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A Generalization of Tree Automata and Traversal of Trees

東京女子大学 (文理) 守屋悦朗 (Etsuro MORIYA)

Abstract

Tree automata with memory, a generalization of ordinary tree automata, are
introduced and their relation to context-free grammars with memory is studied.
Relations between computation trees of tree automata with memory and derivation
trees of context-free grammars with memory are established, which is a proper
generalization of well-known Thatcher’s theorem on tree automata. Some types of
traversal of labeled trees are considered to characterize the languages generated by
context-free grammars with memory.

1 Introduction

木オートマトンによって受理される labeled tree の集合と文脈自由文法の導出木の集
合との間の関係は Thatcher の定理 [7] としてよく知られている。この定理は Guessarian
[2] と Schimpf-Gallier [6] 等によってプヅシュダウンメモリを持つ木オートマトンとイン
デヅクス文法の間の関係にまで拡張された。筆者は先にメモリ付きの文脈自由文法を考え
ることによってインデヅクス文法をスタック付きの文脈自由文法にまで拡張したが $[3]$ 、

本論文ではプッシュダウン木オートマトンをスタヅクメモリ付きの木オートマトンにまで
拡張することにより両者の間に同様な関係が成り立つことを示す。この結果より、スタヅ
クメモリを持

$\ovalbox{\tt\small REJECT}$

つ木オートマトンはプッシュダウンメモリを持つ木オートマトンより真に受
理能力が高いことが導かれる。
また、 labeled tree に対する各種の traversal を考え、 メモリ付き木オートマトンが受

理する labeled tree を traverse して得られる言語とメモリ付き文脈自由文法との間の関
係を考える。例えば、 メモリ付き木オートマトンが受理する labeled trees を depth-first
order や bottom-up order で traverse して得られる言語はメモリ付き文脈自由文法によっ
て生成されることを示す。

Sections 2 and 3 are taken from [4] for the most part and therefore all the theorems
in those sections are stated without Proof. In Section 4 we consider various types of
traversal of labeled trees and show that the language obtained by traversing the trees
accepted by a stack tree automaton in the depth-first (or bottom-uP) order is generated
by a context-free grammar with stack.

2 Stack tree automata

Let $\Sigma$ be an alphabet. A tree domain is a nonempty set $D$ of strings over the set $N$

of positive integers satisfying the following two conditions:
(i) For all $d$ in $D$ , every prefix of $d$ is also in D.
(ii) For all $d$ in $D$ and every integer $i$ in $N$ , if $d\cdot i$ is in $D$ , then for all $j$ in $N$ such that

$1\leq j\leq i,$ $d\cdot j$ is also in D.
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A tree domain provides a scheme to identify uniquely each node of a rooted ordered
tree, i.e., the root of the tree is denoted by the empty string $\lambda$ and the ith child of a
node $d$ by $d\cdot i$ . The number of children of $d$ is denoted by rank$(d)$ . A node $d$ is a leaf if
rank$(d)=0$ , and an internal node otherwise. Given an alphabet $\Sigma$ , a $\Sigma$ -tree (or tree for
short) is a function $t:Darrow\Sigma$ for some tree domain $D$ which we denote by $Dom(t)$ . By
$t/N$ we denote the tree $D/Narrow\Sigma$ obatined by pruning the entire leaves from $t$ . Finally
let $D$ $\bullet$ $N=D\cup$ { $l\cdot i|l$ is a leaf of $D,$ $i\in N$ }.

Now we define tree automata with various types of worktape as a generalization of
ordinary tree automata. We use the ‘root-to-frontier’ model instead of the ‘frontier-to-
root’ model [7] and focus on tree automata with stack and their subclasses.

