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Jackknife Methods and Higher Order Asymptotic Expansions

FEX - HABE 47 (Jin Fang Wang)

Abstract

For a R%-valued “smooth parameter” 6 = h(n), where h is a d-dimensional smooth
function of the mean of certain well-defined random variable X, the “plug-in” estimator
6 = h(X), obtained by replacing the population mean n by its sam;g!e counterpart X, is
typically biased. We consider the jackknife bias-adjusted estimator 65 and the jackknife-
t statistic, a version of 65 further studentized by its jackknife estimate of standard devi-
ation. Third order asymptotic theories are developed for both 85 and jackknife-t version.
Ezplicit formulae are given for Edgeworth approzimations, with univariate jackknife-t
being emphasized. We give explicit formula for third order Cornish-Fisher expansion,
based on which we develope the confdence interval estimation for one-dimensional 6
based on the jackknife-t statistic. Application to the inference of coefficient of variation
is considered.
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1. Introduction

Interest for jackknife, a nonparametric method for estimating bias proposed by
Quenouille(1949) and named after Tukey(1958) who showed the possibility for a wider
application, has been seen an increase from the late 70’s, particularly due to the advent
of bootstrap invented by Efron(1979). As an alternative to asymptotic approxima-
tions, which are seldom simple enough for a ready application, the computer-intensive
resampling methods has been widely accepted as powerful and versatile. More under-
standing of the rationale behind the simple and ready-for-use resampling methods is
needed. Hall(1992) provided a comparatively successful explanation of the bootstrap
story from the Edgeworth viewpoint.

Somewhat curiously, asympotic studies of jackknife, as far as the author knows,
is quite a lack. Under so-called smooth function model, we, in this paper, give explicit
asymptotic results in a multivariate setting for both the jackknife bias-adjusted esti-
mator and the jackknife-t statistic., which are defined in Section 2. Section 3 and 4
present the main asymptotic results for these two estimators, with special concern for
one-dimensional jackknife-t, for which we also give explicit third order Cornish-Fisher
expansion.

Based on the results of Section 4, we study the inference for one-dimensional pa-
rameter by jackknife-t confidence estimation, which is the topic of Section 5. Particular
applications in our mind are those relatively complicated inference for “ratio-type” es-
timators such as the ratio of two means, regression coeflicient, correlation coefficient,
etc.. The last section, Section 6, discusses the problem of estimating coefficient of
variation from a Normal population, more detailed discussion of which can be found in
Wang, Taguri and Ouchi(1994). For the complicated example of estimating correlation
coefficient, see Wang, Ouchi and Taguri(1994), for a related discussion of asymptotic
properties about jackknife, see also Hinkley and Wei(1984), and Nagao(1993).

2. Jackknifing
2.1. Smooth function model

Let {Z,},>1 be a sequence of i.i.d. r-dimensional random vectors, and g1,---,gq4
be real-valued Borel measurable functions on R". Define

Xp = (X;a T ’X;n T 7X;) = (QI(ZP)’ T 7gi(ZP)’ Tt agd(Zp))a

and its mean by n = £[X,] = (n,---,7%,---,n%). For parameter of interest § = h(n),
consider statistics

§ = h(X) = (B (), -, h*(®),-- -, h*(®@)) = (81, -, 6%, - -, 6F),

where h is a R*-valued smooth Borel measurable function on R%, and X = Zﬁ;l Xp/N,
N being the sample size. Before going further, let’s see several examples, each of which
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is of “ratio type”, estimating such parameters is well-known to be difficult due to the
possible high fluctuation caused by the denominator.

Example 1 (Coefficient of variation) Let Z = W, a univariate random variate.
Define X = g(Z) = (W, W?), ie. X! =W, X2 = W2, so n! = £[X!] = uw, n?
E[X? = o + u¥,. Coeflicient of variation can thus be written as § = ow/uw
V2 — @)/t = h(n), withr=1,d=2and k = 1.

Example 2 (Ratio of means) Take Z = (V,W), X = ¢g(Z) = (V, W), ie. X! =

V,X%2=W,son' = puy = E[V], * = uw = E[W]. Thus the ratio of two means can
be expressed as 6 = uw /uv = 7°/n' = h(n), withr=2,d =2 and k = 1.

Example 3 (Ratio of variances) Similar to Example 2, let Z = (V,W). Now
define X = g(2) = (V, V2, W, W2),ie. X' =V, X? =V?, X3 = W, X4 = W2. So
0 =o¥/o% = (0 - (n1)2)/( — (7%)?), withr =2,d =4 and k= 1.

Example 4 (Regression coefficient) Again let Z = (V, W). Define X = g(Z) =
(V W, VW V?), so regression coefficient can be written as § = Cov[V W]/Var[V] =
(n3 - 2)/(7] (n1)?), with r = 2, d=4 and k = 1.

Example 5 (Correlation coefﬁc1ent) As our last example, correlation coefficient,
which may be one of the most challenging and at the same time practical example,
is also fitted into this smooth function model. Here we define Z = (V, W), a R2-
valued random variable, X = g(Z) = (V, W, VW, V2, W2), then 8 = p = (n® —

n'1?)/y/ (i = (01)2) (P — ()2), with r =2,d =5 and k =1

In fact, the class of such estimators is large enough to 1nclude all smooth functions
of populatlon moments.

