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On the Mehler-Fock Index Transform in L,-Space

Semen Yakubovich* (~x35 1 — v EIKYE - BREASEEER)
Megumi Saigo' [F# ) (ERA¥EER)

Abstract

The present paper is devoted to study the transform by the index of the Legendre
function which is known as the Mehler-Fock transform. Mapping properties of the
Mehler-Fock transform in the weighted space L,(w(t); R4) are given as the inversion
formula. The space of images is described.

1. Introduction

The present paper is devoted to discuss the Mehler-Fock transform, which is a transform
by index of the Legendre function, namely the integral transform of the following type

(1.1) MFIf)7) = 5 [ Pespasiepa(26 + DS W)y (> 0),
where
(1.2) Py(2) = PY(z) = F (-—1/,1/ + 151 1%2)

is the Legendre function of the first kind of the index v represented by the Gauss hypergeo-
metric function

(1.3) 2Fi(a,b,c,z) = i (@)n(b)n 2"

n=0 (C)n n!

with (a), = I'(a+n)/T(a) (n =0,1,2,---) being Pochhammer symbal [1].
To investigate this function we will use the integral representation of type [9, (2.16.21.1)]

T

(14) 2cosh(r7/2)
where J,(z) is the Bessel function and K, (z) is the Macdonald function [2].

Posppriep(26 + 1) = [~ B Kinl)dy (2 > 0),
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This transform was introduced in 1881 by Mehler [7] and it was investigated in more detail
by Fock [3]. As it was shown by the first author the Mehler-Fock transform is very important
as a basic one among the class of index transforms and it is related to the known Kontorovich-
Lebedev transform [13]. In the literature there are not so many results concerning these
transforms and such a theory is developing now. We note here the blbhography from [13]
and the papers [12], [4], [5], [14]

The main purpose of this paper is to investigate the space of i 1mages by the Mehler-
Fock transform (1.1) of the Banach spaces L,(R4). The results are known for the classical
Fourier type transforms [10], [11] and such theorems are already received by first author for
the Kontorovich-Lebedev transform [13].

Now we prepare several formulas which is useful in the following discussions. The Mac-
donald function has the expression [2]

(1.5) Ki(z) = % [© ememsetag (@5 0).

By the analytic property of the integrand in (1.5) and by its asymptotic behavior at the
contour we can shift it along the horizontal open infinite strip (i6 — 00,6 + 0o) with § €

[0, 7/2) as
(1.6) K,',.(x) = —/;i+ g~TcoshpB, wﬁdﬂ (:B > 0)

If we substitute the formula (1.6) into the representation (1.4), then applying the Fubini
theorem and evaluating the inside integral by the formula [9, (2.12.8.3)], we obtain

18400

-0 \[Z2+ cosh2

where we choose the main value of the square root in the integrand. Hence it is not difficult
to see the following uniform estimate for the Legendre function:

™

(1.7) cosh(n7/2)

P_1ja4ir2(22° + 1)

dg (r,z > 0),

(1.8) |Pojasinga(227 + 1)

cosh(7r’r /2)

< 6_67 [Cl P_llz(COSh a) + Cz cosha C. ! } y

—_ 3=
sinha cosh a

where
2(z?% + sin® 6) + cos 26

—cos 26

T T
0 5 (— —) -
r>0,z>0,6€ e ,cosh a

Here and in what follows C' with suffix numbers denote positive constants. To show the
estimate (1.8) we have from the representation (1.7) the relations

1

. 00
(1.9) ——F—= |P1ja4irp2(227 + 1)| < 6-&/ df
cosh(wr/2) l | —0 \/Imz + cosh?(6 + 1,5)|




132

1

< 277 / ‘ ' dB
0 \/lxz + sinh? § + cos 26 cosh? ,B|

--61'
|cos 26| (/ \/cosEa —cosh B ap + / \/cosh,B —cosha dﬂ)
= I(r, z),
where /4 < 6§ < w/2 and we put

2(z% + sin® §) + cos 26
—cos 26 '

Using the value of the integral [8, (2.4.6.1)] and choosing a constant B > 1, we have

: e~ "
(110) I(T, 1)) = lcos 26' P_1/2(COSh a)

