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RESIDUES OF HOLOMORPHIC VECTOR FIELDS
RELATIVE TO SINGULAR INVARIANT SUBVARIETIES
| Daniel LEHMANN and Tatsuo SUWA

1- Introduction

Let F be a holomorphic foliation with singularities in a smooth complex manifold
W, and V' an analytic subvariety (not necessarily everywhere smooth), invariant by
F (“invariant”, or equivalently “saturated” means: if a point of V' belongs to the
regular part of F, then the whole leaf through this point is included in V). We shall
assume furthermore that the normal bundle to the regular part of V in W has a
natural extension v to the whole V, and even a smooth extension © to a germ of
neighborhood of V' in W, making us able to use connections on # and to integrate
associated differential forms on compact pieces of V. [For instance, as we shall see, such
a natural extension 7 always exists for complex hypersurfaces, for algebraic subsets of
CP?*? defined by ¢ global equations, or for “strongly” locally complete intersections
(SLCI: see definition below)].

Denote by p (resp. p + q. resp. s) the complex dimension of V (resp. W, resp.
of the leaves of F). Then, it is easy to prove that the characteristic classes of v in
dimension > 2(p — s) will “localize” near ¥ = [Sing(F)NV]USing(V'), and give rise to
a residue for each connected component £, of £: in fact, once we know ¥ to exist, the
definition and the proof of the existence of this residue work exactly in the same way
as in the case where V is smooth (see theorem 3, p.227, in [L]), and we shall omit the
theory for s > 1. We will concentrate ourselves to the computation of the residue at an
isolated point of [Sing(F)NV]USing(V), for Chern numbers, when s = 1: we get then
formulas generalizing the ones in {LN;] and [Su] and also, in the spirit of Baum-Bott
([BB1)},[BB;]), the Grothendieck residues already known when V is smooth ([L]) (see

the theorem 1 below, and its third particular case with theorem 2).

This residue has first been defined by C.Camacho and P.Sad ([CS]) when p = ¢ =
s = 1, V smooth and £, an isolated point. When the invariant curve V may have
singularities, the theory has then been generalized by A.Lins Neto [LN,] for W = CP?,

by M.Soares [So] when the surface W is a complete intersection in CP", and in [Su]
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for arbitrary complex surfaces. It has also been studied in higher dimensions when V

is smooth, first in the case s = p, ¢ = 1 by B.Gmira [G], J.P.Brasselet (unpublished)

and A.Lins Neto [LN,], and then in [L] for the general case with more precise formulas

when s = 1.

All these results extend by taking, instead of #, any C* vector bundle on a germ
of neighborhood of V' in W, the restriction of which to the regular part of V' being
holomorphic and equipped with an action of ‘a holomorphic vector field X, tangent
to this regular part (see theorem 1’ below). In particular, if we take T(W), with the
action [Xo,.] on T(W)|y, we get a formula for computing the index defined in the
theorem 8 of [L]. (We were wrong when claiming that the index there defined was the
same as the index of [LN;] for p = ¢ = s = 1: there was a mistake in the proof of part

(iv) of this theorem, the 3 first parts remaining correct).

Many thanks to F. Hidaka, Y. Miyaoka, P. Molino, A. Rayman, R. Silhol and M.

Soares for helpful conversations.

2- Background on locally complete intersections (LCI and SLCI)

Let W be a complex manifold of complex dimension n = p+ ¢, and V an analytic
irreducible subvariety of pure complex dimension p. We shall call “reduced locally
defining function” for V' every holomorphic map f : U — C9 defined on an open set
U of W, such that:

@) VU = f1(0),
(i1) the ¢ components of f generate the ideal I (VN U) of holomorphic functionsi which
vanish on V N U ; (for instance, if ¢ = 1, this condition implies that f may not have

factors which are powers).

If U DV, we say that f is a “reduced defining function”, insisting sometimes

“globally defined” near V.

The subvariety V is said to be a “locally complete intersection” ( briefly: LCI)
if the following condition holds: there exists a family (fn : Up — C?)p of reduced
locally defining functions for V, such that UnUr D V. Such a family will be called a
“system of reduced equations” for V. Recall the following proposition, well known t‘o

the specialists:
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Proposition 1

(i) Let f1 : U — CY and fo: U — CY be two reduced locally defining functions for
V defined on the same open set U. Then, there exists an holomorphic map §: U —
gl(q, C) taking values in the set gl(q,C) of ¢ x ¢ matrices with complez coefficients,
satisfying f1 =< §, f2 >, such that the restriction g of § to V N U 13 uniquely defined
and takes values in the group GL(q,C) of invertible matrices.

(i) If V is LCI, and if (fn : Up — C9)} denotes a system of reduced equations
for V., let Gpr : Up N UL, — gl(q, C) such that fr, =< Gnk, fr > on UpN Uy, and denote
by gnx the restriction of Gor to VN U, NUy. The family (ghx) s then a system of
transition functions for a holomorphic q vector bundle v — V. This vector bundle s

well defined (it does not depend on the choice of the qiven system of reduced equations

for V).

(i43) The bundle v is an extension to V of the (holomorphic) bundle normal to
V —Sing(V) in W: more precisely, there ezists a natural bundle map n : Tc(W)|, — v
which, over the regular part of V, has rank ¢ and the compler tangent bundle to this
regular part for kernel (we may therefore identify the restriction of v to this regular

part with the usual normal bundle).
Proof:

Let fi and f2 be such as in (i). Since the components f1x (1 < X < g) of fi
and f; 5 of f, generate the ideal I(V NU), there exists ¢ X ¢ matrices § and h with
holomorphic coefficients such that f; =< §, f» > and f, =< h, f; >. Furthermore,
since f; and f> vanish on U NV, we get also on U NV: df; =< ¢g,df; > and
dfy =< h,df; > (where ¢ and h denote the restrictions of § and A to U N V). Since
dfi =< goh,dfy > on VNU, goh = Id on the regular part of V N U. By continuity,
since this regular part is everywhere dense in V N U, one still has geh = Id on the
whole VNU: g takes values in GL(q, C). The uniqueness of g is obvious since g = h~1.

This proves part (i) of the proposition.

From the uniqueness of ¢ in part (i), we deduce immediately that the (gnr) given

in part (ii) satisfy the cocycle condition, and are therefore a system of transition

functions for a holomorphic vector bundle v — V. Let (g¢},,) denotes the system of

transition functions arising from another system ( f; ) of reduced equations for V' (with
the same open covering (U},) for the moment): after part (1), there exists a family (§)

such f, =< gy, f; >. Denoting (¢,) the induced fainily on V', the uniqueness in part
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(i) implies that the 2 cocycles (grk) and (g}, ) differ by the coboundary of (gp): they
define therefore isomorphic bundles. If we change the covering (Uj), we can use a

common refinement to both coverings, for coming back to the case of a same covering.