2.2. Jackknife bias-adjusted estimator

The readily avaliable “plug-in” estimator §, by simply inserting X in place of its
population counterpart 7, is.usually biased, with order O(N~1), N being the sam-
ple size. The ratio type estimators in our examples are particularly heavily biased.
Knocking out the lower order bias by jackknife method is a simple job.

Omitting the p-th observation, we define the delete-one-sample mean by ?( —p) =
(NX — X,)/(N — 1), and the estimator 0(_,,) = h(X - —p)) corresponding to it. The

jackknife pseudo-values are thus defined as 0( -p =N 6 — (N - 1)9( —p), based on
which the jackknife bias-adjusted estimator is defined to be

N
- 1 ~ ~ ~~
b= ?;1 poB(—p) = NO — (N — 1)8,, (2.1)

where 5(.) = Zi\;l 5(__,,) /N. 87 can be shown, with no difficulty, to have bias of order
O(N~—2), or smaller.
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Higher order bias reduction can be achieved by iterating the jackknife procedure
untill the desired order is realized. The iteration may be avoided by one-time jackknife
at different levels, see Wang and Taguri(1994). However, the unfortunate nature of
bias-reduction usually accompies with it an increase of variance or Mean Squared Er-
ror(MSE). Over-reduction of bias, when there exists no unbiased estimator, can result
in divergence in MSE, as pointed out by Doss and Sethuraman(1989). For higher order
bias reduction, see also Schucany, Gray and Owen(197 1), and see Wang(1992), for a
numerical procedure to reduce bias.

el

2.3. Jackknife-t statistic

While it is important to learn the nature of _]ackkmﬁng by studying the properties
of the estimator 0,1((2 1)), it, however, suffers a serious draw back for not being asymp-
toticly pivotal. It is thus more usual to make statistical inference based on a pivotal
version studentizing the original statistic. The way of studentization depends on the
particular estimate of standard deviation one chooses. We consider here the jackknife
estimate of standard deviation, for one thing, it provides a theoretical challenge, for
another, investigation of the nature of jackknife is always one of our basic interests.
More formally, the jackknife estimate for variance of

05 =VN@; -6, (22

. where a =1,2,---,k, is defined to be
VarJ = (8d))? = —— Z(,m Ly — 097, (2.3)

where a also runs from 1 to k. There exist disputes over whether ﬁ';/N ((2.3)

should be considered as an estimator of variance of 8* or 5“}‘, see Hinkley(1978) and
Efron(1982). We ignore this subtle issue, and go on to define the jackknife-t statistic
by :

= 0%/5d;. (2.4)

Our task in this paper is to construct a third order asymptotic theory for both 6y = (0 )
and T = (T*), based on which we make inference about the unknown 6.

3. Jackknife estimator

3.1. Stochastic expansion

Denote k! = Cum[X*], £ = Cum[X*,X7], k9% = Cum[X*, X7, X*], be the
first, second and third cumulant of the related random variables. Denote * = E[X?], n*/ =
‘ E[X‘XJ] n** = E[X?X7X¥|, be the mean of X!, X:XJ, X*XJ Xk, respectively. By
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definition, k* = 7*, which will be used interchangeably wherever we feel convenient.
The following two lemmas prove useful to obtain the stochastic expansion of 8.

h Lemma 3.1. Define X3 = XiX3, X~ = ¥N | Xi/N, and X9 = VN(X~ — %),
then

N
F T - XY - xg) = w o+ (R PR - SRR, @)
=1

where X* = VN (7‘ —n*), and (,.[j"}) denotes symmetrization with respect to indices 1, j,
eg B X = Xi + P X"

Define
he =£{—h°(X) [
e,
bp =T h°(®) .

Applying Lemma 3.1., we have the following expansion for 8;.

Proposition 3.1. The third order stochastic expansion of Jackknlfe bias-adjusted
estimator assumes the following form.

St 1 —~ .
=hI Xt + ——=hJ (X X7 — g*7
2N 5 )

1(1 o L
+N{6 nkX‘X’X"+ h (217X’—X“)——h ”Xk}

+ OP(N—3/2) )

(3.2)

where Einstein summation convension is assumed, i.e., when the same index appears
both as subscripts and superscripts, summation is automatically taken for that index,

e.g.
R (X X7 — k) = Zzh" (XiX7 - k).

=1 j=

As a comparision, the stabalized version of the usual bias-adjusted estimator

No — e S N - e
o> = 4> 2th](/1’)~, (@) (3.3)
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admits expansion
6z =VN (62 - 0)

~ . 1 A’.’\". ..
—he X+ —— R (XX — K
2V N i w)

1

~ o~ 1 o~
+ ﬁ{%hgjkx'mxk - %hgjkka - Eh;.;akn*'ka}

+ O, (N~3/2),

(3.4)

where .
Ok = — k" (X) |+__ .
X" lx“"

(3.2) and (3.4) tell us that the jackknife bias-adjusted estimator and the usual
bias-adjusted estimator enjoy the same stochastic expansion up to order O,(N~1/2),
from which we immediately have

Theorem 3.1. Edgeworth expansions of both the probability density functions
and the cumulative distribution functions of 8; and 6. agree up to order O(1/V'N).

3.2. Asymptotic cumulants

As a preparation for finding asymptotic moments and cumulants of 6, we first
state the following two lemmas.