A stack tree automaton ( $STA$ for short) is a 7-tuple $M=(K, \Sigma, \Gamma, \delta, s_{0}, Z_{0}, F)$ , where
$K$ is the finite set of states, $\Sigma$ is the finite set of labels for trees, $\Gamma$ is the finite set of stack
symbols including the distinguished symbol $Z_{0}$ , the initial stack symbol, $s_{0}\in K$ is the
initial state, $F\subset Kisthesetofacceptingstates,$ $and\delta isamappingfromK\cross(\Sigma\cup\{\lambda\})\cross r$

into the finite subsets of $\bigcup_{n}(K\cross\Gamma^{*})^{n}\cup\bigcup_{n}(K\cross\{-1,0,1\})^{n}$. $M$ is $\lambda$ -input-free if the
domain of $\delta$ is restricted to $K\cross\Sigma\cross\Gamma$ . $M$ is a pushdown tree automaton (PDTA) if
$\delta(p, a, Z)\subset\bigcup_{n}(K\cross\Gamma^{*})^{n}$ for every $p,$ $a$ and $Z$ , and $M$ is a finite tree automaton $(FTA)$ if
$\Gamma=\{Z_{0}\}$ and $\delta(p, a, Z_{0})\subset\bigcup_{n}(K\cross\{Z_{0}\})^{n}$ for every $p$ and $a$ .

Given a tree $t$ : $Darrow\Sigma$ as an input to $M=(K, \Sigma, \Gamma, \delta, s_{0}, Z_{0}, F)$ , define the binary
relation $\vdash_{M}$ on $\Gamma^{*}K\Gamma^{*}$ -trees as follows. We may assume without loss of generality that
$\Gamma\cap K=\emptyset$ .

(i) The initial tree for $M$ is the tree $init_{M}$ : $\{\lambda\}arrow\Gamma^{*}K\Gamma^{*}$ such that $init_{M}(\lambda)=s_{0}Z_{0}$ .
(ii) Let $t_{1}$ be a $\Gamma^{*}K\Gamma$‘-tree with tree domain $D_{1}$ such that $D_{1}\subset D\bullet$ N. Suppose $d\in D$

is a leaf of $t_{1}$ such that $t(d)=a\in\Sigma$ and $t_{1}(d)=Z_{1}\cdots pZ_{i}\cdots Z_{k}$ , where $p$ is in $K$ and
each of $Z_{1},$

$\ldots,$
$Z_{i},$

$\ldots,$
$Z_{k}$ in $\Gamma$ . We write $t$ : $t_{1}\vdash_{M}t_{2}$ if one of the following four conditions

is satisfied, where $t_{2}$ is a $\Gamma^{*}K\Gamma^{*}$-tree with tree domain $D_{2}$ such that $t_{2}(d’)=t_{1}(d’)$ for
every node d’ other than those mentioned below.

(ii-l) $i=1,$ $\delta(p, \lambda, Z_{1})$ contains $(q,\gamma)\in K\cross\Gamma^{*},$ $D_{2}=D_{1}$ , and $t_{2}(d)=q\gamma Z_{2}\cdots Z_{k}$ .
(ii-2) $\delta(p, \lambda, Z_{i})$ contains $(q, r)\in K\cross\{-1,0,1\}$ such that $1\leq i+r\leq k,$ $D_{2}=D_{1}$ ,

and $t_{2}(d)=Z_{1}\cdots Z_{i+r-1}qZ_{i+r}\cdots Z_{k}$ .
(ii-3) $d$ is an internal node of $t$ with rank$(d)=n,$ $i=1,$ $\delta(p, a, Z_{1})$ contains ( $q_{1},$ $\gamma_{1}$ ; $\ldots$ ;

$q_{n},\gamma_{n})\in(K\cross\Gamma^{*})^{n},$ $D_{2}=D_{1}\cup\{d\cdot j|1\leq j\leq n\}$ , and $t_{2}(d\cdot j)=q_{j}\gamma_{j}Z_{2}\cdots Z_{k}$ for each $j$ .
In case $d$ is a leaf of $t,$ $t_{2}$ is defined similarly but unrelatedly to rank$(d)$ (in other words,
$n$ is arbitrary).