Notice that the sections o of v may be identified with the families (o} : Up — C9),
of maps such that o, =< gpr, 0 > on V N U, N Ug. On the other hand we get also
there: dfy, =< gnk,dfr >. Therefore the family of (dfy : TC(W)lv.—.u,, — CY) defines
a bundle map 7 : Tg(W)|, — v. Furthermore, the kernel of df) on the regular part
of U, NV is exactly the tangent space to this regular part. This achieves the proof of
part (iii).

By continuity and reducing the open sets U to smaller ones if necessary, we may
assume that the functions §,, take themselves values in GL(q, C). However it is not
clear that the cocycle condition remains true off V. This justifies the following defini-
tion: a LCI subvariety V of W will be said a“strongly” locally complete intersection
(shortly SLCI), if there exists a smooth C'* vector bundle & — U, defined over some

neighborhood U of V in W, the restriction of which to V' being v.

Assuming V' to be SLCI, and given an extension # — U of v, we shall call “C*>”
any section of v which is the restriction of a C'™ section of . Local sections over U h
are given by maps U;, — C9, and in particular the ¢ constant functions corresponding
to the canonical base of C? make a local trivialization of  over Uy (or of v over

V N Uy) called the “trivialization associated” to f.
Remarks:

1) Notice that the singular foliations df;, = 0 on U}, and dfy = 0 on Uy do not

coincide in general on U), N Uy.

2) We can define a virtual tangent bundle 7 to V in the KU theory by
7] = [To(W)lv] - )

3) We do not know if LCI implies automatically SLCI. However, there are many

examples of SLCI.

4) Let Ow be the sheaf of holomorphic functions on W, and T the sheaf of ideals
defining the subvariety V in W. Thus Oy = Ow/Z is the sheaf of holomorphic
functions on V. If V' is LCI, then the sheaf Z/Z? is locally free and the sheaf of germs

of holomorphic functions of the bundle » — V above is identified with the dual sheaf
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Homo,, (Z/I% Ov). Furthermore, the bundle map 7 : Tc(W)|,, — v corresponds, on
the sheaf level, to the morphism dual to the one 7/I* — Qw ®o,, Ov induced by
f—df ®1, where Qw = Ow(TE(W)) denotes the cotangent sheaf of W.

Example 1: Any hypersurface V of W (pure complex codimension 1) is SLCI. In
fact, if we set §pp = }’LZ' where ( f;) denotes a family of local defining functions without
factors which are powers, then the system (§nx) satisfies the cocycle condition and it

defines an holomorphic extension 7 of v defined on the union of the domains U}, of f.

Ekample 2: Any algebraic set V in W = CP" which is globally a complete inter-
section is SLCI. In fact, denote by (X,, X1, ..., X,,) homogeneous coordinates in CP",
and Fy, Fy, ..., F, homogeneous polynomials in the variables (X, X1, ..., Xy) of respec-
tive degree d;,ds, ...,d, such that V has pure complex codimension ¢, and is defined
by the ¢ equations Fy = 0 (1 < A < ¢). In the affine open subset U; of CP™ defined
by X; # 0, V N U,; has for equation with respect to the affine coordinates (-f—{{-) i
(_X.-lFTF" = 0,(1 £ A < ¢q). Therefore, on U; N U; the change of equations §;; is
equal to the diagonal ¢ X ¢ matrix (—\\7’:) dl, s <§L) dq. [In fact, in this case, it is
not necessary to assume that the components (_\—,%T\_F’\ (1 £ X < g) generate the ideal
I(V AU Denoting by L. — CP" the hyperplane bundle (dual of the tautological

bundle), 7 is defined on the whole CP" by the formula
o= Er%()l\zl(L)C:’)d,\.
Hence: 1+ ¢1(9) + - + ¢g(#7) = I_,(1 + dac), with ¢ = ¢y(L).

3- Statement of the theorems 1 and 1°

Assume from now on that V is invariant by a holomorphic vector field with
singularities Xg on U. Let 6, the C-lincar operator defined for any section 7(Y") over
the regular part of V by: 8, (7(}Y')) = ([ Xo, Y]|v), Y denoting some local extension

of Y near V.

In case V is LCI, let f, = 0 be a local reduced equation of V: each component
(dfh(Xo))A (1 € A < q) of the derivative df,(Xo) has to vanish on |
VNUy, and must be therefore a linear combination with holomorphic coefficients of the
components. ( fr)x of fi: there exists a ¢ X ¢ matrix Cj, with holomorphic coefficients
such that: dfy(X,) =< Cy, fr >. Denote by C) = ((C,‘:/\)) the restriction of C} to
VNUy.
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Lemma 1

(1) Ox,(7(Y)) depends only on 7(Y'), not onY nor on Y.

(i) 6, (vo) = ub (o) +(Xo.u)o, for any function u on V which is the resiriction of
a C* function u: U — C.

(4i3) If V is LCI, and fi, = 0 a local reduced equation, we have, denoting (o1,...,04)

the trivalization associated to fp:
O, (02) = — Z ChaTu
I

In particular, over the regular part of Vi, = V N Uy, Cp depends only on fr, not on
p p D
the choice of C), ).

Parts (i) and (ii) of the lemma are proved in lemma 2-1 p.220 of [L]. For proving
part (iii), take a partition {i1,...,i,} U {j1,...,Jq} of {1,...,n} such that
%((f—:;:—);"q-")—) #0 near some point of the regular part of V},: then, near this point,
(Zigy---2Zips fhi1s- -+ 5 fr,q) is @ new system of local coordinates denoted by
(T1,--,Zp,Y1,---»Yq)s the local trivialization of v associated to f), becoming W(%),

(1 € X < ¢). Hence if X writes locally Z' ) P,-a%_i + 59 Q“a—z—“-, then

= pn=1
- - T o JL. o L
Xo-fup = Xogu = Qu = 4=y 92l st hence. Cff y = 52=| _ . On the other hand,
aQ , & . )
7[Xo, a—%] == h=1 (%lyﬂ) 7( a;“ ): this proves part (iii) of the lemma.

Denote by T (resp. (Zq) ) the singular set & = [Sing(Xo) N V] U Sing(V') (resp.

its connected components). (Recall that a singular point of X is either a point where

X is not defined, or a point where it vanishes).

Assume T, to be compact, and denote by U, an open neighborhood of ¥, in W,
and Uy = U ~ =. Let V, = V N U,. We shall assume furthermore that U, N Ug = 0,

for a # . (In particular, V, — I, is in the regular part of V).