‘+\/§e"6’ (/B Vcosha
| cos 26| Vu—T1\u2cosh’a — 1

cosha =

1 1
+ du
Vcosha 5 Vu-— 1\-'/u2 —1/cosh®a )
s ( T Vcosha 1 )

_ h —_
ICOSZ(SI - P 1/2(COS a)+C’4 +C

- 5T
SlIlh a vV cosh a

and this lead us to the estimate (1.8). Then we conclude from the definition of the Legendre
function and properties of the Gauss function (1.3) [1] that

(1.11) P_yjp(cosha) = O(1) (a — 0+4),

(1.12) Poys(cosha) = O ( \/51;};) =0 (PLp@?+1) =0 (i—) (2 — +00).

So the right side of (1.8) is 75" O(P-1/2(22% + 1)), where 7/4 < § < 7/2 and z > 0.

2. The Mehler-Fock Transform in L,

Let us consider the Mehler-Fock transform (1.1) when the density f(z) belongs to the space
L,(R4) (1 £p < ). As is evident from the Holder inequality and from the asymptotic
behavior of the Legendre function (1.11) and (1.12), the integral (1.1) converges absolutely
for any p > 1. Let us consider the space of functions g(7) represented by the Mehler-Fock
transform (1.1) functions f(y) belonging to L,(R4):

(2.1) MF(L,) = {MF[f](7) : f € Ly(R4)} (p21).
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We now show that the operator MF(f] is a bounded mapping from L,(R,) (1 < p < o0)
into Ly(e™";R4) (1 < ¢ < 00,7/4 < a < 7/2), where p and g have no dependence. Making
use of the estimate (1.8) and the generalized Minkowski’s inequality

(2.2) (/Ooo dr p)llp < /000 dy (/Ooo |F(r, »)IP d’r)llp,

/:o F(r,y)dy

we have
T fo° 00 —ar q 1/q
23) IMF(llzyeermny S 5 [ @I ([ e [Pagasira(@e? + D[ dr) " dy
00 oo 1/
< Co [ 17)| Poypa(2g? + 1)y ([ eletrmeladiergr)
< C d -
< o[ 1w+ [T
<

C3”f”LP’

where 1 < p < 00, 7/2—a/q < § < w/2. Here, in the last inequality we applied additionally
the Holder inequality.
In order to describe the space MF(L,), let us consider the operator

(24) (Lg)(z) = ’”: /w ”ci(‘)‘shh(z,((’;;/;);) P_ijatinpa(202 + D)g(r)dr (2 > 0),

- where £ € (0,1).

Theorem 1. For the Mehler-Fock transform g(r) = MF[f](1) of f(y) € L,(R4) (1 <
p < 00), the operator (2.4) has the form

(2.5) (o) @) = [ 1@, 3,/ ()dy (z>0),
where
1—e had 2 2,2 2 _
(2.6) I(z,y,¢) = 2z sme/ u(z? + y°u® + 14 v* — 2ucose) - du.
T 0 [(:c2 +y2u? + 14 u? — 2ucose)® — 4x2y2u2]

Proof. Substituting the value of g(7) as the Mehler-Fock transform (1.1), we obtain the
iterated integral

(2.7) (I.g) (z) =

g1~ [Frsinh((7 — )7
/ ( )7) P_1j24irpp(22® + 1)

2 cosh?(77/2)

X /0 P—1/2+.‘r/2(2y2 + 1) f(y)dy dr,
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which is absolutely convergent for any f(z) € L,(R4) (1 £ p < o) by using the estimate
(1.8). Now we need to treat the inner integral by index of the Legendre functions

g1 [* rsinh((r —€)7)
(2'8) I(:L‘, Y, 5) = 2 / COSh(2((7I'T/2)) ) P_1/2+,‘7/2(2:L‘2 + 1)‘})-1/24""”/2(2y2 + l)dT

and we will prove that it coincides with (2.6). Invoking to the representation (1.4), we have

22;1—5

(2.9) I(z,y,e) = — /Ooo rsinh((r — &)7)dr /Ooo Jo(zv) Ky (v)dv /000 Jo(yu) Ky (u)du