Lemma 3.2. Define k7% = Cum{X*, X7*} to be the second cumulant of X* and
X7% then

(b) EXXIXEXM™ = Bl ghikim 4 O(NTY).

Lemma 3.3. If (3.2) is rewritten as
Na _ A« i a i a —3/2
65 = 0+\/]v T+ A2+ Op(NT5),
L
VN
pa B a 4B 1 a AB
Cum{f7, 07} = Cov[AF, Ag] + NCO'U[Ah Al

then

E[A5 (AT + —=45)] =0,

Define ot
ni’ﬁ = hf‘hfn"”k,

B,y def i g,k
k3P = hERS Rk,

0,5,7,5 d_Ci.f [e 4 ﬁ Y é i,j,k,l
I‘CA = h‘z h] h‘lch’l K .
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After some algebraic manipulations, we have the first four moments as

E[B3] = O(N*/2), )
~ ~ 1 L
E[65 67) = K37 + shE s s + O(NT?),
~ o 1 o ik _
(638587 = V_N(ng"”“f + [BRCRERY k. ”w") +O(N-%?),
(GBI aB s L[ aBrs
8[070.?9}0.‘}] =(a,ﬁ[:.3‘]7.6) Ka ﬁn’}l + N{K’Aﬂ K 3 (3.5)
4 o .
+ (a,ﬂ;.ﬁ) h?h?hzhl&m(fsnt,ln],k,m + Rl’mfi‘,z"”k)
+ M hCRIRTR) gk
6]
+ 2228 (@Bl hE), kEm i |+ O(N-2). J

Calculating the second moment of 6. from (3.4) and comparing it with (3.5), we
have

Proposition 3.2. In one-dimensional case, the deficiency of 8, relative to 51 is
given by - o
2[h¢hjkh‘,z’7’k - h,'hjk(au‘;J’k)K"l]/nA,z,

where k4,2 = hih;k"I.
Proposition 3.3. Let
k% & cum{83},
k%P & cum{63, 6°},
n?v”ﬁ”y def Cum{aﬁ, 53, 5}},
KP ™ cumi(8, 85, 8, 81,

be the first, second, third and fourth cumulant of 5,], then we have from (3.5)

)

K% = O(N/2),

o o 1 . . —_
K = K5 + SRR + O(N2),

(a,8.7)

1 o
avﬂy'y — axﬁ;'y [3] a ﬁ 84 ‘l,k J,l —3/2
= (377+ B, hERZ LR kR ) + O(N =32, L )

1 [4 o iy
K]av’ﬁ"y,& — N{Ki’ﬂ”r’& + Lﬁzﬂh?h‘?hthm(Gnt’anykrm + Klsmn"v]:k)

+ d iy BERSRI R 4 O(N2).

(a,8,7,6)
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3.3. Edgeworth expansions

Notation 8.1. Define differential operator, D*, with respect to variance covari-
ance matrix ni”s as

ap 0
=K Byﬁ’

(=D)* " =(-1)"Dy --- D

D~

Notation 3.2. Let ¢(y; & A,,s ) be the Normal density with mean 0 and variance-
covariance matrix k% yiak

,ﬂ)

1 _k 1 o
o £37) =l k37 |72 (2m) " T exp [—§na,5y v,

where ko g denotes the (a, S)th element of the inverse of k% A . Define Hermite polyno-
mial of order r w.r.t. metric tensor k A”g by

(—=D)*r v g(y; k5°) = HO "o () p(y; £3P).

Notation 3.3. Rewrite the cumulants of §,((3.6)) as
e =2 oo 1 o
KN = NTE (ORI 4GOI 4 (2 1), (3.7)
Define the covariant form of C;**""*" by

. ﬂ ;"'sﬁr
= le

Cj;aly“';ar Kalﬁl e narﬂr‘ (3'8)

Theorem 3.2. Under certain regularity conditions, the prabability density
function of 8 can be expanded as

1) = 06 (65) (1+ Z0 @) + FEW) + O, (39)

where 1
a(y) =_CO;aﬂ7H *1(y),

a2(y) ——cl s H* (y) + Co wprsHP (y) 3 (3.10)
(10]
+ (a,ﬁ.'g'&.e.)\) CO;aﬂ—yCO;ée/\Haﬁ’MeA(y), ‘

and Co.apy, Ci;ag; Co,apys are defined by (3.8), which in turn are defined by (3.7).
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Theorem 3.3. _ Again under certain regularity conditions, the cumulative dis-
tribution function of 6, F(y), admits expansion

o 1 1 _
Fu) = 2(:63°) + 7= @) + 5Q2() + O/, (3.11)
where
1 . N \
Q1(v) =3jCosapy (= D)7 2(y; 537),
1 [e 1 Qa,
Q2(y) =[§C'1;aﬂ(—D) 4+ 71C0iaprs(=D) pre > (3.12)
[10]
+ ——(a'ﬂ"é';'e)) CO;aﬁch;Jek(_D)aﬁqéeA] Q(y) K'z,ﬂ)‘ )

Throughout our discussion, we have purposely avoided the regularily conditions for
valid Edgeworth expansions, which are typically the requirements of the existence of
finiteness of moments up to a sufficient order and smoothness condition of the under-
lying distribution, see, for instance, Bhattacharya and Rao(1976), Bhattacharya and
Ghosh(1978), and Hall(1992).