Denote by 7, a compact real manifold with boundary, of real dimension 2n,
included in U,, such that ¥, be inside the interior of 7., and the boundary 87, of
which being transverse to V — £. Put: T, = 7. NV, 87, =0T, N (V-2

Assume:
(i) Uy is included in the domain of a local holomorphic chart (z1,...,z,) of W,
(1) Uq is one of the Up’s above, the index o being one of the indices h. (Write f, and

Cq the corresponding terms).
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Let:
n
; v o
Yol = 3 Aiere e zn)
=1 1

Denote by V; (1 < ¢ < n) the open set of points m in 07, such that A;(m) # 0.
These open sets V; constitute an open covering V of 07,. Let U be any subcovering
of V. (Such a U always exists: take for instance V itself; see also the particular cases
2 and 3 below). We will denote by (R;), (1 < ¢ < n) any system of “honey-cells”
adapted to this covering U (see the definition in [L], section 1, under the name of
“systéme d’alvéoles™). For instance, if the real hypersurfaces |A;| = |4;| (1 # j) in
U, are in general position, we may take for R; the cell defined by: |A;] > |4;] for all
HI#FLV, elU.
Denote by M the set of multiindices 1 = (u1,2,...,up) such that

1<u; <wuz <...<wup <n,and by M(U) the subset of those such that V,, €« and
n;;lvuj be not empty (that is the set of p simplices in the “nerve” of U). For any
u € M(U), define Ry, = Ry, uy..u, = N Ry, oriented as in section 1 of [L].

Let ¢ € (Zcy,...,¢y])?" be a Chern polynomial having integral coefficients with

respect to the Chern classes, and defining a characteristic class of dimension 2p.

Theorem 1

Assume V to be SLCI. Define:

] W(=Co)dzy, Ndzy, N... Ndzy
I(F.V.go.v) = (-1)l3] Z/ 1 2,

wEM () =1

(¢) Io(F,V,@,v) docs not depend on the vartous choices of (zq,. .. ,zn),u,'f'a,
fasCas Ri, and depends only on the foliation F defined by Xo, but not on Xo itself.

(i) Assume furthermore V to be compact: 3, I(F,V,p,v) is then an integer.

(i1r) This integer depends only on V and ¢ , but not on F: it is equal to the evaluation
< (v),V > of p(v) on the fundamental class [V] of V.

Remark:

The index above depends obviously only on F and not on Xjy: if we take uX
instead of X (u denoting some holomorphic non vanishing function on U), each 4; is

multiplied by |y, the matrix C, also, and the term under integration does not change.
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In fact, we could write the theorem for a foliation F with singularities, defined only

locally by an holomorphic vector field but non necessarily globally.
Particular cases:

1) For p = ¢ = 1, Ia(F,V,c1,v) coincides with the index defined in [LN;] by
A.Lins Neto, if V,, is a (locally) irreducible curve. For a possibly reducible V,, it
coincides with the one in [Su] (notice that the sum of the indices of Lins Neto over
the irreducible components is different from the above index: see [Su] (1.3) Remarks
1° and (1.4) Proposition). In fact, in this case, the 1-forms %fll and % coincide over
V1NV, and glue therefore together, defining a 1-form n, on 07,, while X,.f, may be
written ¢, fo for some holomorphic function ¢g4. The formula of theorem 1 becomes

now:

, -1 , 1
Io:(}-, Viep,v) = :;7;[/1? (*ga)77o»+ n (“ga)%] = Z;LT Jalla-

On the other hand, when f is irreducible, if kw = h.df + fa according to the notations

of [LN] p.198 (up to the bars for avoiding confusions with our notations), his index
&
h
take the same value g, when applied to the restriction of Xy, Q.E.D. See (1.1) Lemma

is then equal to = faz, §- But =2 and ga7a are equal on 374, because they both
and (1.2) in [Su], when f is possibly reducible. This coincidence is also obvious from
the theorem 2 and the remark below. Thus the above theorem 1 may be seen as a
generalization of the theorems A and C of [LN;] and the theorem (2.1) of [Su]. In
particular, since the sum of our indices is the self-intersection number of the curve V,
the integer 3dg(S) — x(S) + X_ 5 1(B), lying in the theorem A of [LN,], is equal to
dg(S)?, if the curve S is locally irreducible at each of its singular points. In general,
the integer is different from dg(S)* (see the theorems (2.1) and (2.5) in [Su], in fact,

dg(S)* is equal to 3dg(S) — x(S) + 3, ¢(S.p) by the adjunction formula).

More generally, for p = 1 and any ¢, there exists a 1-form 14 on 07, the restriction

of which to each V; being equal to -d;ff Then, still defining g4 by the same formula

Xo-fa = gafa, the formula of theorem 1 becomes:

1
I(F.V,ep,v) = 77? / Jalla-
=t J AT

2) When T, is in the regular part of V', we may take for local chart:

(\217-~-53n) - (Jflw--7377;7?]1,---73/@1)
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such that fx = yx for any A = 1,....¢. Then 4,4, vanishes on V,, in such a way
that all open sets V,4 are empty, and that we may take U = Vi,...,V,: Then,
u = {1,...,p} is the unique element of M({). On the other hand, ¢ and a—’;ﬁf‘i are
equal on V,,. We recover therefore the formula of theorem 1 in [L], writing Io(F, V, ¢, v)
as a Grothendieck residue. Note that there are some sign errors in [L]. In the third line
of p.237, the factor (—1)[%] should be omitted, in Théoreme 1 of p.217, the integral
giving the residue should be multiplied by (——1)7"*'[22"] = (—1)[%] instead of (—1)? and

in. Théoreme 1’ of p.233, the integral should be multiplied by (—1)[%].

3) Assume that ¥, is a point m, isolated in 1/, and that X, is meromorphic near

mq (thus Xy has a zero, a pole or both at mg). Then, we have the following
Theorem 2

There ezists a local holomorphic chart (z1,...,2n) near my in W, such that

V1,Va, ..,V cover 0T, (p = dimcV').

For this covering ¢, M(U) has a unique element uy = {1, ..., p}. Writing R instead of

Ry, the formula of theorem 1 hecomes now:

o ) = (o [,;_]/ o(—=Co)dzy Adza A ... Adz,
Lo(F,Vip,v) = (-1) i T '

Proof:

Let us write Xg = 211:1 .41-5%, A, = -5‘; with P; and @; holomorphic near mg.
We think of P; and Q; as being in the ring O,, of germs of holomorphic functions at
the origin O in C" and assume that they are relatively prime for each ¢. Let @ be the
least common multiple of the ();’s. Then QX is a holomorphic vector field leaving V

invariant.
Lemma 2

The holomorphic vector ficld QX has an isolated zero at my on V.

