properties of white
noise functionals. We will see that our setting makes the

computations easy and helps us obtain the sharper inequalities.

THEOREM 4. 1. Let p > p,. For any ¢ € (yp) with the

expression (4. 6), the functional of 2z € H_p

zmeﬂo cnhyn (2) (4. 19)
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converges absolutely and uniformly to a functional ¢(z) on any

bounded set of H The limit functional &(z) is continuous on

_p'
H_p, (is called the continuous continuation of ¢ in H_p) and
satisfies, for any z = 1 + J-1y € H_p (x, y € E_p),
lo(z) 1
A2P 24P 5
A B __J__
s Jag, exply Tioo{——lgy 1<a, e 1% —Lmicy, ¢ }]uwu(y |
1+ X 1 XJ
—_— 2
< Ja2p eXp[HZN_p] Hwﬂ(yp). (4. 20)
where ap = H?:O (1 - xip)"l/z. Therefore ¢(z) is analytic in
H_p in the sense of [H-P] (E. Hille & R. S. Phillips).

PROOF. Let p > p, and ¢ € (Vp) which has the expression

2

l_2pmlc | € < oo,

c_h with ZmeNO j n

¢ = ZMENO n''n

By Schwartz' inequality and Mehler's formula: for |s| < 1

Seoo sl A (u)H (v)

= (1-52)" 1 2exp1(1-52) Y 2suv-s2(ul+1?)}, (4. 21)
we have
|Zmeﬂo thm(z)l
< (szlo X—ZPmIlez)l/z (ZmeNO Xszlhm(Z)lz)l/z

2 =\Y1/2
ol o) (Bnew, #7220, (D)1

<z, &> <z, &>
_ o0 2pn -1 Jj j 1/2
= liell m. > _ (2"nt)"'H — H —
2p 2p
(L 2, L 2)
= "W"(y )Jazp eXp[z ZJ 0 1+ sz | <x, CJ>| + 1_129 1<y, §j>l ]
J J
If 0 < u < 1/2, then u/(1-u) < 2u. So we have, putting u = x?P,

J
ney Cnlin(2)1 = "W"(yp)/agp exp[uzu?p], (4. 22)
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and (4. 19) converges absolutely and uniformly to a functional
¢(x) on any bounded set of H_,. This inequality gives the
locally uniformly boundedness of every finite sum of (4. 19) and

it follows from this that ¢(z) is analytic in H__ (in the sense

p

of [H-P]).

COROLLARY 4. 2. Especially, if x € E__ and ¢ € (Vp) for p

P
> S,, then we have

2p
y
~ U l o 2
lp(x) 1 = Yoy, expls 2.9 I:fzz I<x, &;>17] Mwu(yp)
J
< vag- exp[E1x1Z. 1 nel (4. 23)
2p 2 -p (Vp)

and ¢(x) = ¢(x) u-a.e. r € E¥. ($(x) is called a continuous

version of ¢.)

PROOF. Let y = 0 in (4. 20). Then for p > s, we can see
that our assertion is true. o

§5. Other properties of two triplets

THEOREM 5. 1 Let 0 = q < p - p,. Then the functional
exp[%"rﬂép] defined in E_p belongs to (Vq). Actually, the
(yq)—norm is evaluated as
-1/4

2py2 _ ,4(p-q)
IR )

1 2
=l - = MI.1(1 -
flexp [l "—p]"(Vq) J((
PROOF. By a direct computation we can see that if p > p,,

then the functional exp[%ﬂrﬂgp] belongs to (L2) = (VO). So it
is expanded into a Fourier series. Let us compute the Fourier

coefficients

en = J o expl3Iz02,) ny (@) duca) (5. 1)
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with respect to the CONS {hm(x); n € ﬂo} of (L2). To get the

values Cho if we note the equality
1 2 JE 1.2p 2
exp[zﬂrﬂ_p] = Hj:O exp[2xj {x, ;j> ]

and independentness of <z, cj>’s, we have only to calculate the

integrals
1.2p 2 =5
fE, expl347P<x, ¢ %1 H (<z, & >/¥7) du(x).

But if n is odd, then the integral is equal to zero and if n is

even, say n = 2k, then it is equal to

(1—A§P)‘1/2 n [x?p/(1 - xip))k.

So we have for m = 2Kk = (2k0, 2k 2k2, o)

1 ,
k.

= n_,y-1/2 nt 2p _ 22Dpy) J

cp = a, (2" n Hj(xj /(1 - 25 ))

else ch = 0, where
- % _ ,2p\-1/2

a, Hj=0 (1 xj ) .