Thus the main problem comes to change the order of integration in (2.7) and to apply the
Fubini theorem. From the estimate for the Macdonald function [13]

1
T+ e-é‘r-:tcos& (T,Il))()),

(2.10) |Kir(2)] < Co

where 0 < § < 7/2, and the uniform bondedness of the Bessel function Jy(zy) for positive
variables z,y, we have the estimate

*(r+1)?
T

e—(26+e—1r)-rd,r

1
(2.11)  |I(z,y,¢)] £ Cyoz'™® ‘i/ (7'+1)26'25Td7'+/
. 0 , 1

% 5 * s
x/ e v du/ e " *°du < 400,
0 0

where we choose the parameter § in (2.10) as (7 — €)/2 < § < 7/2. Now we first treat the
inner integral by 7

(2.12) L(u,v,e) = = [ 7 sinh((r — €)7) Kin(o) K (),

w2

using the formula [9, (2.16.52.6)], we have

(2.13) /000 cosh((m — €)7) K, (v) Kir (u)dr = -g—Ko (\/u2 + v2 — 2uv cos e) .

Then by differentiating the integral (2.13) by parameter ¢ we find

. 19
(2.14) Li(u,v,€) = —-7;5EK0 (\/u2 + v? — 2uv cos e) .

We substitute (2.14) into (2.9) and we obtain the double integral
'7* 0

T Oe
where of course we need to justify the validity of differentiability by ¢ under the sign of this
double integral. Differentiating (2.14), we get

(2.15) I(z,y,e) = —

/oo /Ooo Jo(zv)Jo(yu) Ko (\/172 + v2 — 2uv cos a) du dv,
0

sine uvK; (\/u"’ + v2 — 2uv cos e)

s Vu?+ v2 —2uvcose

(2.16) I(u,v,€) =
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~ and by the polar coordinates v = rcos g, u = rsing (r > 0,0 £ ¢ < 7/2) the integral (2.15)
can be written in the form

—e - [2 .
zl"¢sine sin 2¢

I(z,y,€) =

2w A V1 —smn2pcose 4

X /oo r? Jo(zr cos ) Jo(yrsin ) K; (r\/l — sin 2¢p cos 5) dr.
0

Hence its uniform convergence for € 2 €9 > 0 follows from the estimate

@ Weso s / e
—1/2 12— 14+ (14t )2
= C sine / (t2 + 1)3/2 (;> (0<e<i)
because
(2.18) C Jo(z)] € Crae™V? (2> 0)

and the Macdonald function K;(t) has the asymptotic at zero and infinity as K;(f) =
O@t™) (t — 0), Ki(t) = O(et/V1) (t — oo) [2). Thus we obtain the following repre-

sentation

1;6
T Oe

x Ko (r\/I— sin 2¢ cos 5) dr.

(2.19) I(z,y,e)=— / d(,o/ rJo(zr cos @) Jo(yr sin )

But the integral in r is evaluated by the formula [9, (2.16.37.2)] and the representation (2.19)
takes the form '

- /2
i -1/2
— [(:c cos ¢ — ysin @)% + 1 — sin 2p cos e]
T Oe A

(2.20) I(z,y,e) = —

X [(:c cos o + ysinp)? + 1 — sin 2¢ cos e] T do.

Let us change the variable tan ¢ = u in the integral (2.20), and simple transformations carry
out the differentiation by . Hence we obtain the formula (2.6) and Theorem 1 is proved.

The inversion formula for the Mehler-f‘ock transform will be established by the following:
Theorem 2. Let g(7) = MF[f](7), f(y) € L,(R4) (1 < p < 00). Then

(221) | @ =09,
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where

(2.22) (Ig) (=) = l.i.m. (IL.g)(z) (z>0)

and (I.g) (z) is defined in (2.4). Here the limit in (2 22) is meant in the norm of L (R+)
and it exists almost everywhere on R .

Proof. The inequality (1.8) lmphes the uniform estimate for the function I(z,y,¢) in
(2.8) by =z, y>0anda€(0 1)

(2.23) [I(z,y,€)| £ Craz' ™" P_y5(22% + 1) P_15(2y° + 1).