In fact suppose QX had a non-isolated zero at my on V and let V' be a positive
dimensional irreducible subvariety of V' containing m, and contained in thé zero set
of QXg. For each i. we write Q@ = Q;Q!, where Q/,..., Q! have no common factors.
Since QXo = 3., PiQ::‘;;,Tv the functions P;Q} are all in the defining ideal I(V') of

V'!. Hence, since I(V') is prime and X, is non-zero away from m,, there exists %,

such that Q; € I(V'). Thus there is a prime factor P of Qj such that P € I(V').
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Now, since Q:Q; = Q = Q;,Q;,, P is a factor of Q;Q; for any i. On the other hand,
since the pole of X is the union of the zero sets of the @Q;’s, we have @; ¢ I(V'), by
the assumption that the pole of X is at most isolated on V. Therefore, P must be a
factor of @ for all 7. This contradicts the fact that the Q}’s have no common factors.

This proves the lemma.

In the above situation, since the zero set of P;Q% is not smaller than that of P;,
it suffices to prove the proposition for vector fields holomorphic near m4. Note that
the index of Xy at m¢ is equal to that of QXy. Note also that if X, has an isolated
pole on V, then V is in fact 1-dimensional, since the pole of X has codimension 1 in

the ambiant space and in V.

In what follows, for an ideal I in the ring O,, we denote by ht I its height and
by V(I) the (germ of) the analytic set defined by I. Thus ht I = codim V(I). Also,

for germs ay.....qa, in O,. we denote by (ay,...,a,) the ideal generated by them.
Lemma 3

Let Ar,...,An, f1,..., fy be germs in Op, n = p+q, with ht (f1,..., fq) = ¢ and
ht (Ay,....An f1...., fy) =n. Then there ezist germs A}, ..., A, in Op such that
(1) Ay, ... A, are linear combinations of Ay,.... A, with C coefficients,

(1) ht (A7, ... ._-1;,. fraeo., fo)=n.
Since ht (fy,..., fq) = ¢, it suffices to show the following for r =1,...,p:

(*) if A},...,A._, are linear combinations of A;,...,4, (with C coefficients) with
ht (A%,..., ALy, f1,..., fg) = — 1+ ¢, then there exists A]. which is a linear combi-
nation of A4;,..., A, (with C coefficients) with ht (A},..., A}, f1,..., fg) =7 +4q.

To show this, let V/(4\,....4%_ . fi....,f,) = V1 U--- UV, be the irreducible
decomposition of V(A}, ... 4. _,. fi.....f,). Since ht (Ay,..., Ay, f1,..., fq) = n, for
any point @ in V(A4 ..... A hie oo fy) near O but different from O, there exists

A; with A;(x) # 0. Hence we sce that there exists A/ which is a linear combination

of Ay,..., A, with Vi, ¢ V(A]) for k =1,...,s. We have
V(’A'I_, e AL f1, e ) =WMinVAD)u---U(VanV(A4L).

Since each Vi is irreducible and Vi ¢ V(A!), we have dim(V; N V(4))) < dim V4.

Therefore, we get ht (A%..... 4L fi..... fy) = + ¢, hence the lemma.
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Note that the condition ht (fi,..., f;) = ¢ means that the variety V defined by
fi=---= f, =01is a complete intersection and the condition
ht (Ay,...,Aq, f1,..., fg) = n means that the singularity of the holomorphic vector
field X = Y0 Aié’%{ is isolated in V.

=1
In the above situation, if we choose a suitable coordinate system (z1,...,2,) in

C™, then we may suppose that ht (A4,,..... 4,, fi...., fy) = n. The theorem 2 follows.
Remark:

Let V, be defined by fn = 0, A = 1,...,¢. Suppose that V, is invariant by a

holomorphic vector field Xy and that ¥, is an isolated point m, in V,,. Then as is

shown above, there exists a holomorphic chart (zy,...,z,) near m, such that, when
. - n Ie) y , — .
we write Xo = Y ., Aig— ht(Ay,.. Ay i, fg) = le, Ao Ap fry 0 fy

form a regular sequence. We may set

i

To={z=(z1,....z) [ 1A <, M=) e, i=1,...,p, A=1,.1.,q}.
Thus we have T, = {z | |4i(2)| <&, fa(z) =0} and we may also set
Ri={z € 0T ||4i(2)] 2 |A4;(2)| for j #14}.

Then we have

which is a smooth closed submanifold of real dimensiom p in 97,, the link of the
singularity V. If we set §; = arg 4,(z), R is oriented so that the form
(—1)[%]d91 A...NdB, is positive. Thus if we set R' = (—1)[%]R so that df, A...Ad6,

1s positive on R', we get

—Cy)dzy Ndzg A... N d
Io(F.V,pov) = / A=Calde £ 022 ’r,
Jr A;

1=1

More generally, let E — V" be a continuous complex vector bundle of rank r > 1,
the restriction of which to the regular part of V° being holomorphic, and such that
there exists a C'> extension E — U of E to some neighborhood U of V in W. We
shall assume also that there exists a C action of Xy over E]y_x in the sense of Bott
([B2]): a C- linear operator 6, from the space of C* sections of E|y_gx into itself is

given, such that:
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6, (o) is holomorphic whenever o is holomorphic,

b, (uo) = (Xo.u)o +ub (o) for any C*° function u and any section o.
Let ¢ € (Z[c1,...,c/])*. We have the following generalization of theorem 1:

Let (01, ....0,) be a trivialization of E|y, (assumed to be trivial), and M, be

the r X r matrix with holomorphic coefficients (Z\/Io.)z : Vo — X4 — C such that
b
Oxo(0a) = 34 (Ma) 00

Theorem 1’

Define:

. oMy )dzy, /\dzu oo Ndzy,

weEMUL) J=1-"%

(i) Ia(0x,, V., E) does not depend on the various choicés of (z1,...,2n), U, Ta,
(o15--.,0+), Ri,

(i1) Assume V to be compact : Y In(0x,,V,p, E) is then an integer.

(i1) This integer depends only on V', ¢ and E, but not on Xo and 0x,. It is in fact
equal to the cvaluation < p(E).V > of o(E) on the fundamental class [V] of V.

Remarks:

1) For theorem 1°, V' does not need to be SLCI not even LCI; this assumption
was only useful for being sure that » and # exist in the example 1 below. This is still

true, even for theorem 1, if we have some other reason to know that v and ¥ exist.

2) If V is smooth, we recover the theorem 1’ of [L], some particular cases of which
being also in Baum-Bott [when E = Te(W)|yv ([BB1])], and in Bott ([Bz]) [when X,

is non degenerate along T,].

