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THE ORBIT STRUCTURE OF PSEUDOGROUP ON RIEMANN
SURFACES VS. DYNAMICS OF ALGEBRAIC CURVES

IsaA0 NAKAI

Department of Mathematics
Hokkaido University

ABSTRACT. We investigate the dynamical properties of algebraic plane curves in P x P, and
discuss the relation with psudogroup of diffeomorphisms of the curves generated by the mon-
odromy actions.

INTRODUCTION

Let I' be a pseudogroup consisting of diffeomorphisms f : Uf,0 — f(Uy),0 of open
neighbourhoods Uy of the complex plane C which fix 0 € C. We call the group Iy of the
germs of those f € I'" the germ of I', and call I' a representative of I'y. I' is non-solvable
if its germ is non-solvable. A

We say that a subset A C C is invariant under I' if f(ANUys) = AN f(Uy) for all
f € I We call a minimal invariant set an orbit (which is not necessarily closed). The
orbit containing an z is unique and denoted O(z), which is the set of those f(z) with
z € Us, f € I. Let By denote the set of those z € Uy such that f(™)(z) — 0 as n — oo,
where f(™ stands for the n-iterated fo---o f. If f has the indifferent linear term z (in
other words parabolic or flat at the origin), By U By(-1) is an open neighbourhood of 0
(Proposition 2.4). The basin Br is the set of points z for which the closure of the orbit
contains the origin. Proposition 2.5 asserts that the basin is an open neighbourhood of the
origin if an f € I is flat.

Assume Br is an open neighbourhood of 0. The separatriz X(I") for I' is a closed real
semianalytic subset of B, which possesses the following properties.

(1) Z(I') is invariant under I" and smooth off 0,

(2) The germ of X(I') at 0 is holomorphically diffeomorphic to a union of 0 and some
branches of the real analytic curve Im z* = 0 for some k,

(8) Any orbit is dense or empty in each connected component of By — X(I"),
(4) Any orbit is dense or empty in each connected component of X(I") — 0.

Key words and phrases. Pseudogroup, group action, orbit, holomorphic diffeoxﬁorphism.

Typeset by ApgS-TEX



80

Theorem 1. (The separatrix theorem). If the germ Iy of a pseudogroup I' is non-
solvable, then the basin B is a neighbourhood of 0 and I" admits the separatrix X(I").

By definition, the separatrix X(I") is unique. From this theorem we obtain

Corollary 2. If the germ Iy is non-solvable and the subgroup I'y of the germs of dif-
feomorphisms h € I'y with the indifferent linear term does not admit antiholomorphic
involution, then X(I') — 0 and all orbits different from 0 € C are dense or empty on a
neighbourhood of 0.

Example 3. Let f(2) = 2/1 - 2,Uf = C— {1 < Re z,Im z = 0},9(z) = log(1 +2) =
z—1/22241/3 23 —... and let U, (3 1) be a small neighbourhood of 0, on which g restricts
to a diffeomorphism onto the image g(U,). Let I' be the pseudogroup generated by f and
g. Since on the Z-plane, # = 1/z, f induces the translation by —1, the basin B is the
whole plane C. By Theorem 1.8, the group Iy generated by the germs of f, ¢ at 0 is non
solvable. The real lime R is invariant under the group I'y and there is no other invariant
curves. If U, is small enough: Uy NR is contained in the half line {—1 < Re z,Im 2 = 0},
then g maps the real line U; NR into R hence R is invariant under I'. Clearly I" preserves
the upper (respectively lower) half plane. Therefore we obtain

Z(I)=R.

Next extend g so that the domain of definition U, intersects with the half line RZ, =
{Re z < —1,Im z = 0}. Then g maps the intersedtion U, N R, into the complement
of the real line, where all orbits are locally dense. The local density holds also at the
intersedtion Uy NRZ, and propergates to the negative part of the real line R™. Therefore
we obtain

2(I') =R*.

Let C C C x C be an irreducible algebraic curve and 7,7, be the natural projection
onto the first and the second coordinates. Assume that C is nondegenerate i.e. C' does not
contain a fiber of the projections. The equivalence relation ~ introduced on C is generated
by the relations

p~gq if m(p)=mi(g) or my(p)=my(q)
Our problem is

Problem 4. Study the structure of the equivalence classes.

In order to observe the structure of the dynamics at infinity, we suppose C C P x P.
Level sets of a rational function on C form a pencil of zero divisors. So a morphism of C
into P x P is determined by a. pair of pencils (L, M) of zero divisors on C. Our problem is
to study the geometry of the morphisms in terms of divisors in pencils.

In the paper [N1] the author proved

Theorem 5(Rigidity theorem). Let E,F be non degenerate linear systems of effec-
tive divisors of Riemann surfaces C,C’. Assume that the image of the morphism of C
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into the dual spaces of E, F are not of degree 3. Let h : C — C' be an orientation pre-
serving homeonorphism sending divisors in E to those in F. Then h is a holomorphic
diffeomorphism.

This theorem tells that complex space curves are determined by the structure of hyper-
plane sections. Our problem can regarded as the spacial case of the above theorem. The
theorem suggests

Question 6. Let C,C' be irreducible and nondegenerate algebraic curves in P x P. Let
#,% be orientation preserving homeomorphisms of P such that ¢ x ¥(C) = C'. Then are
¢, Mobbius transformations?