4. Jackknife-t Statistic
4.1. Stochastic expansion

To aid our stochastic expansion, besides Lemma 3.1., we also need the following.

Lemma 4.1.  Let X% = XiXi Xk, X% = | Xiik /N, Xitk = /N(X* —
n*7*), then

N .
= X - X)X - X)X - xb)
p=1

.. 1 i PPN
= — K"I"Jrk _|_ __..N (i,[_?,]k) (7’ J 277 T]J)Xk (41)
1 o~ 1 ~.. 1
—_ [3 iy ik _ _ngk: el
+ AL X N + OP(N)’

Both Lemma 3.1. and 4.1. are simply refinements of the law of large numbers. We
again omit the relatively simple proof.

Proposition 4.1. Third order stochastic expansion of studentized jackknife ran-
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dom variable assumes the following form.

T =——a-h°'X‘
o
* \/1‘{2( SRR =) = ot TR
-~ a)sh;’h;"h P(XiX* -y X XE) |
N{ e a)3h°‘h B kb (XX XE — kI XK
4( a)3h;")h°‘hl (XiX7 — kM) (X — 2k X?)
+—h‘-". XXXk 4 —h" (20 X7 — XV)
h,,kn "Xk + 2( S BBl X X0 X (4.2)
36 a)shf‘h;"mhah“h“ K™ (X XIXR — apE XXX
+ 5 a)shf‘hjh"‘h"h" o (XiXEXIm _AX XX ™ + agif XEXIX™)
-3 la)3h, aha kb XiIXI Xk — 2(1) hEhShg, k™ X XTI X*
3 a)3h;"h;’h (XXIXF - g X¥)
G a)ahf‘h;’h“ RXXFX — 2O XOX XY
+ 30 a)3 S hEhhER B X L + Oy (N72).

4.2. Asymptotic cumulants

The following lemmas help to evaluate the asymptotic cumulants required for the
Edgeworth expansions. '

Lemma 4.2.  Define k%9 = Cum{X*, X7, X*}, kkbmr = Cum{X*, X™n},

then . . . . . . . .
K/z,g,kl — Kz,],k,l_+_ (’[ﬂ) K’knl,z,J_'_ [2] K,k’tK,J’l,

l k I
K,k mn _ Klk,l,m,n_{_ (k'l[’ﬂ’") K,klﬁ'/l mn (k‘l[(i]l N KL
+ ("[‘21‘) k, men, N /‘.’,k lnmnn KkK,lK)m n

Lemma 4.3. Moments of the following types are typical in dealing with jackknife-t
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statistics.

E[XIXIX* X = [3]xIkFIbm 4 (3], k) (g™ (2] + O(N ),
E [}? iXixkx mn) — hd kL™ 4 (4)kH wlkchmmn) 4 [6]K*7 ket ™ ™)
+ [2)x*7 o (memdil _ jeid kil emyen g kb emin
(5 4 (2 D) (P 4 (2] )
F (0 2R (5 + (2 D) + O,

~

1 .. ..
lyvymn (2,5 ¢, kl),mn k,l),m n m,(k _l))n
X = —=[6]k\" (K + 2k "+ 2]k K

~ L A~ A ~~

EXXIXkX
1 ..
+ =[]k CIF (D™ 4 2D ™) + O(NT3/2),
\/N[ JretH7E( )+ O( )
EX XIXEX XmX) = [15]ctd gkl (k™) ™0 4 26™" k%) + O(N 1),
£l XiXixXkxtxmn jop] = [3] k(B3 kol (Km,n,o,p + [4] g(mmor) 4 [6]n(mn“n°4’)

+ [2Je™CRPI™ — KPP — nmn"rc""’)

+ [lz]ﬁ(z’j (nk)m;n + 2nk‘7:mnn)(niyovp + 2Ki,o'€p))
+O(N7Y).

While the second and fourth cumulants require considerable efforts to be obtained,
the first and the third are relatively easy to be computed.

Proposition 4.2. The first and third cumulants are given by

a 1 ajpa o t,7 1 a,a,a - )
KT = (—o,a_)g(h'i A Ska )T OW 32,

1
vN
1 1 3] 1 .
avﬂv'y — a:ﬂy'y (a,8,7) a ﬁ vy ‘l,k ],l
Koy \/]V{a"aﬁa‘f D h¢' R [(07)2 h) K" k
1 L o
- Wh;’h;’mhlnm’”(n"kn”l + whlighk
_ 1
2(o7)3

, (4.3)

RIATR, (ki 4 ikiibm) L 4 O(N~2/2).