(ii-4) $d$ is an internal node of $t$ with rank$(d)=n,$ $\delta(p, a, Z_{i})$ contains $(q_{1}, r_{1}; \ldots ; q_{n}, r_{n})$

$\in(K\cross\{-1,0,1\})^{n}$ such that $1\leq i+r_{j}\leq k$ for every $j,$ $D_{2}=D_{1}\cup\{d\cdot j|1\leq j\leq n\}$ ,
and $t_{2}(d\cdot j)=Z_{1}\cdots Z_{i+r_{j}-1}q_{j}Z_{i+r_{J}}\cdots Z_{k})$ for each $j$ . In case $d$ is a leaf of $t,$ $t_{2}$ is defined
similarly but unrelatedly to rank$(d)$ .

In cases (ii-l) and (ii-2) $M$ does not scan the node $d$ to read a label there, i.e., $M$ makes
a $\lambda$ -move at $d$ . $M$ is in pushdown mode if either case (ii-l) or case (ii-3) is applicable, and
in stack-reading mode otherwise.

$Let\vdash*M$ be the reflexive transitive closure $of\vdash_{M}$ . A $\Gamma^{*}K\Gamma^{*}$-tree $t’$ is a computation tree
of $M$ on input $t$ if $t:init_{M}\vdash_{M}^{*}t’$ . $t’$ is acceptable if $Dom(t’/N)=Dom(t)$ and $t’(d)$ is in
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$\Gamma^{*}F\Gamma^{*}$ for every leaf $d$ of $t’$ . A $\Sigma$-tree $t$ is accepted (or recognizable) by $M$ if there exists
an acceptable computation tree of $M$ on $t$ . The set of trees accepted by $M$ is denoted by
$T(M)$ , and the set of acceptable computation trees of $M$ by $C(M)$ .

3 Context-free grammars with memory

In the preceding paper [3] we introduced context-free grammars (CFGs) with various
types of memory. In this paper we consider CFGs with stack, i.e., CFGs in which every
nonterminal has a stack memory, exclusively among them. Formally, let $\underline{G}=(N, \Sigma,\underline{P}, S)$

be a CFG, where $N$ is the set of nonterminals, $\Sigma$ the set of terminals, $\underline{P}$ the set of
context-free productions, and $S\in N$ the sentence symbol. Let $\Gamma$ be a finite set disjoint
from $N\cup\Sigma$ , and let $\phi$ and $ be special symbols not in $N\cup\Gamma\cup\Sigma$ . Elements of $\Gamma$ are used as
stack symbols. Then a $CFG$ with stack (CFGS for short) is specified by a quintuple $G=$

$(N, \Gamma, \Sigma, P, S)$ , where $P$ is the finite set of productions that have one of the following
forms:

(I) $Aarrow\alpha$ ,
(II) $Aarrow Bf$ ,
(III) $Afarrow B$ ,
(IV) $Afarrow fB,$ $Afarrow Bf$ or $fAarrow Bf$ ,

where $A$ and $B$ are in $N,$ $f$ in $\Gamma$ , and $\alpha$ in $(N\cup\Sigma)^{*}$ . $G$ is $\lambda$-free if it has no production
whose right side is $\lambda$ . $G$ is a $CFG$ with pushdown store (CFGP) if it has no production of
the form (IV). A CFGP is nothing other than an indexed grammar of Aho [1].