After the replacement y = z(1 + t¢) in the integral (2.5) we obtain
(2.24) (Lg) (z) = ze / °1°/ I(z, 2(1+ te), €) f(z(1 + te))dt.

Now we have to estimate more carefully the right part of the inequality (2.23). From the
Mellin-Barnes representation [6, 11.5(1)]

(2.25) P_yjp(222+1) = ——/ )1“(1/1%(1 ?3”2 ) (0 <p< %)

p—100

we get P_j;5(22% + 1) £ Cysz~2# uniformly for all z > 0, because the integral (2.25) is
absolutely convergent due to the asymptotic of the gamma-function as the absolute value
of the argument diverges. With the aid of the generalized Minkowski inequality (2.2) we
estimate the L,(R,)-norm of the operator (2.24)

(2:26) 10z, < [ 171+ te))eel(z,2(1+ te), O, o

/_01/5 | f(z(1 + te))zel(z, z(1 + te), )|, dt

+ /000 | (z(1 + te))zel(z, z(1 + te), e)ll, dt
= L+ L.
To estimate ; and I, we use (2.23) and the representation (2.25). Indeed,
(227)  |aI(s,2(1+te),6)| S Crez®*Pyjp (207 +1) Pypp (257(1+2e) + 1)
S Cppp®mmme)=e(1 4 te) ™22,

where there exist such parameters py, y; for the representation (2.25) that 0 < pq, up < 1/2
and 1—¢/2 < py + py. Hence I; can be estimated as

(2.28) IL £ /_01/5 | f(z(1 + te))zel(z, z(1 + te), 6)“Lp(0’1) dt
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+ /_01/, 1 f(z(1 + te))zel(z, 2(1 +te), €)ll ;1,00 Gt

lIA

. .
1-2p1—e 2u14e—1[p-1
Cis "f(:c):c Lp(0,1) /_1/,(1 +te) dt

0 .
+C].9 ”f”Lp(l’oo) Lllc(l + te)"ZIﬂ—l/pdt

< Collflliryyr

if we choose in (2.25) uy, p2 € (0,1/2) and py > 1/(2p) — /2,2 < (1 = 1/p)/2, i1 + p2 > .-
1 —¢/2. Similarly, we have

(229) I2 é Cgl ||f(m):l:2_2“‘—°

® 9 1/p—2
/ u2rte=1/p=2 g,
Lp(0,1) J4

2A1—py —p2)—e ®  oute—1[p-2
+022"f(a:):c L,(l,oo)/l u du

< Cullflle,my)-

Finally from the estimates (2.28) and (2.29) we get the inequality of the operator (2.8):
(2.30) I(Z9llz, = Coellflle, -

Let us now proceed to estimate the norm of difference ||(Z.g) — f||;, and to show that it is
tends to zero when ¢ — 0+.
We first prove the relation

‘ . ) 1 241
. (231) 81_1'1&_ EI(:L‘,IE(I +t5),€) = ;m (2} > 0,t € R)
by virtue of the representation (2.6). Indeed, substituting the replacement y = z(1 + te) in
(2.6) and changing the variable u = 1 4+ ve we obtain

1—e_.2 _;
(2.32)  I(z,o(1 +te),¢) = 25 Sme

v

X /_O:/e(l + ve) [:c2 (1 +(1+te)’(1+ ve)z) + %0 + 4sin’ (%)]

xeg™3 [(m2 +1)0® + 2z2%v + 222 + 1 4 0(52)] 0

~3/2
X [mz(l + (1 +et)(1 + ev))? + £%0® + 4sin? (-;—)] dv.