/



131

Proposition 4.3. The second cumulant of T is given by

116 1 aﬁ
T a‘*aﬂ 4
1
— h& ‘6 1]) e a,ﬂ’ﬁ’ﬁ
N @ {2‘7"’(0’3)2ht it 209(aB) A
—_ BB km 1,5, t,m 5.k, l i klm
aa( ﬁ)ah?hah Bhy 2kt 4 e + KM )
1
~ 209 ( ﬂ)3htah_7ﬂkh hB (3k™9 ik ’fc"”‘—t-n""‘ 'nnayl)
_____aﬂ ﬁﬂ 1,J klm_-‘/ aiLB :J;
202(0P)? R el ™ 2aaaﬂh' hjxs
3
+_0-—GZT)5-h?hfh h hﬁhﬂ ™0 mP 3] (i3 D)
3
+mhahﬁh hﬁhﬁ hﬁ K™°(3)k (523 o) by
_ 3 L aBBBBB, 3  ap 3 e8.8,868 (4.4)
+80°‘(05)5K’A K4 +4a°‘ ﬁnA + a(aﬂ)snA
1
~ 20%(P)3 h?hf hklmhﬂ K™ 3]k R ‘)}
[e] ﬂ ([2;3]) ﬁ ﬂ ﬁ Y
N » J,J = ——=——h "' Js3 s
+N{2(0'a0'ﬁ)2hz‘7h' J,K K‘ 2(0-0)2( ﬁ)3 '),thlh hklﬂ K
(2]
(aB) h h ke hl,K} K K,j’j’r.;k'»l'

1 .7
b o AN R (35 4 )
[2] Y ) Y N Y
b ARG ¥ 5 55
1 -
4(a_aaﬁ)3 (nAﬁ ;ayﬁﬂ+2(n:)ﬂ)3+n;:a:aniaﬁ’ﬁ)}+O(N 2).

. To save space, we refrain from writing explicitly the fourth cumulant, just note
that 1 '
Ky = SO+ O(N ). | (4.5)

4.3. Edgeworth expansions

Continuing to use notation (3.7), but with the coefficients C;"* """ defined by (4.3),
(4.4) and (4.5), for approximating both the c.d.f. and density function of T, we have
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Theorem 4.1. Denote g*? = (k57 /(6*0?)). Under certain regularity condi-
tions, the probability density function f(t) of T can be expanded as

10 = 8 ™) (1+ 00 + Fa®) + 0N/, (46)
where

1
q (t) =Cl;c:Hm (t) + 500;0137Haﬁ1(t)a

N

1 1 o
02(t) =5 (CraClip + Criap) HP (1) + 5 (Corapyst (o b1 ) CriaCoipys) HP10(2)

1
+ 5 oo CoiapyCosrH? 1N 2),

4.7)
with the coefficients Cj.q,...a, being defined by (4.3), (4.4) and (4.5).
Theorem 4.2. Under certain regularity conditions, the cumulative distribution
function of T,F(t), admits expansion
1 1
F(t) = ®(t; g%P) + —=Q1(t) + —=Q2(t) + O(N~3/?), 48
(t) = @(t; 9*°) le() 7 @2(t) + O( ) (4.8)

where

1
Q1 (t) =(Cl;a(“D)a + 500;057(_1))0/97@@; ga’ﬁ),

~

1 1
Q2(t) =[§(Cl;aﬁ + Cl;acl;ﬁ)(—D)aﬂ + ZE(CO;aﬂ'YH' (a.ﬁ[;.qm) Cl;aCO;ﬂm6)(_D)aﬂ76

1
+ 6! (a,a,[ig],e,x) CO;aﬁ'yCO;&A(‘D)aﬁ“'ée’\]‘b(t;ga’ﬁ)-

/
(4.9)
4.4. Univariate Case

In this subsection, we considered the special case of univariate T', which is much
simpler and more imporant for applications.

Proposition 4.5. The r-th cumulant of one-dimensional T has the form

1

Ky =N"T (G5 +

Ci+--) (r>1), (4.10)
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with the first four being given by
1 , . 1 e
K’}V = — T]\TT (hghjkhlﬁ""ﬁk’l + -2'KA,3) + O(N—3/‘2),’

17 1 4 y
Kk =1+ ={ =S hihgeri* — = hihshihimst R

2 . . 1 R
- Th;hjkhzmhnnwnk lnm n_ ——Th.'jhkzl‘&"kliJ’l
o4 20%
7
+ 'ZG' (h,‘hkmhon’ kgm0 ) + -——h hlmholtn’o 5 kK,A 3+2+ -—é—ni 3
oA ' 403
1 .
- ;Thejkhm"’ Kot — ;'zhihjhklmhnl’u"k'ﬂ]’ 'C'(n’"} +O(N~3/2), (4.11)
A A

1 L
3 _ ik, 4.l -3/2
Ky =— ——=12ka3 + 3h;h;hrc "k’ } + O(N ,

: 24 Ly 42 R
Kf}v =ﬁ{_7nA’4 - —Ihihjhkhzmh:"ln”k'm + ;g-hihjhkzn"knj’lnA,3
A A -

12 ; 12 : 5
+6+—5khs+ g 6 8 (hihshaaw*rit)? - —rhihjhimhos KR
0A A .