Intuitively speaking, each nonterminal of $G$ has a stack of its own. An instantaneous
content of the stack attached to nonterminal $A$ is denoted by a string in ?F*AF*$, the left-
most symbol of which being the top of stack. The occurence of $A$ denotes the $read/write$

head’s position on the stack. A sentential form of $G$ is a string in $(\phi\Gamma^{*}N\Gamma‘ \cup\Sigma)^{*}$ and is
derived from the initial sentential form, #S$, as follows. Let $\beta$ and $\gamma$ be in $(\phi\Gamma^{*}N\Gamma^{*}cup\Sigma)^{*}$ ,
$\delta$ and 6 in $\Gamma^{*},$ $f$ in $\Gamma,$ $A,$ $B$ in $N$ , and $A_{1},$

$\ldots,$
$A_{k}$ in $N\cup\Sigma$ . Define the binary $relation\Rightarrow G$

on sentential forms as follows.
(i) Distribution If $Aarrow A_{1}A_{2}\cdots A_{k}(k\geq 0)$ is a production of type (I), then

\beta \not\subset \delta A\epsilon $\gamma $\Rightarrow c\beta\delta_{1}A_{1}\epsilon_{1}\delta_{2}A_{2}\epsilon_{2}\cdots\delta_{k}A_{k}\epsilon_{k}\gamma$ ,

where $\delta_{i}=\phi\delta$ and $\epsilon_{i}$ =\epsilon $ if $A_{i}$ is in $N$ , and $\delta_{i}=\epsilon_{i}=\lambda$ if $A_{i}$ is in $\Sigma$ . Note that $k=0$

means $\delta_{1}A_{1}\epsilon_{1}\cdots\delta_{k}A_{k}\epsilon_{k}=\lambda$ .
(ii) Pushdown If $Aarrow Bf$ is a production of type (II), then $\beta\phi A\epsilongamma\Rightarrow_{G}\beta\phi Bf\epsilongamma$.
(iii) Pop Up If $Afarrow B$ is a production of type (III), then $\beta\phi Af\epsilongamma\Rightarrow_{G}\beta\phi$Be$\gamma .
(iv) Stack Reading If $xarrow y$ is a production of type (IV), then $\beta\phi\delta x\epsilongamma\Rightarrow c$

$\beta\phi\delta y\epsilongamma$ .
Note that pushdown and pop up may be made only at the top of the stack. $Let\Rightarrow_{G}^{*}$

be the reflexive transitive closure $of\Rightarrow c$ . The language generated by $G$ is den$0$ted by
$L(G)$ , i.e.,

$L(G)=\{w\in\Sigma^{*}|\phi SRightarrow_{G}^{*}w\}$ .
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We denote by $\mathcal{L}_{X}$ the class of languages generated by grammars of type $X$ . It is known
[3] that $\mathcal{L}_{CFG}\subsetneq \mathcal{L}_{CFGP}\subsetneq \mathcal{L}_{CFGS}$.

For our purpose in this paper, we slightly modify the definitions of CFGSs and STAs.
A CFGS is specified by a sextuple $G=(N, \Gamma, \Sigma, P, S, Z_{0})$ , where $N,$ $\Gamma,$

$\Sigma$ and $S$ are
as before, $Z_{0}$ is a distinguished symbol of $\Gamma$ called the initial stack symbol, and $P$ may
contain productions of the forms (II), (III) or (IV), as well as productions of the form

(IV’) $fAgarrow Bfg$

and
(V) $Afarrow B\theta$ ,

where $A$ and $B$ are in $N,$ $f$ and $g$ in $\Gamma$ , and $\theta$ in $\Gamma^{*}$ . However, productions of the form
(I) are restricted such that $\alpha\in N^{*}\cup\Sigma$ . The initial sentential form of $G$ is $\phi SZ_{0}$ .
Production (IV’) has exactly the same effect as applying two productions $Agarrow Cg$ and
$fCarrow Bf$ in this order, while production (V) has the composite effect of applying a type
(III) production first and then a sequence of type (II) productions, i.e., it can be applied
only in the pushdown mode to drive $\beta$ \phi B\mbox{\boldmath $\theta$}\epsilon $\gamma from $\beta$ \phi Af\epsilon $\gamma . Particularly production
$Afarrow Bf$ may be used not only as a type (V) production but also as a type (IV)
production.