3) Let V,, be defined by f) = 0. A = 1,..., ¢ and invariant by a holomorphic vector
field Xo. Suppose that £, is an isolated point m4 in V4, Xo still being holomorphic
near mq. Then, as in the previous remark, there exists a holomorphic chart (21, ...,2,)

near m, such that 4;,..., A,, f1,..., f, form a regular sequence. In this case, we have

| P(My)dzy Adzg A...Nd
IOV(()_\'O."".L,Z".,E):/ P(My)dz p( 2 A zp’
JR i=1 Ai
where
R ={:]]4di(=)=c. falz)=0,i=1...., P, A=1,...,q},
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which is oriented so that the form df; A ... A df, is positive, §; = arg A;(z).
Example 1

Assume V' to be SLCL Take E = v, and 8, defined such as in section 2 above,
with M, = —C,. Then we get the theorem 1 above from the theorem 1’. We shall
write in this case I (F,V, v, ) instead of I,(0x,,V,p,v).

Example 2

Take E = To(W)|y, and define 6, (V) = [Xo,Y])|v , depending only on the
vector field Y~ tangent to W along V, and not on its extension ¥ to some neighbourhood
of V. Then, M, = —%-(—E:———%")l The index 1s now this one defined in section
8 of [L], theorem 1" giving a formula for computing it. In this case, we shall write
I (X0, Voo, Tc(W)) instead of I,(0y,. V@, To(W )|y ). [Notice that if we replace here

Xo by uXjy as in theorem 1. the index is now changing!]

3- Proof of theorem 1°

Let w be a connexion on E|y, , defined by a derivation law V satisfying:
Vx,0lv-g = 0,0 for every section oof E,
Vz o =0 for every section Z € TNV - %)
and every holomorphic section oof E
(We shall say that such an w is special relatively to 8 .)

Let us give also an arbitrary connection w, on E|,_.

Let ¢ € (Z[cy,...,¢:])* be a Chern polynomial having integral coefficients with
respect to the Chern classes ¢y,. .., ¢,], and defining a characteristic class of dimension
2p. We use the notations A for the Chern-Weil homomorphism defined by a connec-
tion w, and A ., ...w. () the Bott’s operator for iterated differences ([B;]), such that:
doDupuw, - w, = Z};o(“l)jl—\wm-w,- ey -

(In particular: doAy ., = Ay — Ay).

Proposition 2
Let: ']a(g_\-oal"fs @y E) = [T,, Awa(<,~9) + fBT(, Awow(‘p)
(1) Jo(F, V.. E) docs not depend on the choices of Ty , w, wa.

(1) Assume V to be compact : Y Jo(8, V0, E) is then an integer.
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(i31) This integer depends only on V and ¢ , but not on F. (It 1s in fact nothing else
but the evaluation < o(E),V > of o(E) on the fundamental class [V] of V).

[Notice that, in Proposition 2, we do not assume neither that U, is included in the

domain of a local chart, nor that E|y_ is trivial].

The proof is exactly the same as the proof of the 3 first parts in theorem 8 of [L],

just writing Vo =6, o, instead of V. ¥ = [X(,Y].

The theorem 1’ (hence the theorem 1) will follow immediately from Proposition

2 above, and from
Proposition 3

When U, s wncluded in the domain of a local chart, and when E‘Ua 18 trivial,
then
I8, . Vig.E)=Js(6, . V.p, E).

No

In the formula of proposition 2, we may choose wq equal to the trivial connection
wg whose connection form with respect to the trivialization (¢1,...,0,) of E|y, is the

matrix 0. Hence,

Remarks:

1) Notice that the integration of the same expression over only one of the con-
nected components of 07, N V would give the partial index corresponding to the

corresponding “sheet” or “branch” through .

2) If V' is not LCI, we still can define I,(F,V,¢,v) and Jo(F,V, ¢, v) under the
condition that the bundle v|y, —x_ is trivializable, and conclusion of proposition 3 will
still remain true. But this index will now depend on the choice of the homotopy class
of the trivialization. Furthermore, if this is possible at any point of ¥, the sum of ’

these indices has now no reason neither to be an integer nor to be independant on F.

There are 3 steps in the proof of proposition 3:
1) We first study the properties of the holomorphic connections w; on El|y,, the con-
nection form of which with respect to the given trivialization being dA—Z:Mo,.
2) Then, we prove that A,,.(v), which is a cocycle on 874, is cohomologous, when

imbedded in the total Cech-de Rham complex CDR*(U), to the element p in



CDR*~Y(U) defined by:

Hu = Dy o, uy i, () for u € M(U),

pr = 0 for any simplex I of dimension # p — 1 in the nerve of U.
3) Finally, we prove that

= 2(My) dzy, /\ Az, N oo Ndzy, -
u . i 4

j=1

Using integration on CDR*(U) as recalled in lemma 6 below, this will achieve the

proof of proposition 3.
First step:

Let © be an open set in V, — £, Y a holomorphic non vanishing vector field
tangent to Q, and I’ a holomorphic map from  into the space of r X r matrices with
complex coefficients. A connection @ on Elg will be said “adapted” to (Y,T) if its
connection form 1‘ela.ti'§fely to the trivialization (oq,...,0,) of E|q, still denoted @,
satisfies:

{GJ(Y) =T,

@(Z) = 0 for every section Z of T (V, — Z4).

Hence the restriction to © of a “special” connection, such as defined for proposition
2, is adapted to (X, M, ). while the restriction to Q of the trivial connection wg
i1s adapted to any (Y.matrie 0) for Y holomorphic tangent to 2. From the usual

vanishing theorem (Bott ([B4]), Kamber-Tondeur ([INT]), we deduce the
Lemma 4
Let dim ¢ = 2p.

If @ is adapted to some (Y, T'), Az(e) =0,
If @.....0p are adapted to the samc (Y.T'), Ay, . o, () =0.

For any ¢ multiindex I = (1 < 4y,149,...,7, < n) (the 7;’s being all distinct),
define

D(fi. . fy)
For any u € M. define the ¢ multiindex w = (#,.4y,...,1,) so that

1<a <y <. <ug < ncand {12,000} =" {uj ug, .. upy} U {dy, g, ..., 84},
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and by ; the open set of points in V,, where D; # 0: Q4 is a union of open sets where
the restrictions of the functions z,,...,z,, constitute a system of local coordinates.
For any ¢ + 1 multiindex I = (1 < 4g,%1,...,24 < n), Y7 will denote the holomorphic

vector field:

g 0
Y, = Z(—l)le_ik

0z;,
k=0 tk
Lemma 5

(i) Y1 is tangent to V.

(it) For m € V; (1 <i < n), there exists u € M containing 1 such that Dy # 0 at the

point m.

(ii1) For any i (1 < i < n). the connection w; = %F]\/Ia on E|y, satisfies the following
condition: for any u € M containing 1, the restriction of w; to Qg s simultaneously

adapted to (Xo. My ) and to any (Y, . matriz 0) such that uj # 1.