In view of (2.17) eI(z,z(1+ te),£) converges uniformly in ¢, and we have

1 [~ 1

- 3/2 dv
21 J_ (2% + 1)v2 + 222tv + 222 + 1)

Ve 41

222+ 22 + 1’

(2.33) al—if(ﬁ el(z,z(1+te),e) =

1
T
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where the formula [9, (2.2.9.22)] is applied, and we obtain (2.31). Observing that for all

z > 0 the equality
/ _avzi+1

d=1
2t2+$2+1

is true and the application of the generalized Minkowski inequality (2.2) yields the desired
estimate of the difference ||(Z.g) — f||;,. In fact, using the representation (2.24), we obtain

(2.34) |l(Zeg) - Sy, =\

/OOH(t + 1/e)zel(z,z(1 + te),e) f(z(1 + te))dt

TaVa?+ eva? +1f(z) o,

2t2+z2+1

4

1 241
Slf d ”H( z t+%)7r\/m2+l(t2+1)e

. ?2+1 z
xI (m,z (1 + $2z+ 1te) ,a) f (a: (1+ a:?;—}- 1t5‘)) — f(z)
L

where H(z) is the Heaviside function: H(z) = 1 (z 2 0),H(z) = 0 (z < 0). Thus the
right side tends to zero when ¢ — 0+ due to the Lebesgue theorem and the relation (2.31).
So we established (2.22) and inversion formula (2.21) for L,-functions. The existence of
the limit almost everywhere on R, follows from the radial property of the Poisson kernel

P(t) = 1/(n(t* + 1)) = P(|t|) € L;(R+) and Theorem 2 is proved.

b

From the estimate (2.30) the inequality

(2.35) I(Ze9)llz, = Casli(I9)l,,

holds in view of (2.21). Theorem 2 shows that MF[f](7) = 0for f(y) € L,(R4) (1 < p < 00),
iff f(y) =0. So, in the space MF(L,) we can introduce a norm by the equality

(2.36) IMEfNaeece,y = 1511, -

It is easily find that the space MF(L,) is a Banach space with the norm (2.36) and is iso-
metric to L,.

3. The Description of the Space MF(L,)

‘The main result of this section is to describe the space MF(L,) defined in (2.1) in term
of the operator I, defined in (2.4).
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Theorem 3. In order to g(1) € MF(L,) (1 < p < 00), it is necessary and sufficient that
the following conditions hold:

(3.1) Lim. (Lg) € Ly(R+),

and g(7) € L,(e7*;Ry) (7/4 < @ < 7/2,1 £ r £ 00) at the necessity part and g(7) €
L.(R4) (1 £ r £ 00) at the sufficiency part.

Proof. The neccessity of the conditions follows from Theorem 2 and the estimate (2.3).
Let us prove the sufficiency. Let g(7) € L,(R4) and the condition (3.1) holds. We show
that in this case there is a function f € L, such that the equality

(3.2) g = MF[f)()

takes place. From the inequality (2.35), we conclude that the operator (I.g) belongs to
€ L,(R) for each € € (0,1) and we can evaluate the composition

(3.9 MF(Lg(r) = 5 [ Prappsinsa28 +1) (Lg) ()dy.

At least for a smooth function with a compact support on R, by substituting (2.4) in
equality (3.3) and after changing the order of integrations by the Fubini theorem we have
the relation

(3.4 MF[ILgl(7) = 9.(7) = [~ M(v,7,e)g(v)dv,
where | _
' vsinh((r — e)v) [ _
3.5) My, re)= / 1= P o vinra(26% + 1) Py jarina(207 + 1)dy.
(3.5) (v, 1,€) o2 (r0/2) o Yy 1/2+ir/2(2y + )P-1/244012(2y )Ydy
Let us treat the integral (3.5). We first observe that the uniform inequality
(3.6) ‘M(V, T, E)l g Czsye(ﬂ'/z—(s])T+(1|’/2—E—62)V
s s v T
(0(60 <e<l1,6 € (‘2‘—01,5) ,02 € (5—6,§)>

is true from the estimate (1.8). Hence we see that from the generalized Minkowski inequality

(2.2) the operator at the right side of (3.4) is bounded on the space L,(e™*";R,). Now let

us represent the kernel M (v, 7,¢). For this we substitute integral (1.4) into (3.5) and we get

the equality

_ 2usinh((7 —€)v)
2

(3.7 M(v,7,¢) /Ooo y'=e /Ow Jo(yu) Ky (u)du /000 Jo(yv) Ky, (v)dv dy.