3 hh hkh,,,.,,n"‘nmn’m} +O(N72),
oA , ,

where 02 = h;hik"I, 043 = hihjhik*7* o 44 = hih;hghicb3%t.
A jK7, OA, 3 y OA, 3

Theorem 4.3. Define ¢(t) to be the standard normal density, H, the r-th
Hermite polynomial w.r.t. ¢(¢). Under certain regularity conditions, the prabability
density function of one-dimensional T' can be expanded as

£ = o) (1+ R T0) B N (R

Where )
Q1 (t) =C%H(t) + _03H3 (t)

2(t) =5 [02+(C1) [Ha(t) + 03+4C11 0)Hs(t)

s

(4.13)

+ 55 (O3 He)

g

Theorem 4.4. Denote ®(t) to be the standard normal cumulative distribution func-
tion, then the cumulative distribution function of one-dimensional T can be expanded
as ) : :

F() = 8(0)+ 2= Qu(00) + 7 Q@40 +OW ™), (414
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where 1
Q:1(t) =-(Cl1 + ECS’Hz),

Q2(t) = — [%(Cf + (C1HH () + 514-(03 +4C1C3Hs(t) 3 (4.15)

1 32
+75(Co) Hs(t)]. )
Theorem 4.5. Denote wo and 2z, to be the a-th quantile w.r.t. the true
distribution of T and standard normal distribution, then, with the same regulality
conditions requried for valid Edgeworth expansion of the corresponding cumulative
distribution function, we have

Wa = 20+ Z=G1(20) + 7Galza) + O(N /%), (4.16)
where
G1(t) = — Qa(2), '
4.17
Ga(t) =Q1(2) %Ql(t) - %th(t) — Qa(t). (10

5. Jackknife-t Confidence Intervals
5.1. Introduction

This section concerns confidence interval estimation for one-dimensional parameter
6, based on the jackknife-t statistic, which is discussed in Subsection 4.4..

For 0 < a < 1, we define the ath quantile of T by
we =inf{t: P[T <t] > a}, (5.1)

for which the third order Cornish-Fisher expansion is given by Theorem 4.5. For a
fixed nominal level a, the confidence interval

I = (—o0, 51 - #S’Thwl_a] (5.2)

is ideal in the sense that it coveres the unknown parameter # with parabability a. I of
(5.2) is useless since wi—, is unknown. To construct approximate confidence intervals
is to choose appropriate estimators of w;—o. Define

Wl,a =Z2a

o 1 A |
W2, =Za + —‘/T—NGI(ZGL ' \ (53)

1 -~ 1~
ﬁa':a’*'——'G ZQ +—G ZQ,
3o =22t 7= 1(2a) + 57 Ga( )J
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where ®(z,) = a, Gy and G, are sample versions of G1 and G defined by (4.17). Ap-
proximate confidence intervals based on the coarse normal approximation, the second
and third Cornish-Fisher expansions,(5.3), are defined to be

- - 1 =
Ty = (—00, 6 — —=5ds@i1-cl, 5.4
N (=0 \/ﬁ J ;J;‘vl{ al ( )

where i = 1,2, 3. Coverage probability of each interval is defined to be
a;n =Plhe LNl (5.5)

which is 1ntended to be close to the nominal level a. We give, in next section, ex-
plicit formulae up to third order of these coverage probabilities. Two-sided confidence
intervals and correctness of intervals are also discussed.

5.2. Asymptotic theory
'5.2.1. One-sided confidence intervals

We begin with the discussion of the approximate confidence interval f3, N based
on third order Cornish-Fisher expansion. By definition

Q3 N =P[0 € E,N]

~~ 1 —
=Pl <05 — —=SdjW31-«
[0<8; T Sdots ]
=P[T 2 '{0\3,1—-a]
=] — P[T < 1/133,1_0]

1 4 1 ~
=1- P[T < 2l—a+—=G1 (zl—-a) + —G2(Zl_.a)]

vN N
=1- P[T - -}%7—51(21_0) < Zl—a+ %Gl (zl;,,) -+ -]%I-Gz (zl_o,)] + O(N_S/z),
(5.6)
where _ R
| Gi(t) = VN(G1(t) - G1(t)). (5.7)

Expanding £5.6) requires Edgeworth expansion for cumlative distribution function of
Sy =T — G1/N, which requres the knowledge of the first four cumulants of Sn.

 Proposition 5.1. Denote the first four cumulants of Sy by «; (SN)('I, =1,2,3,4),
then
k1(SN) =Ky + O(N_S/z),

ka(SN) =% + Tv'a(t) +O(N™2),

Kk3(SN) =k + O(NT%/?),
ka(Sn) =k + O(N~?),

(5.8)
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where k(i = 1,2,3,4) are defined by (4.11),

a(t) =—27{[(2 + Hy(t))hihjhkthme P kh™
A 5 (5.9)
+ (5 + 3H2(t)kadl + ;ifNA,sGl(t),

and G1(t) defined by (4.17).

Proposition 5.2. Define SN =T — G1 /N. The c.d.f. of Sy can be expanded as
1 1 _
PISN < 5] = 8(s) + —=ar(9)9(6) + Jaa(s)d(s) + OV ), (510

where q1(s) = Q1(s), g2(s) = Q2(s) — sa(s)/2, and Q1, Q2 being defined by (4.15).

Theorem 5.1 Under certain regularity conditions, the following holds uniformly
fore<a<l-e(0<e<1/2),

agN =a+ é’%zl—aa(zl—a)¢(zl—a) + O(N_3/2)’ (512)
where a(t) is given by (5.9).

‘ By similar arguments for coverage probabilities of fl, N and fg, N, we have next
theorem.