Let in fact I be some ¢+ 1 multi index such that Dy_;, # 0 at some point m in V
for some 7; € I: it means that the restrictions %; to V of the functions z; constitute,
for 7 belonging to {1,2,...,n} — {I — i} (in particular for ¢ = t}), a system of local
-coordinates on V' near m. But then, the restriction of Y7 to the domain of such a local
chart is equal to (=1)¥D;_;, (T‘-)—L— and is therefore tangent to V', hence part (i) of the

lemma.
The condition for Xy to be tangent to ' may be written:

n

Z .,4]-(]")\)'_:1. =0on V,forallA=1,...,q.
j=1
Hence, if m € V,, the ¢ dimensional vector (( f,\)',.,> is, on V,, a linear com-
S A=1,...q ;
bination of the others ((fA)':,) . (J # 1) Dy must be zero at m for any ¢
TS A=1., q

multiindex .J containing /. But. since V; is in the regular part of V', one at least of the
Dy must be # 0: the only possibility is therefore that ¢ ¢ J for such an J, hence part

(ii) of the lemma.

- a 1 A '
On Qg, Xo = §=1 Ay EEal s ?:1 Ay; Yy, 44 and, on V; N Qg, the p holo-
; .

morphic vector fields X, and (Y,,‘j,m) are linearly independant. The part (iii)
uiFi
of the lemma becomes now obvious to check. since V; is covered by the 25 such that

1 € u.
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Second step:

For any I simplex I = (ig---1;) in the nerve of U, write:
Auo w wl(‘r‘d) = vAwo W Wiy wiy, (59‘)1 Aw wy (99) =A, Wi Wiy (99),
and Aug w () = By, Wio"‘wik(’“id)'

Define v € CDR*~1(U{) as the family (v,), given by:

T (—1)[“‘—#]A#0 « w; (), where & denotes the dimension |1 of I.

Then, the total differential Dy of 4 in CDR*(U) 1s given by:
(D7) = COFFE (A0 11 (9) = Auy y(9) + Tica(-D) B w w11, (9))
+ Tamg(DEFHAL L (0)
= (=D (AL Ly (9) = Ay ) (@), for 1] > 0,
and (Dy) = Au i (9) = Dy wi(9) + Doy wl) for |I] = 0.

i

But all terms A, o, (@) vanish bhecause the connections w,w;,,---,w;, are all
adapted to the same (Xg, M, ), all terms Ay, o, (¢) vanish for |I] < p — 1 because
the connections wy,w;,, - -+, w;, are all adapted to a same (Y, matriz 0), and all terms
of (D’y) vanish for |I| > p because Ag,...o, () is always 0 for any family of r + 1
connecti(;ns when r > p. Therefore, it remains only:
(D’y)i = Ay, () for I = {7} of dimension 0,
(D’y) . = — i, for u € M(U) of dimension p — 1,
all others (D')) s being 0. This proves: Dy = l(Awo w.(p)) — U,
where ¢ denotes the natural imbedding of the de Rham complex Q7 (07,) into

CDR*(U).
Third step:

The set V, equal to ﬂ§=]V1,j 1s included into ;. In fact, as already seen at
lemma 5, if m belongs to V;, Dy must be zero when ¢ € I: so if m € V,, u is the only

possible element v in M(U) such that D, # 0.

For computing A, Wiy -, > WE introduce (Bott [B;]) the connection &
on (Elvu) X AP — Vy x AP (AP denoting the p-simplex 0 < 3°F_ ¢, <1, 0< ¢, <1,
in R?), defined by @ = Y% t,w;+ [1 - (3, t.i)] wo = ( =1 Z"ﬁdzuj)Ma.

=1

The curvature §2 of this connection is then equal to

P
A 1
)= (}: dtj A T(I:,H )4‘”« + (terms without any dig) .

i=1 L
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. . v 2
Therefore, for every polynomial ¢ in C'hern®? [c; ... cpl,

P(Ma)dzyy N Ndzy,
P A

i=14u

Aalp) = p (=Dt Adty A A dE, A

+ (terms of degree < p In dt;)

By integration over AP, and using the equality [, dt; A--- Adt, = % , we get ([Bi]
p.64):

O(Mo) dzyy Ndzyy Ao Ndzy,
Awow'l rwp (VQ = r A :

=1

This achieves the proof of proposition 3, hence of theorems 1’ and 1, once using;:
Lemma 6

There cxists a linear map L: CDR*~Y(U) — C with the following properties:
i) L vanishes on the total coboundaries D(C'DR2”_2(Z/()>,

1) L extends stmultaneously the integration fam : Q%’;l(a’.ﬁ,) — C,
L g o — )
and the map: (——1)['-’] ZHE.\/I(H) .[““ L CPTHULQY ) — C

Proof: See section 6 of [L].

4- Examples

Let W be the 3-dimensional complex projective space CP?, of points [X,Y, Z, T]

with homogeneous coordinates X,Y, Z, T. Take for V the cone V; of equation
X'+¥'+2"=0 (I being any integer > 1),

which has a single isolated singular point O = [0,0,0,1]. Denote by Ur,Uz and Uy
the affine spaces T # 0,2 # 0 and ¥ # 0 with respective coordinates (z = z,lf—,y =
%,z = %),(m' = %,y’ = )Zf-,f.l = %) and (2”7 = i\;—’,z” = %,t” = )—:C) The 3 open sets
Ur,Uz,Uy cover V; since the point [1,0, 0, 0] does not belong to V;. The Corresponding,
equations of V; may be written respectively: fr =0, fz =0, fy =0, with:
Fr(ey.s) =2l 4yl 4=,

fz(e,y' )y =2+ ¢+ 1 and fy (o7 Ty =00 4 2040

The bundle 7 is defined by the cocyele

. 1
! "
(grz =2 =55 grvy =y = 71 92y

1l
Nad

Il
4] -
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In general, for a hypersurface V; of degree [ in CP" (dimcV; = p = n — 1), we have
(see Example 2 in section 2)

< (e (), Vi >= 1" / "l =,

Also, from Tc(CP") @ 1 = (n + 1)L, we have:
1+a(Te) + cao(To) + -+ = (1 +)",

hence:
(n+1)n ,
—-.)—"'-—'C yoo e

<

c(Tc(CP™)) = (n+4+1)e.  eo(Tc(CP™)) =

In particular, for p = 2, ¢ = 1. we get:

< (e))X(To(CP), Vi >= (3 + 1)2/ ¢ = 161,
. .
43 c? = 6l.

2 )y

< ey(Tc(CP?)), Vi >=

Example 1:

Take for X the extension H to the whole CP? of the vector field of infinitesimal -

4 7

homotheties 7?% +yz; + o5z in Up. (In Uy and Uy, H is equal respectively to
~t' 2 and —t" 5% ). This vector field has for singular set the union of {O} and of the
hyperplane T = 0, and T has 2 connected components: 3; is the isolated point {O},
and £y the curve (X'+ Y+ Z! =0, T = 0). Notice however that £, does not contain

any singularity for the foliation F generated by H, so that we can already assert:
L(F Vi (c))2v)=0.