Changing the order of integration in (3.7), we see that the inside integrals by u and v are
absolutely convergent and uniformly in y in [0, A] for some positive A dueing to the estimate
(2.10) and the inequality (2.18). Thus the integral (3.7) can be written in the form
2v sinh((7 — €)v)

72

im [~ [ Ko (u)Ko (o)dudo [ g d
X 1m/0 /0 ir(u) Ky (v)du v/o y *Jo(yu)Jo(yv)dy.

A—=+00

(3.8) M(v,7,e) =
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The polar coordinates give

2v sinh((w —e))

w2

(3.9) M(v, €)=

. x[2 oo . 1
x)‘.l_l’r+n°o A d(p/o K (r cos o) Ky (rsin)r ™ dr

r
x /0 y' ™ Jo(y cos ) Jo(y sin p)dy.

Let us treat the last integral by y. We have

rA
(3.10) /0 y' ¢ Jo(y cos ) Jo(y sin p)dy

B /0 4 Ty cos @) Jo(y sin @)dy + /1 ” y' ™ Jo(y cos ) Jo(y sin p)dy.
By the mean value theorem the second integral in (3.10) is equal to
(311) [ vy cos)oysing)dy (s < N).
Making use of the formula [9, (1.8.3.10)] we obtain
(3.12) /1 ™ yJo(y cos p) Jo(y sin p)dy

11 [cos pJi(rs cos ) Jo(r A sin p) — sin pJi(rAs sin @) Jo(r A, cos 0)]
- " cos? p — sin

cos pJy(cos p)Jo(sin @) — sin pJ; (sin ) Jo(cos p)
cos? p —sin® ¢ '

To passing to the limit \; — oo under the integral sign of (3.9) it is sufficient to consider
the contribution of the first term of (3.12). That is we estimate the integral

/2 00
(3.13) / dgo/ K, (rcos o) K, (r sin @)re?
0 0

y r [cos @Ji(rA1 cos ) Jo(rAs sin @) — sin @J;(r ) sin ) Jo(r); cos ©)] J '
cos? p —sin® @ "

Dividing the outside integral by ¢ into three parts by taking a fixed number £ € (0,7/4),
we obtain

nf4—¢ n[4+E x[2 0o
(3.14) [/ +/ +/ } d<p/ K. (r cos ) K, (rsin p)re™?
0 nja—¢  JIxfae 0

8 )1 [cos pJy (r) cos p) Jo(rA sin @) — sin @Ji(rAq sin ) Jo(rX; cos )] J
cos? p — sin’ @ "

» E[] +.[2+13
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Let us estimate the integral [;. For this we need to use the formula [9, (2.16.33.1)]

(3.15) /oo K, (r cos p) K;y (rsin p)r*~1dr
0
- —ir - ‘ o 2
_ ge-sSin T pCot™ g | e+i(r+v) r e+i(r—v)
I'(e) 2 2

%o F e+si(r+u)’ e+i(r—v)
2 2
Accounting the simple inequality for the Macdonald function |K;,(z)| £ Ko(z) being de-

duced from the representation (1.6), asymptotlc of the Gauss function at infinity [6] and the
inequality (2.18), we obtain that

;651 — cot2go) (e > 0).

J4—¢
dy oo
.16 < in p)re!
(3.16) L] £ ng[ Tons Jo Ko(r cos ) Ko(rsin )r* ™ dr
/4=t € 1
é 029/ 2F1( y Ty ES 1- C0t2<p) —"m— dgo
b 272 sin*+!/
w[4—~¢
d
< Cyp 51(1’190 < oo,

0
where Cys does not depend on );. Similarly we can estimate the integral I;. Concerning
the integral I, its estimation can be accounted by the behavior of the integrand in the
neighborhood of the point ¢ = 7/4 as

Uz| < C.’Slf ___<p_ < 0.
it Sin @ + cos @

Thus we established the possibility pass to limit under the sign of the iterated integral (3.9).
Using formula [9, (2.12.31.1))

- 9l-e e—2 r'(1- 5/2)
3.17 [ Jo(yrsin p)dy =
(3.17) s Y o(yr cos ) Jo(yr sin p)dy (cosp +sinp)?= T'(e/2)

o F €1 1. 2sin2¢p
21T 2727 (sing + cos )2

and the integral (3.15), we have the representation

(3.18) M(v, ; o) = Vsmh(;;;é;?é;;)_ e/2) lr (e + z(;'+ V)) r (e + z(;' - 1/)) 2

sin~® pcot™" o Iy 5 , 5 ;€51 — cot? <p)

