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A direct approach to the planar graph
presentations of the braid group

by Vlad SERGIESCU

0. Introduction

Recall that the classical braid group on $n$ strings $B_{n}$ can be considered as the
fundamental group of the configuration space of unordered $n$ points in the plane.

Given a planar flmte graph whose vertices arc $n$ given points, one can define for
each edge $\sigma$ a braid, also denoted $\sigma$ like in figure 1:

fig. 1

One just tums half around $\sigma$ in a neighbourhood, the other strings being verical.

If the graph is

$\underline{\sigma}----rightarrow$

$Rg$. $2$

one obtains the Artin generators of the braid group $B_{n}$ . see [B].

Let us now suppose that the graph $\Gamma$ is $\infty nnected$ and without $1\infty ps$. In $[S]$ we
noted that the braids $\{\sigma\}$ corresponding to the edges verify the following relations :

(i) disjointness: if $\sigma_{1}\cap\sigma_{2}=\emptyset$ then $\sigma_{1}\sigma_{2}=\sigma_{2}\sigma_{1}$ .
(ii) adjacence: if $\sigma_{1}\cap\sigma_{2}=$ one vertcx then $\sigma_{1}\sigma_{2}\sigma_{1}=\sigma_{2}\sigma_{1}\sigma_{2}$.
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(iii) nod$aI$: if $\sigma_{1},$ $\sigma_{2},\sigma_{3}$ have one common venex like in figure 3; then $\sigma_{1}\sigma_{2}\sigma_{3}\sigma 1=$

$\sigma_{2}\sigma_{3}\sigma_{1}\sigma_{2}=\sigma_{3}\sigma_{1}\sigma_{2}\sigma_{3}$

$ff_{S}$ . $3$

(iv) cychc: if $\sigma_{1}\cdots\sigma_{n}$ is a cycle such that $\sigma_{1}\cdots\sigma_{n}$ bounds a disc without interior
$Ve\mathfrak{n}iCeS$, then $\sigma_{1}\sigma_{2}\cdots\sigma_{n-1}=\sigma_{2}\cdots\sigma_{n}=\sigma_{n}\sigma_{1}\cdots\sigma_{n-2}$

fig. 4

Moreover, we proved in [S] the

0.1. THEORBM. – The braid group $B_{\Gamma}$ on the vertex se$tv(\Gamma)$ has a
presentation ($X_{\Gamma},$ $R_{\Gamma}$ } where $X_{\Gamma}$ is the set of $e$dges $\{\sigma\}$ and $R_{\Gamma}$ the set ofrelations
$(i)-(iv)$ .

0.2. REMARK. – The above statement, which appears in [S] in a shghUy
more general context, was chosen here in order to keep notations simpler.

This theorem was presented at the Kyoto meeting together with some corollanies.
The $pr\infty f$ given in [S] used a recursive device using $Ar\dot{0}ns$ presentation as the staning
point. Here I $\mathfrak{X}$ sketch a direct argument suggested by Fadell-Van Buskirt‘s proof,
see [B], as modified by J. Morita [M].

I $uI1$ grateful to Professors Suwa and Ito for the opportunity they gave me to
participate to the R.I.M.S. meeting and for their warm hospildity.
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1. The geometric argument

Let $\Gamma$ be a finite tree, $v\in\Gamma$ an end venex and $\Gamma’=\Gamma-\{v\}$ and $v’$ the
neighbour of $v$ . Let $f\succ$ the kemel of the natural map $B_{\Gamma}\underline{\pi}\Sigma_{\Gamma}$, i.e. the pure braid
group, where $\Sigma_{\Gamma}$ is the pennutation group of $v(\Gamma)$ .

Folgeaing the last stning from $v$ to $v$ , one gets a namral map $\hslasharrow P_{\Gamma’}$ . ‘llunk
about this map as coming from the natural projection between configuration spaces. One
easily sees that it’s kemel is the ffee group $\pi_{1}(C-v(\Gamma‘))$ with $|v(\Gamma)|-2$ generators.

Consider the subgroup $B_{\Gamma}^{0}=\pi^{-1}(\Sigma_{\Gamma’})$ of $B_{\Gamma}$ . Then $P_{\Gamma}\subset B_{\Gamma}^{0}$ and there is a
natural map

$\theta$ : $B_{\Gamma}^{0}arrow B_{\Gamma^{r}}$

which forgets the last string. The diagram

$P_{\Gamma}$ – $ff$,

$1_{0,\Gamma}$

$I$

,

is commutative and the kemel of the horizontal maps is the same. One gets the

1.1. PROPOSITION. – The kernel of the $map\theta$ : $B_{\Gamma}^{0}-B_{\Gamma’}$ is a $kee$

group of rang $|v(\Gamma)|-2$ .

2. The inductive assertion

In this paragraph we will fornulate the statement needed to prove theorem 0.1
for a tree $\Gamma$ .

Let $\tilde{B}_{\Gamma}$ be the group given by a presentation ($X_{\Gamma},$ $R_{\Gamma}$ } as in theorem 0.1. Our
task is to prove that the natural map $\tilde{B}_{\Gamma}-Br$ is an isomorphism. We use induction
on $|v(\Gamma)|$ .