A STA ( $K,$ $\Sigma,$ $\Gamma,$
$\delta$, so, $Z_{0},$ $F$ ) is restricted such that $\delta(p, a, Z)\subset\bigcup_{n\geq 2}((K-F)\cross\{0\})^{n}\cup$

$K\cross(\Gamma^{*}\cup\{-1,0,1\})$ and such that $\delta(p, \lambda, Z)\subset K\cross(\Gamma^{*}\cup\{-1,0,1\})$ for every $p\in K$ ,
$a\in\Sigma$ and $Z\in\Gamma$ .

It can be shown that the above mentioned modifications neither increase nor decrease
the power of the devices, and do not change essentially the structure of them, either.

Derivation trees for $G=(N, \Gamma, \Sigma, P, S, Z_{0})$ are those $\Gamma^{*}(N\cup\Sigma\cup\{\lambda\})\Gamma^{*}$ -trees which
are defined recursively as follows.

(i) A single-node tree $init_{G}$ : $\{\lambda\}arrow\{SZ_{0}\}$ is a derivation tree called the initial
derivation tree for $G$ .

(ii) Suppose $t:Darrow\Gamma^{*}(N\cup\Sigma\cup\{\lambda\})\Gamma^{*}$ is a derivation tree with a leaf $\ell$ . Then the
tree $t”:D’arrow\Gamma^{*}(N\cup\Sigma\cup\{\lambda\})\Gamma^{*}$ defined below is a derivation tree, where $t’(d)=t(d)$ for
every $d$ in D. In this case, we write $t>-ct’$ .

(ii-l) If $t(\ell)=\delta Ae$ and $Aarrow A_{1}\cdots A_{k}$ ( $k\geq 1$ , each $A_{i}\in N\cup\Sigma$ ) is a production of
type (I), then $D’=D\cup\{\ell\cdot i|1\leq i\leq k\}$ and $t’(l\cdot i)=\delta A_{i}\epsilon$ .

(ii-2) If $t(l)=\delta A\epsilon$ and $Aarrow\lambda$ is a production, then $D’=DU\{\ell\cdot 1\}$ and $t’(l\cdot 1)=\delta\epsilon$ .
(ii-3) If $t(\ell)=x\epsilon$ and $xarrow y$ is a production of type (II), (III) or (V), then $D’=$

$DU\{\ell\cdot 1\}$ and $t’(P\cdot 1)=y\epsilon$ .
(ii-4) If $t(\ell)=\delta x\epsilon$ and $xarrow y$ is a production of type (IV) or (IV’), then $D’=DU\{\ell\cdot 1\}$

and $t’(P\cdot 1)=\delta y\epsilon$ .
An acceptable derivation tree is a derivation tree whose leaves each is labeled with

an element of $\Gamma^{*}(\Sigma\cup\{\lambda\})\Gamma^{*}$ . The set of acceptable derivation trees for $G$ is denoted by
$T(G)$ . Let $t:Darrow\Gamma^{*}(N\cup\Sigma\cup\{\lambda\})\Gamma^{*}$ be a derivation tree with the leaves $\ell_{1},$ $\ldots,l_{n}$ from
left to right. Then the string $t(\ell_{1})\cdots t(\ell_{n})$ is denoted by yield$(t)$ . If $T$ is a set of trees,
then let yield$(T)=\{yield(t)|t\in T\}$ .

Throughout the paper, let $\pi$ be the homomorphism from $(\Gamma\cup N\cup\Sigma)^{*}$ into $(N\cup\Sigma)^{*}$

which maps each element of $\Gamma$ into $\lambda$ and each element of $N\cup\Sigma$ into itself. Then
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$L(G)=\pi(yield(T(G)))$ .
Let $\varphi$ : $\Sigmaarrow\triangle$ be a mapping and $t:Darrow\Sigma$ a tree. Then by $\varphi(t)$ we denote the tree

$t’$ : $Darrow\triangle$ defined by $t’(d)=\varphi(t(d))$ for each $d$ in D. $\varphi$ is called a relabeling of $t$ . For a
set $T$ of $\Sigma$-trees, let $\varphi(T)=$ { $\varphi(t)|t$ in $T$ }. The following theorems are proved in [4].