[ (), =),

e 1 2sin 2¢p dy
XoF1 | 1= =, 5515 — 2 e
2’2’7 (sin + cos )2 ] (cos + sin )2~
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~ Let us substitute this value into the composition (3.4) preliminary changing the variable
tan ¢ = u in the integral (3.18). Hence we get that the composition (3.4) is equal to

_ T-¢/2) [T].(eti(r+v) e+i(r—v)\[
(3.19) %“y_%ﬂﬂdfkﬂ)o F( ; )r( ; )
xv sinh((7 — e)v) M1 (v, 1, €)g(v)dv,
where
(3.20) My(v,7.¢) =v/ F, (a+i(;’+ 1/)’ e+ z'(2T— u);e; 1 &13)

1 4 tr—e
‘s F, (1 ‘ u )( u

— _.1.
22wt 12) (ut 1)

Let us return to the composition (3.4). After the substitution v = 7 + ¢t we obtain
(3.21) MF[Lg)(r) = ¢ / H(r + et)M(7 + et, 7,€)g(r + et)dt,

where H(z) is the Heaviside function. As we know from the estimate (3.6) the kernel of
(3.21) is bounded function of three variables and moreover let us prove that the following
limit relation is true

(3.22) | lim eM(r + et,7,¢) = !

Pl 14 ;t2 +1 (T > O,t € R)

Indeed using the self-transformation formula for the Gauss hypergeometric function [6]

(3.23) 2Fi(a, by c;2) = (1= 2) "% Fi(c — a,c — b, ¢; 2)
we have the representation for the integral (3.20) as
> , 1—it) e(l+it 1
(3.24) M1(7+et,r,e)=/2Fl (—z‘r+€( : ),6( +e );e;l——a)
b 2 2 U
1 4 — 1]e—1,,3tr—¢
XgFl i,'—,l, 4 Iu ll 4 du.
22 (u+ 1) u+1
For some fixed number p > 0 we divide the integral (3.24) into three parts
1-p 1+p [c2)
(3.25) My(1+et,r,e) = [/ +/ + ]
0 1-p 1+u
el —dt) e(1+at) 1
X2F1 ('—’I«T+ 5 y 2 ,6,1—52‘
e 1. 4du \|u—1flude
=1 d
X2 1(212’ ,(u+1)2) u+1 u

EII+I2+I3.
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It is easily seen that the integrals eI; and eI3, tend to zero as € — 0+ because these integrals
are absolutely and uniformly convergent in ¢ € [0,1]. Concerning the middle integral we use
the mean value theorem and get the relation

. y
(3.26) eI, = . F, (—iT+€(l2Zt),E(l-zi-Z);E;l_tul_z)

AW - R s 1
X, F 2,1/2;1; € u— 1" duy,
2L (5/ / ) (,U’l + 1)2) b+ 1 1—p | |

where p; € (1 — p,1+4 u). So putting now p = € after the evaluation of the integral, we get

lllgl+ el, = 1. Hence the relation (3.22) can be deduced by using the supplement formula for

gamma-function I'(z + 1) = 2T(2).
As in Theorem 2, we obtain the following estimates for norms of the function g.(7) in the
space L,(e7*";R;) C L,(Ry)

(327)  |lge(r) = 9(DIl1, (ememRy)

dt -0 (¢ — 0+4).

Ly(R4)

1 [7 1
< - / o o0+ et)en(t? + DM (7 + ety 7,) = o(7)]

But, on the other hand, since the operator MF[f](7)is bounded on Ly(e™*";R4) (1 < ¢ <
00), there exists the limit in L,-norm

(.29 Li MFULG)(7) = MF [Lim. (19)] () = MPLTY),

where f = Ig € L,. Since the operator MF[I,.g] converges in the norm of L,(¢™*";R) too,
then the limit function must coincide almost everywhere on R,. Thus, from the equality
(3.28) we obtain (3.2) and Theorem 3 is completely proved.
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