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A direct a‘pproach to the planar graph
presentations of the braid group

by Viad SERGIESCU

0. Introduction

Recall that the classical braid group on n strings B,, can be considered as the
fundamental group of the configuration space of unordered n points in the plane.

Given a planar finite graph whose vertices are n given points, one can define for
each edge o a braid, also denoted o like in figure 1:
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fig. 1

One just tums half around o in a neighbourhood, the other strings being vertical.
If the graph is '

- fig. 2
one obtains the Artin generators of the braid group B, see [B]. .

Let us now suppose that the graph I' is connected and without loops. In [S] we
noted that the braids {o} corresponding to the edges verify the following relations :

(i) disjointness: if o1 N o2 = @ then o102 = 0207.

(ii) adjacence: if o1 N o2 = one vertex then 010201 = 020103.
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(iii) nodal: if oy, 0,, 03 have one common vertex like in figure 3; then 04020307 =
02030102 = 03010203

4]

fig. 3

(iv) cyclic: if oy --- 0, is a cycle such that oy - - - o, bounds a disc without interior
vertices, then 0103 -+ 0p_1 =020 = On0} -+ Op-2

Moreover; we proved in {S] the

0.1. THEOREM. — The braid group Br on the vertex set v(I') has a
presentation (Xr, Rr) where Xr is the set of edges {c} and Rr the set of relations

(@) - (iv).

0.2. REMARK. — The above statement, which appears in [S] in a slightly
more general context, was chosen here in order to keep notations simpler.

This theorem was presented at the Kyoto meeting together with some corollaries.
The proof given in [S] used a recursive device using Artin’s presentation as the starting
point. Here 1 shall sketch a direct argument suggested by Fadell-Van Buskirt’s proof,
see [B], as modified by J. Morita [M].

1 am grateful to Professors Suwa and Ito for the opportunity they gave me to
participate to the R.I.LM.S. meeting and for their warm hospitality.



1. The geometric argument

Let I' be a finite tree, v € I" an end vertex and I'" = I' — {v} and v’ the
neighbour of v. Let Pr the kemel of the natural map Br — X, i.e. the pure braid
group, where Xr is the permutation group of v(I').

Forgetting the last string from v to v, one gets a natural map Pr — Ppv. Think
about this map as coming from the natural projection between configuration spaces. One
easily sees that it’s kemnel is the free group m(C — v(I"')) with |v(I")| — 2 generators.

Consider the subgroup B = 7~!(Zr) of Br. Then Pr C BY and there is a
natural map :

9 : BX — Bp

which “forgets” the last string. The diagram
Pr — P

l !

Bg -— B

is commutative and the kemel of the horizontal maps is the same. One gets the

1.1. PROPOSITION. — The kernel of the map 6 : B) — Br is a free
group of rang |v(I)| — 2.

2. The inductive assertion

In this paragraph we will formulate the statement needed to prove theorem 0.1
for a tree I'.

Let Br be the group given by a presentation (Xr, Rr) as in theorem 0.1. Our
task is to prove that the natural map Br — Br is an isomorphism. We use induction
on |v(I)|.

For each vertex w € I" let 01---0,_  be the simple path from w to v,
pw = 01--- 0, the corresponding braid and 7, = o - -- 0'20’%02'1 ces a;: ifw#7v
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and 7, = o-f if w = v'. Note that p,, and 7,, make sense in Br and in §p.

Let 1‘3’{1 be the subgroup of Br generated by {o|o € I"} U {r,|w € I'"}.
One has a natural diagram :

B L 5.
l l

[
Bl — B

Note that the map § is well defined because the right map is an isomorphism by the
inductive assumption.

In the next paragraph we shall prove that the left side map Ef- — B is an
isomorphism and show how this implies that the map Br — Br is an isomorphism.

3. Proof of the inductive step

The map 9 51‘1 — E‘p: has an obvious section. The kemel of 8 is the subgroup
generated by the {7, } : this follows using the section and the fact that the 7,,’s generate
a normal subgroup.

Direct checking shows that the 7,,’s, when considcrfd in BY freely generate the
kemel of 6 (see 1.1). This implies that the map from ker6 to kerd is an isomorphism
and by the five lemma and the inductive assumption the same is true for the map from.
B o BY.

In order to deduce that the map from §p to Br is an isomorphism we first note
that it is surjective : it’s image contains Pr C Bl‘l and it obviously surjects onto Xr.

Br
L
Po— Br —J3r



As B is a subgroup of index |v(I")| of Br by it’s very definition, it will be sufficient
to show the same thing about the index of BY in Br.
Consider the set X = U re 5{‘1 (where we put p, = e). We leave to the
weu(l) ) !
reader to prove that X is a subgroup of Br. One then deduces that the index of B?-
in X is [o(I)| as pJpu, ¢ B if wy # wj. Finally, as By is generated by B together
with any p,, w # v, one has Br = X and so the index of B2 in Br is |[v(I')|. This
completes the argument when I' is a tree.

4. End of the proof

We now take I' to be any graph like in theorem 0.1 and b(I") it’s first Betti
number. If b(I") = 0, I is a tree on the result is true.

Let us suppose that the theorem is true for all graphs whose first Betti number
is less than b(I"). We chose an edge a on a cycle of I which does not bound a second
cycle on the other side. The theorem is then true for the graph I' — « and it is easily

seen that this implies it is true for I': any cyclic relation is true in Bp_{,} = Br and

it defines implicitely the element o € Br (see [S] for more details).
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