Theorem 3.1 For each $\lambda$ -free CFGS (CFGP, $CFG_{f}$ respectively) $G$ , there exists a $\lambda-$

input-free $STA$ (PDTA, $FTA_{f}$ respectively) $M$ and a relabeling $\varphi$ such that $T(G)=$
$\varphi(C(M))$ .

Corollary 3.1 For each $\lambda$ -free CFGS (CFGP, $CFG$, respectively) $G,$ $\pi(T(G))$ is recog-
nizable by a $\lambda$ -input-free $STA$ ($PD$ TA, $FTA$ , respectively).

Corollary 3.2 For each $\lambda$ -free CFGS (CFGP, $CFG$, respectively) $G_{f}$ there exists a $\lambda-$

input-free $STA$ (PDTA, $FTA$ , respectively) $M$ such that $L(G)=yield(T(M))$ .

Theorem 3.2 For each $\lambda$ -input-free $STA$ (PDTA, $FTA$ , respectively) $M$ , there exists
a $\lambda$ -free CFGS (CFGP, $CFG$, respectively) $G$ and a relabeling $\varphi$ such that $C(M)=$
$\varphi(T(G)/N)$ .

Corollary 3.3 For each $\lambda$ -input-free $STA$ (PDTA, $FTA$ , respectively) $M$ , there exists a
$\lambda$ -free CFGS (CFGP, $CFG$, respectively) $G$ such that yield$(T(M))=L(G)$ .

From Corollaries 3.2 and 3.3, we have the following theorem which is a generalization
of the corresponding results for context-free languages [7] and for indexed languages [2]
[6].

Theorem 3.3 The following two statements are equivalent.
(1) $L$ is genemted by a $\lambda$ -free CFGS (CFGP, $CFG$, respectively).
(2) $L=yield(T(M))$ for some $\lambda$ -input-free $STA$ (PDTA, $FTA$ , respectively).

Since it is known [3] that $\mathcal{L}_{CFG}\subsetneq \mathcal{L}_{CFGP}\subsetneq \mathcal{L}_{\lambda-freeCFGS}$ , the next theorem follows from
Theorem 3.3, where $\mathcal{T}_{X}$ denote the class of the sets of trees accepted by tree automata
of type $X$ .

Theorem 3.4 $\mathcal{T}_{FTA}\subsetneq \mathcal{T}_{PDTA}\subsetneq \mathcal{T}_{STA}$ .

4 Traversing trees

In this section we consider traversal of trees according to the depth-first and the
bottom-up orders. Let $t$ : $Darrow\Sigma$ be a tree. We identify the sequence $d_{1},$

$\ldots$ , $d_{n}$ of
nodes constituting a traversal with the string $t(d_{1}.)\cdots t(d_{n})$ of labels. Let $<D$ be the
lexicographic order of $D$ , i.e., $\alpha<D\beta$ if and only if either $\alpha=\lambda$ and $\beta\neq\lambda$ , or $\alpha=\gamma i\alpha’$

and $\beta=\gamma j\beta’$ for some $\alpha’,$ $\beta’\in N^{*}$ and $i,j\in N$ such that $i<j$ . The depth-first traversal
(pre-order traversal) of $t$ , denoted by depth-first $(t)$ , is the traversal according to the
order $<D$ . The bottom-up tmversal (post-order traversal), bottom-up$(t)$ , is the traversal
according to the reverse order of $<D$ . For a set $T$ of trees, let trav$(T)=\{trav(t)|t\in T\}$ ,
where trav is one of the traversals defined above.
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Theorem 4.1 Let $M$ be a $\lambda$-free $STA$ (PDTA, $FTA$ , respectively). Then there exists a
$\lambda$ -free CFGS (CFGP, $CFG$, respectively) $G$ such that $L(G)=depth- first(T(M))$ .