Therefore
1 2 2
- -2qn 2
- meﬂo A lcml
Kk .

272k (2K) n.(xﬁ(P‘Q)/(1 - 139)2) J

_ 2
- ap zkeﬂ Jj

0
(5. 2)

If we recall the definition of the constant p, and the formula
-2k (2K _ ,_ 4 k (-1/2
2 (%%) = 0 (%3

(5. 2) is followed by

2k .
2 -1/ _2(p-q) _ 8P J
% kek, m ( K ) (-45 /(L= a5h)
But 0 = ¢ < p - p, implies that Xi(p-Q)/(l—lﬁp) < 1 and so this

infinite sum of the finite product is equal to



a2 1, Tpo (W) (201 - a2ey)P

2 _ 4(p-@) ,y . ,2p\2)-1/2
ol M, (1 25 /(1 - 25P)2)

1}

_ 22p\2 _ ,4(p-q)\-1/2 ,
nj[(x 25P) a4 ) < oo,

J m]

THEOREM 5. 2 Let s, < s and p, < p. Then we have
(Bs4p) " (FBsup) © (F)
and for f, 8 € (%S+p)

2
"f’g"(%s) =7

D WA

Hgﬂ(%

s+p) S+p

where rp is given in LEMMA 5. 1. Hence (§) is an algebra.

PROOF. First we note that for m, m € ﬂo

(m;m) < olml+inl gng zm(z)-zm(z) = (m;p)l/Z 2™ (z).

- n _ n
Let Cp = (f, z )(%O) and dm = (g, z )(%0). Then we have

z"(z) and &(z) = Zmeﬂodm M (z).

F(z) = %

meﬂocm

) (5.

219

3)

By PROPOSITION 3. 1 these two series are absolutely convergent

on H-s-p' Therefore we have

T(2)-8(2) = 3y ney, min (mer)1/2 gmem 4y

and so, using the triangle inequality and Schwarz’ one,
hr-gl
(%)

< 2 Olcm||dm|2(|MI+|p|)/21—S(m+m)

m,ney

= (zmeﬂ0|cm|x_(s+p)m 2Iml/2 Xpm)(zmeﬂoldmlx'(s+9)m olml/2 lpm)

S+p) s+p) I

_ 2p,-1
Hfﬂ(% Hgﬂ(% Hj(l le ) .

sep) sep)
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Let us mention the fact that (¥) is an algebra. How to
conclude this result was shown in [Ku-T2]. But our setting
described above makes some computations a little bit simple. A

rewritten form of this theorem within our framework is:

PROPOSITION 5. 1 Let s, < s and 2p, < p. [If the

functionals ¢ and ¢ are in (¥ then ¢-¢ belongs to (95) and

sep)

lo-¢llp y = b Ky lely ) W0l Gy

S+p s+p)

where By = nj(1-135/4)‘1/2 and x = nj(1-4x§P)‘1.

PROOF. Let ¢, ¢ € (¥ Suppose that ¢ and ¢ have the

s+p)'

expansions as elements of (VS):
X—Zsml

cml o

@ = Zmeﬂocmhm with Zmelo
and

with zmeﬂox‘zsm[dm|2 < o,

>

¢ peﬂodmhm

The absolute convergence for x € E_, of the serieses

e(x) = zmeﬂocmhm(x) and %(x).= zmelodmhm(x)
imlies the absolute convergence of

P()-P(2) = Iy pep Cnlnlin (%) (D).

Therefore we have
"¢¢"(95) = Zm,meﬂolcmdmluhmhm"(ys)

-(s+p)(m+m) sm sn p(m+mn)
A IcmdmIHX hml hm" S)X .

= Zm,mEFO (¥

But if we apply the formula
‘ _ <lmAan Lk m\ (n
Hm(”)Hn(”) - Zk=0 2 k!(k)(k)ﬂm+n—2k(u)'

the fact that {(2 °M, hp)s n e Ko} is an eigen system of ADY)Y,
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and

the inequality (%) < ol

sm sn
to the norm |2 hm-l hmﬂ(ys), we have

125Th 25T m)(m)(m+m—2k)x4sk 2 ,m+n

2 -
h]n"(ys) = Zlksmmn []k Kk n-k < ﬁS 4

After all we obtain

legl gy )
s By zm,meyol_(s+p)(m+m)'Cmdm'(zxp)(m+M)
= B "@"(ys+p)"¢"(ys+p) ZmeNO(ZAP)Zm
= Bs mp Mele Iy e

From this proposition we can easily conclude that (¢¥) is an

algebra (cf. [L],{Y]).
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