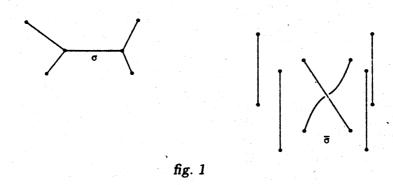
A direct approach to the planar graph presentations of the braid group

by Vlad SERGIESCU

0. Introduction

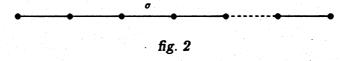
Recall that the classical braid group on n strings B_n can be considered as the fundamental group of the configuration space of unordered n points in the plane.

Given a planar finite graph whose vertices are n given points, one can define for each edge σ a braid, also denoted σ like in figure 1:



One just turns half around σ in a neighbourhood, the other strings being vertical.

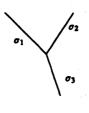
If the graph is



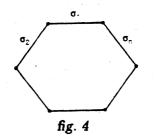
one obtains the Artin generators of the braid group B_n , see [B].

Let us now suppose that the graph Γ is connected and without loops. In [S] we noted that the braids $\{\sigma\}$ corresponding to the edges verify the following relations :

- (i) disjointness: if $\sigma_1 \cap \sigma_2 = \emptyset$ then $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$.
- (ii) adjacence: if $\sigma_1 \cap \sigma_2$ = one vertex then $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$.



(iv) cyclic: if $\sigma_1 \cdots \sigma_n$ is a cycle such that $\sigma_1 \cdots \sigma_n$ bounds a disc without interior vertices, then $\sigma_1 \sigma_2 \cdots \sigma_{n-1} = \sigma_2 \cdots \sigma_n = \sigma_n \sigma_1 \cdots \sigma_{n-2}$



Moreover, we proved in [S] the

0.1. THEOREM. — The braid group B_{Γ} on the vertex set $v(\Gamma)$ has a presentation $\langle X_{\Gamma}, R_{\Gamma} \rangle$ where X_{Γ} is the set of edges $\{\sigma\}$ and R_{Γ} the set of relations (i) - (iv).

0.2. REMARK. — The above statement, which appears in [S] in a slightly more general context, was chosen here in order to keep notations simpler.

This theorem was presented at the Kyoto meeting together with some corollaries. The proof given in [S] used a recursive device using Artin's presentation as the starting point. Here I shall sketch a direct argument suggested by Fadell-Van Buskirt's proof, see [B], as modified by J. Morita [M].

I am grateful to Professors Suwa and Ito for the opportunity they gave me to participate to the R.I.M.S. meeting and for their warm hospitality.

1. The geometric argument

Let Γ be a finite tree, $v \in \Gamma$ an end vertex and $\Gamma' = \Gamma - \{v\}$ and v' the neighbour of v. Let P_{Γ} the kernel of the natural map $B_{\Gamma} \xrightarrow{\pi} \Sigma_{\Gamma}$, *i.e.* the pure braid group, where Σ_{Γ} is the permutation group of $v(\Gamma)$.

Forgetting the last string from v to v, one gets a natural map $P_{\Gamma} \rightarrow P_{\Gamma'}$. Think about this map as coming from the natural projection between configuration spaces. One easily sees that it's kernel is the free group $\pi_1(\mathbb{C} - v(\Gamma'))$ with $|v(\Gamma)| - 2$ generators.

Consider the subgroup $B_{\Gamma}^0 = \pi^{-1}(\Sigma_{\Gamma'})$ of B_{Γ} . Then $P_{\Gamma} \subset B_{\Gamma}^0$ and there is a natural map

$$\theta: B_{\Gamma}^{0} \longrightarrow B_{\Gamma'}$$

which "forgets" the last string. The diagram

$$\begin{array}{cccc} P_{\Gamma} & \longrightarrow & P_{\Gamma} \\ \downarrow & & \downarrow \\ B_{\Gamma}^{0} & \longrightarrow & B_{\Gamma} \end{array}$$

is commutative and the kernel of the horizontal maps is the same. One gets the

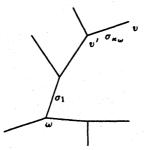
1.1. PROPOSITION. — The kernel of the map $\theta : B_{\Gamma}^0 \longrightarrow B_{\Gamma'}$ is a free group of rang $|v(\Gamma)| - 2$.

2. The inductive assertion

In this paragraph we will formulate the statement needed to prove theorem 0.1 for a tree Γ .

Let B_{Γ} be the group given by a presentation $\langle X_{\Gamma}, R_{\Gamma} \rangle$ as in theorem 0.1. Our task is to prove that the natural map $\tilde{B}_{\Gamma} \longrightarrow B_{\Gamma}$ is an isomorphism. We use induction on $|v(\Gamma)|$.

For each vertex $\omega \in \Gamma'$ let $\sigma_1 \cdots \sigma_{\kappa_\omega}$ be the simple path from ω to v, $\rho_\omega = \sigma_1 \cdots \sigma_{\kappa_\omega}$ the corresponding braid and $\tau_\omega = \sigma_{\kappa_\omega} \cdots \sigma_2 \sigma_1^2 \sigma_2^{-1} \cdots \sigma_{\kappa_\omega}^{-1}$ if $\omega \neq v'$ and $\tau_{\omega} = \sigma_1^2$ if $\omega = v'$. Note that ρ_{ω} and τ_{ω} make sense in B_{Γ} and in \widetilde{B}_{Γ} .