Proof. Let $M=(K, \Sigma, \Gamma, \delta, s_{0}, Z_{0}, F)$ . Let $p,\overline{a},$ $[a,p]$ and $[a, q_{1}, \cdots,q_{k}]$ be nonterminals
of $G$ for each $p,$ $q_{1},$ $\cdots,$ $q_{k}\in K$ and $a\in\Sigma$ , where $k \leq\max\{k|$ $(q_{1},0;\cdots ; q_{k}, 0)\in$

$\delta(p, a, Z),$ $p\in K,$ $a\in\Sigma,$ $Z\in\Gamma$ }, and let $Z$ and $\overline{Z}$ be stack symbols of $G$ for each
$Z\in\Gamma$ . Let $s_{0}$ and $Z_{0}$ be the sentence symbol and the initial stack symbol of $G$ , respec-
tively.

Before definig the set $P$ of productions for $G$ , it would be helpful for understanding to
know the basic idea of the proof. Suppose $t:init_{M}\vdash_{M}^{*}t’$ with $t’\in C(M)$ . Let $s$

‘ be the
tree obtainded from $t$

‘ by performing the following sequence of operations on every node
$d$ of $t’/N$ . Note that $Dom(t)=Dom(t’/N)$ .

1. Create a new node $d_{1}$ to be the unique child of $d$ .
2. if $d$ is an internal node of $t’/N$ then begin

2.1. Make the children of $d$ in $t’$ be the children of $d_{1}$ in $s$ ‘, preserving their order.
2.2. Add a new node $d_{2}$ as the leftmost child of $d_{1}$ .
2.3. Create another new node $d_{3}$ as the unique child of $d_{2}$ .
2.4. Suppose $t’(d)=\alpha p\beta$ for some $p\in K$ and $\alpha,$

$beia\in\Gamma^{*}$ .
2.4.1. Label $d_{3}$ with $\alpha t(d)\beta$ .
2.4.2. Label $d_{2}$ with $\alpha\overline{a}\beta$ .
2.4.3. Label the remaining children of $d_{1}$ with the labels of the corresponding

children
of $d$ in $t’$ .

end
3. else if $d$ is a leaf of $t’/N$ then begin

3.1. Create a new node $d_{3}$ to be the unique child of $d_{1}$ .
3.2. Label $d_{3}$ with. $\alpha a\beta$ if $t’(d)=\alpha p\beta$ for some $p\in F$ .

end $\backslash f$

It is important to observe that depth-first$(t)=h(yield(s’))$ , where $h$ is the homomor-
phism which erases every stack symbol and maps each terminal symbol to itself. This is
the case because the order of nodes obtained by traversing $t$ in the depth-first order is
equivalent to the order of the nodes obtained by traversing $t’/N$ in the depth-first order,
and because each node, say $d$ , of $t’$ has the unique $d_{3}$ for which $h(s’(d_{3}))=t(d)$ , as its
leftmost descendant leaf in $s’$ .

Now we are ready to define the set $P$ of productions for $G$ . Let $p,$ $q,$ $q_{1},$ $\cdots,$ $q_{k}\in K,$ $a\in$

$\Sigma$ and $Z\in\Gamma$ .
(a) If $\delta(p, a, Z)$ contains $(q_{1},0;\ldots ; q_{k},0)$ for some $k\geq 2$ , then $P$ contains $pZarrow[a,$ $q_{1}$ ,

. . . , $q_{k}$ ] $Z$ . Note that this production is of type (IV) and thus can be applied in the stack
reading mode.