In some special cases the answer is affirmative. From now on we seek a method to study
the structure of the equivalence classes.

If these projections restrict respectively to d and e sheeted branched coverings of C,
we say C is of degree (d,e). Two curves C,C' are equivalent if C' = ¢ x ¢ (C) with
Moébius transformation ¢, of the coordinate lines. Let p be a singular point of C in
the sense that either of the coordinate projections of C is not nonsingular and the local
multiplicity of the first and second projections are respectively d',e’. Let t be a local
coordinate of the curve centered at p. Then the monodromy action of the first and second
projections are respectively order d’,e' and generate a pseudogroup of diffeomorphisms
of open neighbourhoods of 0 in the ¢ line. The orbit of p under this pseudogroup I3 is
contained in the equivalence class O(p) under the relation above introduced. If the germ
- Gp of the pseudogroup is non-solvable, the orbits under I', are dense in some sectors of the
basin Br, of the pseudogroup by Theorem 1. By Corollary 2 if the germ of the curve C' at
p does not admit a germ of antiholomorphic involution of type ¢ x ¢, the orbits under I,
are dense in a neighbourhood of B,. Define the basin B, of p by the set of those ¢ such
that the topological closure of the equivalence class O(g) contains p. It is easy to see that
if the germ G, is non-commutative, the basins Br, C B, are open. The above density of
orbits propagates to the the basin B,. If the germ is commutative, it is holomorphically
conjugate with the cyclic subgroup of the linear S action.

In the paper [N1], the author classified the commutative and nonsolvable groups of
germs of holomorphic diffeomorphisms of the complex plane at the origin. It would be a
good exercise to classify all algebraic curves singular at the origin p = 0 x 0 where the
group G, is nonsolvable [N2]. A subset K C C is invariant if K is a union of equivalence
classes. Clearly the basin is invariant.

proclaimProblem Study the complement of the basins of the singular points of algebraic
curves.

Example 7. Assume C is defined by (y — 22 — ¢)(y — ) = 0, which is the union of the
diagonal line y = = and the parabola y = z% + c. By the equivalence relation ~ the points
(z,y) on the parabola are identified with those points (z,x) on the diagonal line. Therefore
the first projection of the orbits are generated by the relations z ~ z% 4+ ¢ and =z ~ —=z,
which are the union of the foreword orbit and its backword orbits. It is classically known
that the cluster point set of any backword orbit is Julia set of the dynamics z — z2 + c.

In the following we present some generic orbits of the dynamics on the various algebraic
curves. ‘
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The projection of an orbit on the curve

34+ 22 4+01zy+y2+2=0

onto the #-plane, & = 1/z.
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The projection of an orbit on the curve

(1+2)2® + (3 + 2)z’y + (1 + 20)zy® + 3+ 20)y® + 1=0

onto the Z-plane, ¥ = 1/z.
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The projection of an orbit on the curve
?y+4y2+1=0

onto the Z-plane, & = 1/z.
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The projection of an orbit on the curve (Julia set)
(y—22+0.7-0.3i)(y —z) =0

onto the Z-plane, & = 1/z.
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The projection of an orbit on the curve
(y—224+0.7-03i)(y—z)+0.01=0

onto the &-plane, & = 1/z.
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The projection of an orbit on the curve

=0

2

—-0.3)(y —z) + 0.3y

(y —2?

onto the z-plane.
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The projection of an orbit on the curve
(y — 2% —-0.3)(y — ) — 0.03+0.03: =0

onto the z-plane.
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The projection of an orbit on the curve

0

(y — 22 —0.3)(y — =) — 0.03 + 0.03:

onto the z-plane.
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The projection of an orbit on the curve
(y — 22 —=0.3)(y —z)—0.03+0.03: =0

onto the Z-plane, Z = 1/z.
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The projection of an orbit on the curve

(y—2*+0.3)(y—2)-03=0

onto the z-plane.
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The projection of an orbit on the curve
(y-2z24+03)(y—2)—03=0

onto the Z-plane, § = 1/z.
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The projection of an orbit on the curve
(y— 224 03)(y—=z)+ 0Ly’ =0

onto the z-plane.
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The projection of an orbit on the curve

(y—22403)(y—2)+0.1iy> =0

~onto the #-plane, & = 1/z.
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The projection of an orbit on the curve

(y— 22+ 0.3)(y — ) — 0.03 4 0.03; = 0

onto the z-plane.
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The project

03+0.03: =0

—0.

3)(y — =)

(y—z2+0

1/z.
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onto the Z-plane,



The projection of an orbit on the curve
(y — 22 +0.3)(y — ) +0.03 —0.03: = 0

onto the z-plane.
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The projection of an orbit on the curve

(y—2%—-0.3)(y —z)+0.03-0.03i = 0

onto the z-plane.
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The projection of an orbit on the curve
(y— 22 -0.3)(y —2)+0.03—-0.03: =0

onto the Z-plane, Z = 1/z.
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The projection of an orbit on the curve

(y— 22+ 0.3i)(y —z) —0.03+0.03i =0

onto the z-plane.
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The projection of an orbit on the curve
(y — 22 + 0.3)(y — z) — 0.03 + 0.03; = 0

onto the z-plane.
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The projection of an orbit on the curve
| (y—z2)(y—2)+0.722 =0
onto the z-plane.
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