1) Computation of I;(F, Vi, (¢)% ) and I;(H. Vi, 0, Tc(W)) (¢ = (c1)? or ¢2):

For E = v, H.fr = lfp and My = —Cp is the 1 x 1 constant matrix (—I). For

E =Tc(W)|v, My = — g:iz :; is equal to the opposite of the 3 x 3 identity matrix,
in such a way that for E = v, (¢;)*(M;) is a constant equal to f;’;,

-9 )

=2 ito=(a)?
while for E = Tc(W)|\, ¢(AMy) is also a constant equal to 3

4n? if @ = Ca2.
(Recall that. ¢4 applied to some matrix is equal to (2_1'1?)/.- times the k th elementary

symmetric function of the eigenvalues).
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We compute the indices in two ways; first directly by the definition in theorem 1 or

1’ and then applying theorem 2.

(i) Take for 7 the ball Sup (|z|, |y],|z]) < ¢ for some positive constant e. Let R, be
the region in the boundary 07 defined by |z| > |z|,|z| > |y|, and define R, and R,
similarly. The index I;(0y, Vi, ¢, E) at the origin O is equal in both cases to

. de d d d
—39(.7\/[0)(/ iAﬂ+/ Eli/-/\—z-+/ —5/\5{5)
JR T Yy IR, ’(j z - T z

-y 2l

- On R,y, we may write: 2 = ce'?, y = ¢¢'?, and ‘—’1—‘- A %—} = —df A do, which is
positive on R,,. [In fact, remember ([L]) the convention about the orientation of
R.y by the normal from R, to R,: let us write x = re*¥ and y = se'” on 7T; then
dr Adf A ds A do is positive on 7 with r increasing when approaching 67 N R,,
r = ¢ and df A ds A do is positive on R, with s increasing when approaching the

boundary near R,,, in such a way that —df A do is positive on R,,]. But there, we
(o—8) ;Latl)

cos(o —0)| < ! (hecause |z| < ¢ on Ry). It is easy to check

have z! = (2! + y') = —2:/cos , 80 that Ry is an [-fold covering of the

set of (8, ) such that 2!

that the set of (6,0) in the square [0, 27]? where the previous condition holds is made

. ; . 2 p 472 .
of I strips, the area of each one being 5 x 27 = 13;— Then, because of the ! sheets of

. , 2 .
the covering, we get: [, "Tl A -(lyi’ = 4—’,?— The computation is the same for the two

others integrals, so that

/ ‘_h_/\ﬁ'lJr/ ﬁl_'l/\.d_:+/ —(Z'—T—/\ii:4l7f2-
In T Y JR,. Y z JRy: ¥ z

Loy

(i1) We obscrve that. in this case. @, y and fy form a regular sequence (see the Remark
after Theorem 2 and Remark 3) after Theorem 1°), and we may take for 7 the ball
Sup (lz|, ly|, |fr]) < ¢. The index I,(6;, V), ¢, E) at the origin O is equal to
. de dy
et [ AL,
Jn € y

where R’ is the 2-submanifold in the houndary 97 given by

R={(v.y.z)||Je|=lyl=c. 2'+y'+:'=0}.

On R/, we may write: 2 = cc'?, y = 2¢'?, and 1’;‘— A (—Iyﬂ = —df A do, which is negative
on R'. But there, we have =/ = —(2! 4+ y'), so that R’ is an I-fold covering of the set

of (8,0) in the square [0,27]%. Thus we get

1. 1
N
Jr T Y '
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In either way we get:

L{(F,Vi,(e1)*,v) =1*, and

R 91 if Y= (01)23
Ii(H,V,0,Tc(W)) = ,
31 if ¢ = cq,

2) Computation of Io(H, V), o, Tc(W)):

Since &5 1s a smooth compact holomorphic manifold in the regular part of Vi, we
may use the Bott’s theorem ([B;] p.314) for computing the index, under the condi-
tion that the infinitesimal action of H on the bundle N normal to ¥5 in V; be non
degenerate. Since V; is compact, this action will be of constant type along ¥, and
the same thing is true for the action 6y[;, of H. So, it is enough to calculate them
for instance along T, N U4, Since %IL{ = [2"'~1 and %fy—?—‘: ly"'~1, and because both
coordinates @' and y' may not vanish simultaneously over £y N Uz, we may assume
for instance @' # 0. Near such a point in £ N Uz, we may replace the coordinates
(z',y',t") by (u = fz(a'.y'.t"). 0 = y'.w = t'). so that V; has now for local equation
u = 0, while &, is now locally defined by v = 0, w = 0. The bundle N is generated by
3‘?;, H= -—-w%, and [H,#=] = & thercfore this action, represented by the constant
1 x 1 matrix (+1), is effectively non degenerate. On the other hand, v is generated by
£, so that [H, £] = 0, while the third bracket [H, £ being also 0, the action Onls,

on Te(W) will be represented by the constant matrix

0 0 0
0 0 0
0 0 1

Denote a, b, ¢ the formal classes such that the k th Chern class of W is equal to the &

th elementary symmetric function of «,b,c. After Bott, we have:

a 0 0
2lo b5 o0
. - 0 0 c+1
I'Z(Hv xl'o‘r’ TC(H )) =< 1+ (‘]("‘7\_7') y 202 >,

where @ denotes (a + b+ ¢+ 1) for ¢ = (¢;)% and @b+ (a + b)(c + 1) for ¢ = c;.

Hence, we get:

< 2¢ (TC("V)) —cC (]\T),z >, for (¢ 2’
L(H, Vo, To(W)) ='{ | 1(N), 5 >, for (e)

and < a+b,Ty> for cs.
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Notice that N coincides with the restriction to ¥, of the hyperplane bundle

L — CP? after identification of CP? with the hyperplane T = 0 in CP3, while To(W)
is stably equivalent to 4L, and (a + b)|gp> = ¢;(CP?) = 3¢;(L). We get therefore
7T < c1(L), 8y >= Tl for (¢1)?, and 3 < ¢;(L), 9 >= 3l for c,.

Finally, we recover:
< (e ). Vi>=1r+0=1,
< (e)HTc(W)), Vi>=91+ 171 =161, and < co(Tc(W)),V; >= 31+ 31 = 6l.
In particular, for [ = 2, we get: |
< (1)} (v), Vo >=8, and
<(e)H TNV, >=32, < co(Tc(W)), V, >=12.