Theorem 5.2. The coverage probabilities oy 5y and ag n corresponding to the

approximate confidence intervals fl, ~ and f2, N, based on the Normal and second order

Cornish-Fisher expansion, admits following expansions, uniformly fore < a < 1-€(0 <
€ < 1/2),

1 1 -
N =a— (_ﬁQl(zl_a) + 7 @2(21-a))¢(21-a) + O(N 7, (5.13)

02, =01+ 2 (Gal(1-0) + 71-aa(z1-a) [DP(z1-a) + OV )

where Q1 and Q2 are defined by (4.15) and G, by (4.17).

Theorem 5.1 and Theorem 5.2 tell that both of the confidence intervals based
on the Cornish-Fisher expansions have coverage error(the difference between coverage
probability and nominal level) of order O(N~1!), improve considerably the Normal
interval, which has coverage error of order O(N~1/2). As shall be seen in next section,
in the case of coefficient of variation, numerically a3 y usually improves oo nx although
they have coverage error of the same asmptotic order.

5.2.2. Two-sided confidence intervals
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For nominal level 0 < a < 1, two-sided equa.l—taxled ideal confidence interval is
defined as

eq = [OJ —_ -\/LﬁSd_]w%g_, 6y — WSdJ‘lUl;;_}, (5.14)
which covers the true parameter with probability a. Approximate confidence intervals

of the same type based on normal approximation, the second and third order Cornish-
Fisher expansions are deﬁned by » ,

eq, [01— T—dew'+ GJ —\/—_Sd,;w 1— a] (515)
where1=1,2,3, w1,1_%_g_ = Zita and
1+t a
q’(z%ﬁ) ="—2_',
~ 1 4 .
; wz’l:tTa =z_1% + \/_J_VGI(Z%‘!)’ (5.16)
~ 1 ~ 1~
Wy 1ta =Zita + WGI(Z}_%Q_) + ﬁG2(Zl1:t£)

Let 0q,:(i = 1,2,3) be the coverage probabilty corresponding to qu (1=1,2, 3) .
By similar arguments in last section, we have

Theorem 5.3. Under certain regurahty conditions, the probab1ht1es Oleq,i(t =
1,2, 3) admits expansions

g1 =0 = - Qals142)d(z152) + ON 512,
Qleg,2 =a + %(Gz (2242) + %zl_;_a a(214a)$(2142) + O(N3/2), (5.17)

1 .
Qeq3 =0+ 214 a(2140)d(214e) + O(N—3/2),

where (@2, G2, a are the same as in last subsection.

One of the salient features of two-sided equal-tailed confidence interval is that
the basic normal theory based interval has coverage error of order O(N 1), improves
from O(N—1/2) for its one-sided counterpart. The improvement is obviously due to the
parity properties of both asymptotic expansions and the way of constructmg confidence
intervals. '

5.2.3. Correctness

Although not as useful as the concept of coverage probability(or equivalently, cov-
erage error), correctness may serve as another criterion for measuring accuracy of con-
fidence intervals. Correctness, by definition, is the difference between the end points of
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an approximate confidence interval and the end points of the ideal confidence interval
of the same type. An approximate confidence interval is said to be first or second
order correct if this difference is of order Op(N~!) or O,(N~3/2). By the fact that
the sample versions @1 and 62 are distant Op(1/ VN ) away from G; and G, their
population versions, respectively, we immediately have the following theorem.

Theorem 5.4 While fl,N((5.4)) is first order correct for I((5.2)) and ﬂq,l ((5.15))
first order correct for I.,((5.14)), all the other approximate confidence intervals defined
by (5.4) and (5.15) are second order correct for their respective ideal ones.

Gererally, correct confidence intervals of order higher than 2 is beyond our reach.
This is because to get an interval being third order correct requires to estimate the
quantile w, of T with accuracy O,(N~1) or better, which is usually impossible.

6. An Example

Inference for coefficient of variation, one of the ratio-type parameter, will be dis-
cussed briefly, see Wang, Taguri and Ouchi(1994) for details. Now, let W, Wy,---, Wy
be iid random variables from N(u, 02), Normal distribution with non-zero mean x and
variance o2. Coefficient of variation is defined by CV = o/, see Example 1 of Section
2. We discuss in this section two issues: (1) approximation for the c.d.f. of jackknife-t
coefficient of variation by Normal and Edgeworth approximations; (2)confidence inter-
val estimation for coefficient of variation based on the jackknife-t quantity.

6.1. Estimation of c.d.f.

Figures 6.1. to 6.4. show the goodness of fit by Normal approximation and the
second and third order Edgeworth approximations, (4.14), for the true c.d.f. of T.
Since Edgeworth expansion, (4.14), is defined by (4.15), which depends on the unknown
parameter, thus is useless for estimating the true c.d.f. We define instead

By = 2(t) + T{ﬁél ®) (6.1)
and ) !
E‘BS = q)(t) + \/_ﬁél(t) + 'N@2(t)a (62)’

where @1 and @2 are sample versionsAof (o agii Q2 respectively. Displayed in each
figure are the true distribution, ®(t), Edz and Eds.

Fix p = 1, so CV = ¢. In many practical applications, CV ranges from 1/2
to 2. In our numerical experiment, we fix CV = 0.8 and vary the sample size to
take N = 5,10,15 and 20. The following is a summary of the main features of c.d.f.
approximations.