Nonterminals of the form $[a, q_{1}, \cdots, q_{k}]$ or $[a, q]$ are introduced in order for $G$ to re-
member a label $a$ which $M$ has scanned on the input tree and a(n) (ordered set of) state(s)
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$q(q_{1}, \cdots, q_{k})$ which $M$ is supposed to enter in the subsequent move. After that, $G$ pro-
duces, on its derivation tree, $\overline{a}$ (and then its unique child a) and $q(q_{1}, \cdots , q_{k})$ surrounded
by strings of stack symbols as the labels of child nodes of the node corresponding to the
node $M$ has just scanned on the input tree. These nodes, except for the leftmost one which
has $\overline{a}$ as its label, have the same label that the corresponding nodes on a computation
tree of $M$ have.

(b-1) If $\delta(p, a, Z)$ contains $(q, \gamma)$ with $\gamma\neq Z$ , then $P$ contains $pZarrow[a, q]\gamma$ and
$p\overline{Z}arrow[a, q]\gamma$ .

If $\gamma=Z$ then $pZarrow[a, q]\gamma$ can be regarded not only as a type (V) production but also
as a type (IV) production, whereas it should not be treated as a type (IV) production
because the corresponding move in $M$ is to be made in the pushdown mode. The stack
symbols in $\overline{\Gamma}$ are introduced in order for $G$ to be able to recognize this difference. Except
for this point, $\overline{Z}$ is treated in $G$ as if it were $Z$ .

(b-2) If $\delta(p, a, Z)$ contains $(q, Z)$ , then $P$ contains $pZarrow[a, q]\overline{Z}$ and $p\overline{Z}arrow[a, q]Z$ .
Note that this production is of type (V) and thus can be applied only in the pushdown
mode.

(c) If $\delta(p, a, Z)$ contains $(q, -1)$ , then $P$ contains $YpZarrow[a, q]YZ$ and $Yp\overline{Z}arrow$

$[a, q]Y\overline{Z}$ for each $Y$ in $\Gamma\cup\overline{\Gamma}$ .
(d) If $\delta(p, a, Z)$ contains $(q, 0)$ , then $P$ contains $pZarrow[a, q]Z$ and $p\overline{Z}arrow[a, q]\overline{Z}$ .
(e) If $\delta(p, a, Z)$ contains $(q, 1)$ , then $P$ contains $pZarrow Z[a, q]$ and $p\overline{Z}arrow\overline{Z}[a, q]$ .
(f) For each $q,$ $q_{1},$ $\cdots$ , $q_{k}\in K$ and $a\in\Sigma,$ $P$ contains $[a, q]arrow\overline{a}q$ and $[a, q_{1}, \cdots, q_{k}]arrow$

$\overline{a}q_{1}\cdots q_{k}$ . The role of nonterminal $\overline{a}$ in (f) and (g) is to adjust the form of productions.
Thus these productions are of type (I).

(g) For each $q,$ $q_{1},$ $\cdots$ , $q_{k}\in F$ and $a\in\Sigma,$ $P$ contains $[a,q]arrow a$ and $[a, q_{1}, --, q_{k}]arrow a$ .
Now it is easily seen that $L(G)=h(yield(T(G)))=depth- first(T(M))$ .

In the above proof, replace (f) by $(f’)$ below. Then we have the corresponding result
for the bottom-up traversal.

$(f’)$ For each $q,$ $q_{1},$ $\cdots,$ $q_{k}\in K$ and $a\in\Sigma,$ $P$ contains $[a, q]arrow q\overline{a}$ and $[a, q_{1}, \cdots, q_{k}]arrow$

$q_{1}\cdots q_{k}\overline{a}$ .

Theorem 4.2 Let $M$ be a $\lambda$ -free $STS$ (PDTA, $FTA_{f}$ respectively). Then there esists a
$\lambda$ -free CFGS (CFGP, $CFG$, respectively) such that $L(G)=bottom- up(T(M))$ .
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