Example 2:

Take I = 2. with now for X the extension R to the whole CP? of the vector field

of infinetisimal “complex rotations” y-— - 13—; i Urp.
In Uz (resp. in Uy), R writes 1/'—"— - 1’-{%,— (resp. (T”2 + 1) 5o + 2727 a‘z,, +
z”t”2;). Now T is made of 3 isolated points: m; = 0,0,0,1], mg = [7,1,0,0] and
at 1 3 ’ 3V

m3 = [—1,1.0,0]. Notice that 15 is regular at m4 and mjz. We have :

R.fr =0. R.fz = 0, and R.fy = 227 fy-, this proves that R still preserves V, and
that I;(R.V.(¢1)% 1) = 0 since my € Uy

1) Computation of I\(R, Vs, », Tc(1V)):

In this case, y, —v and fr form a regular sequence and we may take for T the
ball
Sup (|z],|y], | fr]) < ¢ for some positive constant ¢. The index I;(0x,,V, ¢, E) at the

dv A da
/ o) ==
II

origin O is then equal to

_."U

where R’ is the 2-submanifold in the boundary OT given by

R'={(e,,2) | Iyl = | —al = . a® +y%+ 22 = 0},
If we write: ¢ = get? y = ¢c' on R, do A df is positive on R'. Hence we have
0 -1 0\
fR, -d—i/;—i*’i = =8n2. When E = To(W)|v. M; is now the matrix {1 0 0

0 0 O
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@(My) is still a constant, now equal to 0 for ¢ = (c¢1)?, and to =5 for ¢ = cz. Then
we have,

Il(]'_, V2, (01)2, I/) = I](.Yo, ‘«’YQ, (61)2, Tc(w/')) = 0, and IQ(X(), V2, Co, Tc(W)) = 2.
2) Computation of indices at points mq and mj:

Observe that %f’— = 227 # 0 near these points. Then we may use
(u=fy,v=2"Jw= f”') instead of (x”,z".t") as local coordinates, with R

= :c(Zu—a— +vg- + w-2L). The tangent space to V is generated by 5> and -i Since

du
the restriction x (v-—— +wa- ) is nondegenerate at mo and mg, with eigenvalues (ez, €1)
with € = 1 (resp. -1) at m, (resp. m3), we may use the Bott’s formula. The normal
bundle v is generated by 0—8“, and the action of R on v at points my and mj is given

by the 1 x 1 matrix (—2¢z), and :

L(F. V() v)=L(F.V.(a)v) =4

2 00
The action of R on Te(W) is given by the matrix —ez { 0 1 0 |, and
0 0 1

(R, Va, (1)’ Te(W)) = (R, Va,(¢1)?, Tc(W)) = 16,
IR, V. e0. Te(W)) = (R, Va, c2, Tec(W)) =

We may notice that we still have. as in example 1
<(1)*(v),Va>=0+4+4=8,
< (e1)HTc(W)), Vy >=0+16 + 16 = 32,
and < cz(TC(’ILV‘)). Vy>=2+45+5=12
Example 3:

Take still I = 2, with now for X the linear combination X, = aH 4 bR of

examples 1 and 2. where w € [0. 2. « =cos w. b =sin w, (¢ #0). In Up, X0, =
a[:c-é% + y(% + ~{‘)—)] +0b [y—(% - -—} has only for singular pomt the origin m;. In
Uz, X, = b(y’——"— - 1'%) — at'= i,, has no singular point on V5. In Uy, X, =
b(z"? 4+ 1) oo + b2 ”,, Y+ 17 (ba? — a) 57+ has the same singular points ma and m3

as in example 2

1) Computation of indexes at point n:
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Since, X,.fr = 2af7, the 1 x 1 matrix C; is constant equal to ((—2a)), so that
(e1)*(C1) = 5 | |

Write: A = ax + by, B = —bx + ay and C = az.

o a b 0
We have % =\ ~-b a 0}, and gp(—%—%’—%l) is still a constant equal to
' 0 0 a
—9a? . .
47['2 lfp: (C])zv
—(3a? +0?%) .
_Lz_qi_l_l if o = cy.
2

In this case, A, B and fp form a regular sequence and we may take for 7 the ball
Sup (|A], |Bl.|fr|) < ¢ for some positive constant ¢. The index I;(F, Va, ¢, E) at the

origin O is equal to
(AL} / dx Ndy
e AR

where R’ is the 2-submanifold in the boundary 97 given by
R ={(z,5,5) | |4] = |B| = ¢, a> +y? + 22 = 0}.

Since dv Ady = dAAdB, the integral is computed as in example 1 to get: [ R g%’-}—%"— =

—8n2. Thus we have
2 2
8a* for E = v and ¢ = (¢1)”.

L(F,Va,0.E) = { 18a® for E = T and » = ()%,
2(3a* 4+ b?) for E = TcW and ¢ = c,.

2) Computation of indices at points my and mj:

We already observed that %JL = 22" # 0 near these points, so that we may
use (v = fy,v = 27w = 17) instead of (27, 27.17) as local coordinates, with X, =
bm”(?u% + 17% )+ (ba” — u.)u'—(.-)%. The tangent space to V5 is generated by % and -;'—w.
The restriction b.r"zr(.;:i_ + (b7 — (/)11'7—;—'1’—‘ of X, to ¥, has for eigenvalues (bet, ber — a)
with € =1 (vesp. -1) at my (vesp. my). It is therefore nondegenerate at these points,

and we may use the Bott’s formula.

The normal bundle v is generated by —a%, the action of X, on v at points m, and
m3 is given by the 1 x 1 matrix ((—2bei)), and :
L(F,V.(e1)*.v) = ==y = 4b(b — ai), while

Li(F,V,(c,)* 1) = 4b(b + ai). We recover:

< ()2 (). V) >= Sa? + 4b(b — ai) + 4b(b + ai) = 8.



The action of X, on Te(1V) has for eigenvalues: (—2bei, —bei, —(bet — a)).

. 4 2 P cal )2__0.'_’ .
L(X,, Vo, (1) Tc(W)) = (I.'{l‘z(l.’h_"[z) = (1602 + Ta?) — ‘,——@—Ib——l, while

L(X,, Vo, ()2, Tc(W)) = (16D* + Ta?) + ,f‘(_SI’_l) We recover:

< (e1)HTo(W)), Vy >= 18a® + 2(16b* + Ta?) = 32.

IQ(.}&w, V() C),Tc(n )) 2(be) +‘21)z"l,1£(()l-'1[;——au))~{-l)l(lu-—a) = 512 + 3a2 — 2?(Lb, while

(X, Va,co, Tc(W)) = 5b% + 3a® + 2iab. We recover:

< ey(Te(W)), Vs >=2(3a”® + b%) + 2(50 + 3a?) = 12.

We may notice. in accordance with the theory, that the indices themselves are

not necessarily integers and depend on «. b, contrary to their sum. Notice also that
we recover the values of examiple 1 (1 = 2) for w = 0, and of example 2 for w =
w

7. However the calculation for this last case had to be done separately, because we

assumed explicitely C' # 0 near mg in the calculation of example 3.
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