Figure 6.1: Comparision of the Normal, the second
and third order Edgeworth approximation in estimating
the true c.d.f. of the jackknife-t coefficient of
variation from a Normal population with unit mean and

coefficient of variation 0.8, N=5
A~
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Figure 6.2: Comparision of the Normal, the second
and third order Edgeworth approximation in estimating
the true c.d.f. of the jackknife-t coefficient of
variation from a Normal population with unit mean and

~ coefficient of variation 0.8, N=10 ~
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- Figure 6.3: Comparision of the Normal, the second
and third order Edgeworth approximation in estimating
the true c.d.f. of the jackknife-t coeflicient of
variation from a Normal population with unit mean and
~ coefficient of variation 0.8, N=15

= =

Figure 6.4: Comparision of the Normal, the second
and third order Edgeworth approximation in estimating
the true c.d.f. of the jackknife-t coefficient of
variation from a Normal population with unit mean and
coefficient of variation 0.8, N=20

(a) All in all, Eds improves E\dg, which in turn improves ®(¢), with improvements
especially remarkable for the left tails;

(b) Although Edgeworth approximations still improve the basic Normal approxi-
mation, around the origin, as can be expected, the three approximations are relatively
undistinguishable; pie

(¢) Estimation of the right tails is relatively complicated, with E\'d;; approaching

the true from below and E;lz from above. Eds is seen to underestimate the true
distribution even more seriously than ®(t) for right tails. With sample size gradually

increasing, both E&g and E:ig become correspondingly trustworthy;

2
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(d) Relative better estimation for the left tails probably is because the true distri-
bution has relative heavy left tails, which is reficted in the Edgeworth approximations,
but ignored by Normal approximation. For those with heavy right tails, estimation of
the right tail might be better than that of left tails.

6.2. Jackknife-t confidence intervals

Now we turn to the issue of constructing approximate confidence intervals. Figure
6.5. compares the asymptotic coverage probabilities up to order O(N 1) for left-sided
intervals, defined by (5.4). Here we examine the effect of coeflicient of variation upon
the three asymptotic coverage probabilities, with a truely small sample size 5. Denote
o} y to be the versions of (5.5) with terms of order higher than O(N~') discarded.
Figure 6.5. shows that a3 5, o} n, o] y dominates one another given CV 1is kept
below 2.0, which are quite in agreement with our true simulated coverage probabilties.
Asymptotic, as well as the true coverage probabilities, are sensitive to the flctuation
of CV. Asymptotically, o3 y, a3 n, @] y dominates one another in reverse order
when CV exceeds about 2.0, which, howe{rer, is not entirely true for the true coverage
probabilities.
Figure 6.5. Comparisions of asymptotic coverage probabilities
of approximate confidence intervals based on Normal, second and
third order Cornish-Fisher expansions,with nominal level o = 90%

Covernge pr0bmb:|:i'7
1.3¢

1.2}

1.1t

Next, we compare the true coverage probabilities of the left-sided confidence in-
tervals, defined by (5.5). In each case, we make 1,000 time.trials, and keep other
conditions unchanged as in Subsection 6.1.
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Table 6.1. Comparisions of true coverage probabilities
of left-sided confidence intervals based on Normal,
the second and third order Cornish-Fisher expansions,
with nominal coverage oo = 90% and true CV = 0.8

N Qa1,N Qg N Qa3 N

) 724 794 .853
10 787 .8564 .893
15 775 .839 871
20 .796 .856 .881

Table 6.2. Comparisions of true coverage probabilities
of left-sided confidence intervals based on Normal,
the second and third order Cornish-Fisher expansions,
with nominal coverage a = 90% and true CV = 1.5

N Qi,N az N as,N

5 .643 .736 .738
10 .710 .816 .818
15 .768 .858 .865
20 .758 .849 .864

(1) In either case, the following holds
o1, N <o N <a3N<aq, (6.1)

which strongly implies the advantage of doing higher order asymptotic expansions,
especially in small-sample situations. (6.1) also tells us the important fact that third
order approximation exels its second order counterpart, which we failed to learn in
Section 5, where the two share the same asymptotic speed for approaching the nominal

level.

(2) In either case, a2,y and a3, N improves a;,n considerably, especially when N is
small. For example, when N =5, CV = 1.5, ag Ny = .736 and a3 v = .738, compared
sharply with o3,y = .643. In this specific case, doing even the second order asymptotic
expansion achieves the accuracy of Normal theory based inference with sample size
being have to be raised 4 times from 5 to 20(a = .758 when N = 20).

(3) The differences between a2 v and a3 v seem to be rather sensitive to CV.
While CV is relatively large, a3 v improves ap n, but moderately. The improvements
seem to be significant when C'V becomes smaller.
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7. Discussions

(1) Jackknife-t variates in inferences for the ratio-type parameters, typically have
distributions with rather heavy right or left tails. Incorporation of this piece of informa-
tion to make more accurate statistical inferences based on asymptotic expansions with
respect to correspondingly skewed kernel in stead of the symmetric Normal deserves a
serious study.

(2) Alternative ways are needed for estimation problem when higher order asymp-
totic approximations are worse than lower order a,pprox1mat10ns Bootstrap may be
one of the partial solusions. :

(3). The equally important aspect of statistical inference, namely, testing of hy-
pothese, requires further study. :

(4) Ignored is the comparision with grouped jackknife and other methods, including
the bootstrap, study of which is certainly important and interesting.

(5) Investigations of other specific applications are important and necessary.
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