For each vertex $\omega\in\Gamma’$ let $\sigma_{1}\cdots\sigma_{\kappa_{u}}$ be the simple path from $\omega$ to $v$ .
$\rho_{w}=\sigma_{1}\cdots\sigma_{\kappa_{u}}$ the corresponding braid and $=$. $\sigma_{\kappa_{u}}\cdots\sigma_{2}\sigma_{1}^{2}\sigma_{2}^{-1}\cdots\sigma_{\kappa}^{-1}$ if $\omega\neq v$

‘
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and $\tau_{\{v}=\sigma_{1}^{2}$ if $\omega=v’$ . Note that $\rho_{\omega}$ and $\tau$. make sense in $B_{\Gamma}$ and in $\tilde{B}_{\Gamma}$ .

Let $\tilde{B}_{\Gamma}^{0}$ be the subgroup of $\tilde{B}_{\Gamma}$ generated by $\{\sigma|\sigma\in\Gamma’\}\cup\{\tau_{v}|\omega\in\Gamma’\}$ .
One has a natural diagram :

$\tilde{B^{0}\downarrow}^{\Gamma}$

$\underline{\sim\theta}$

$\tilde{B}\downarrow^{\Gamma’}$

$B_{\Gamma}^{0}$

$\underline{\theta}$

$B_{\Gamma’}$

Note that the map $\theta\sim$ is well defined because the right map is an isomorphism by the
inductive assumption.

In the next paragraph we $gJa\mathbb{I}$ prove that the left side map $\tilde{B}_{\Gamma}^{0}arrow B_{r}^{0}$ is an
isomorphism and show how this implies that the map $\tilde{B}_{\Gamma}arrow B_{\Gamma}$ is an isomorphism.

3. Proof of the inductive step

The map $\sim\theta$ : $\tilde{B}_{\Gamma}^{0}-\tilde{B}_{\Gamma’}$ has an obvious section. The kemel $of\theta\sim$ is the subgoup
generated by the $\{\tau_{tv}\}$ : this follows using the section and the fact that the $\tau_{\{d}’ s$ generate
a nonnal subgroup.

Direct checking shows that the $r_{d}’ s$, when considered in $B_{\Gamma}^{0}$ freely generate the
kemel of $\theta$ (see 1.1). This implies that the map from $ker\theta\sim$ to $ker\theta$ is an isomorphism
and by the five lemma and the inductive assumption the same is true for the map $\hslash om$

$\tilde{B}_{\Gamma}^{0}$ to $B_{\Gamma}^{0}$ .
In order to deduce that the map from $\tilde{B}_{\Gamma}$ to $B_{\Gamma}$ is an isomorphism we first note

that it is surjective : it’s image contains $I+\subset B_{\Gamma}^{0}$ and it obviously $su\dot{\eta}ects$ onto $\Sigma_{\Gamma}$ .
$\tilde{B}_{\Gamma}$

$\downarrow$

$P_{\Gamma}rightarrow$ $B_{\Gamma}$ $arrow\Sigma_{\Gamma}$
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As $B_{r}^{0}$ is a subgroup of index $|v(\Gamma)|$ of $B_{\Gamma}$ by it $s$ very definition, it will be sufficient
to show the same thing about the index of $\tilde{B}_{\Gamma}^{0}$ in $\tilde{B}_{\Gamma}$ .

Consider the set $\tilde{X}=$
$\cup$ $\rho_{w}\tilde{B}_{r}^{0}$ (where we put $\rho_{v}=e$). We leave to the

$w\in v(\Gamma)$

reader to prove that $\tilde{X}$ is a subgroup of $\tilde{B}_{\Gamma}$ . One then deduces that the index of $\tilde{B}_{\Gamma}^{0}$

in $\tilde{X}$ is $|v(\Gamma)|$ as $\rho_{v_{12}}^{-1}\rho.\not\in\tilde{B}_{\Gamma}^{0}$ if $\omega_{1}\neq\omega_{2}$. FinaUy, as $\tilde{B}_{\Gamma}$ is gencrated by $\tilde{B}_{\Gamma}^{0}$ together
with any $\rho_{gp},$ $\omega\neq v$, one has $\tilde{B}_{\Gamma}=\tilde{X}$ and so the index of $\tilde{B}_{\Gamma}^{0}$ in $\tilde{B}_{\Gamma}$ is $|v(\Gamma)|$ . This
completes the argument when $\Gamma$ is a tree.

4. End of the proof

We now take $\Gamma$ to be any graph like in theorem 0.1 and $b(\Gamma)$ it $s$ first Betti
number. If $b(\Gamma)=0,$ $\Gamma$ is atree on the result is true.

Let us suppose that the theorem is true for all graphs whose first Betti number
is less than $b(\Gamma)$ . We chose an edge $\alpha$ on a cycle of $\Gamma$ which does not bound a second
cycle on the other side. The theorem is then true for the graph $\Gamma-\alpha$ and it is easily
seen that this implies it is true for $\Gamma$ : any cyclic relation is true in $B_{\Gamma-\{\alpha\}}=B_{\Gamma}$ and
it defines implicitely the element $\alpha\in B_{\Gamma}$ (see [S] for more details).
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