Let $\widetilde{B}_{\Gamma}^{0}$ be the subgroup of \widetilde{B}_{Γ} generated by $\{\sigma | \sigma \in \Gamma'\} \cup \{\tau_{\omega} | \omega \in \Gamma'\}$. One has a natural diagram :

$$\begin{array}{cccc} \widetilde{B}^0_{\Gamma} & \stackrel{\theta}{\longrightarrow} & \widetilde{B}_{\Gamma'} \\ \downarrow & & \downarrow \\ B^0_{\Gamma} & \stackrel{\theta}{\longrightarrow} & B_{\Gamma'} \end{array}$$

Note that the map $\tilde{\theta}$ is well defined because the right map is an isomorphism by the inductive assumption.

In the next paragraph we shall prove that the left side map $\widetilde{B}_{\Gamma}^{0} \longrightarrow B_{\Gamma}^{0}$ is an isomorphism and show how this implies that the map $\widetilde{B}_{\Gamma} \longrightarrow B_{\Gamma}$ is an isomorphism.

3. Proof of the inductive step

The map $\tilde{\theta}: \tilde{B}_{\Gamma}^0 \longrightarrow \tilde{B}_{\Gamma'}$ has an obvious section. The kernel of $\tilde{\theta}$ is the subgroup generated by the $\{\tau_{\omega}\}$: this follows using the section and the fact that the τ_{ω} 's generate a normal subgroup.

Direct checking shows that the τ_{ω} 's, when considered in B_{Γ}^{0} freely generate the kernel of θ (see 1.1). This implies that the map from ker $\tilde{\theta}$ to ker θ is an isomorphism and by the five lemma and the inductive assumption the same is true for the map from \tilde{B}_{Γ}^{0} to B_{Γ}^{0} .

In order to deduce that the map from \widetilde{B}_{Γ} to B_{Γ} is an isomorphism we first note that it is surjective : it's image contains $P_{\Gamma} \subset B^0_{\Gamma}$ and it obviously surjects onto Σ_{Γ} .

$$\begin{array}{c} & B_{\Gamma} \\ & \downarrow \\ P_{\Gamma} \rightarrowtail & B_{\Gamma} \twoheadrightarrow \Sigma_{\Gamma} \end{array}$$

As B_{Γ}^0 is a subgroup of index $|v(\Gamma)|$ of B_{Γ} by it's very definition, it will be sufficient to show the same thing about the index of \widetilde{B}_{Γ}^0 in \widetilde{B}_{Γ} .

Consider the set $\widetilde{X} = \bigcup_{\omega \in v(\Gamma)} \rho_{\omega} \widetilde{B}^0_{\Gamma}$ (where we put $\rho_v = e$). We leave to the reader to prove that \widetilde{X} is a subgroup of \widetilde{B}_{Γ} . One then deduces that the index of \widetilde{B}^0_{Γ} in \widetilde{X} is $|v(\Gamma)|$ as $\rho_{\omega_1}^{-1} \rho_{\omega_2} \notin \widetilde{B}^0_{\Gamma}$ if $\omega_1 \neq \omega_2$. Finally, as \widetilde{B}_{Γ} is generated by \widetilde{B}^0_{Γ} together with any $\rho_{\omega}, \omega \neq v$, one has $\widetilde{B}_{\Gamma} = \widetilde{X}$ and so the index of \widetilde{B}^0_{Γ} in \widetilde{B}_{Γ} is $|v(\Gamma)|$. This completes the argument when Γ is a tree.

4. End of the proof

We now take Γ to be any graph like in theorem 0.1 and $b(\Gamma)$ it's first Betti number. If $b(\Gamma) = 0$, Γ is a tree on the result is true.

Let us suppose that the theorem is true for all graphs whose first Betti number is less than $b(\Gamma)$. We chose an edge α on a cycle of Γ which does not bound a second cycle on the other side. The theorem is then true for the graph $\Gamma - \alpha$ and it is easily seen that this implies it is true for Γ : any cyclic relation is true in $B_{\Gamma-\{\alpha\}} = B_{\Gamma}$ and it defines implicitly the element $\alpha \in B_{\Gamma}$ (see [S] for more details).

References

- [B] BIRMAN J.S. Braids, links and mapping class groups, Ann. Math. Studies 82, Princeton Univ. Press, Princeton, 1975.
- [M] MORITA J. A combinatorial proof for Artin's presentation of the braid group B_n and some cyclic analogues, Preprint, Tsukuba University, 1991.
- [S] SERGIESCU V. Graphes planaires et présentations des groupes de tresses, Math. Z. 214 (1993), 477-490.
 - ◊ -

Université de Grenoble I Institut Fourier Laboratoire de Mathématiques associé au CNRS (URA 188) B.P. 74 38402 ST MARTIN D'HÈRES Cedex (France)

(28 mars 1994)