Certain subclasses of starlike functions of order α

関根忠行(日本大学薬学部)* 尾和重義(近畿大学理工学部)[†]

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$. Let S denote the subclass of A consisting of functions which are univalent in the unit disk U.

A function f(z) in A is said to be starlike of order α if it satisfies

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha$$

for some $\alpha(0 \le \alpha < 1)$ and for all z in U.

We denote by $S^*(\alpha)$ the subclass of S consisting of all starlike functions of order α in the unit disk U.

Let $S_1(\alpha, a)$, $S_2(\alpha, a)$ and $S_3(\alpha, a)$ denote the subclasses of S consisting of functions which satisfy

$$\left| \frac{zf'(z)}{f(z)} - a \right| < a - \alpha \quad (0 \le \alpha < 1),$$

for $1 \le a \le 2$, a > 2 and $\frac{1+\alpha}{2} < a < 1$, respectively.

It is clear that $S_i(\alpha, a) \subset S^{\stackrel{\checkmark}{*}}(\alpha)$ and $S_i(\alpha, a) \subseteq S_i(\alpha, b) (a \le b)$ for i = 1, 2, 3.

In [1. Theorem 1], Silverman have showed the sufficient condition for a function in S belongs to $S^*(\alpha)$. In this paper, we shall reconsider the sufficient condition by using the subclasses $S_i(\alpha, a)(i = 1, 2, 3)$ of $S^*(\alpha)$ defined above. Further, we determine the distortion theorems for certain subclasses $\tilde{S}_i(\alpha, a)$ of $S_i(\alpha, a)(i = 1, 2, 3)$.

2. Coefficient inequality

We shall now prove the following theorems in a same way of Theorem 1 of Silverman [1].

Theorem 1 Let $f(z) \in S$, $0 \le \alpha < 1$ and $1 \le a \le 2$. If

$$\sum_{n=2}^{\infty} (n - \alpha)|a_n| \le 1 - \alpha,$$

then $f(z) \in S_1(\alpha, a)$.

^{*}Tadayuki Sekine(Nihon University)

[†]Shigeyoshi Owa(Kinki University)

Proof. We have

$$\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{1 - a + \sum_{n=2}^{\infty} (n - a)a_n z^{n-1}}{1 + \sum_{n=2}^{\infty} a_n z^{n-1}} \right|$$

$$= \left| \frac{a - 1 - \sum_{n=2}^{\infty} (n - a)a_n z^{n-1}}{1 + \sum_{n=2}^{\infty} a_n z^{n-1}} \right|$$

$$\leq \frac{a - 1 + \sum_{n=2}^{\infty} (n - a)|a_n||z|^{n-1}}{1 - \sum_{n=2}^{\infty} |a_n||z|^{n-1}}$$

$$\leq \frac{a - 1 + \sum_{n=2}^{\infty} (n - a)|a_n|}{1 - \sum_{n=2}^{\infty} |a_n|}.$$

This last expression is bounded above by $a - \alpha$ if

$$|a-1+\sum_{n=2}^{\infty}(n-a)|a_n| \le (a-\alpha)\left(1-\sum_{n=2}^{\infty}|a_n|\right).$$
 (1)

Since the hypothessis of Theorem 1 is equivalent to the coefficient inequality (1), Theorem 1 is proved.

In the proof of Theorem 1 of Silverman [1], only the case of a=1 of the Theorem 1 above was considered.

Theorem 2 Let $f(z) \in S$, $0 \le \alpha < 1$ and a > 2. If

$$\sum_{n=2}^{j} (2a - n - \alpha)|a_n| + \sum_{n=j+1}^{\infty} (n - \alpha)|a_n| \le 1 - \alpha$$

for $j < a \le j + 1$, then $f(z) \in S_2(\alpha, a)$.

Proof. We have

$$\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{a - 1 + \sum_{n=2}^{j} (a - n)a_n z^{n-1} - \sum_{n=j+1}^{\infty} (n - a)a_n z^{n-1}}{1 + \sum_{n=2}^{\infty} a_n z^{n-1}} \right|$$

$$\leq \frac{a-1+\sum_{n=2}^{j}(a-n)|a_n||z|^{n-1}+\sum_{n=j+1}^{\infty}(n-a)|a_n||z|^{n-1}}{1-\sum_{n=2}^{j}|a_n||z|^{n-1}-\sum_{n=j+1}^{\infty}|a_n||z|^{n-1}}$$

$$\leq \frac{a-1+\sum_{n=2}^{j}(a-n)|a_n|+\sum_{n=j+1}^{\infty}(n-a)|a_n|}{1-\sum_{n=2}^{j}|a_n|-\sum_{n=j+1}^{\infty}|a_n|}.$$

This last expression is bounded above by $a - \alpha$ if

$$|a-1+\sum_{n=2}^{j}(a-\alpha)|a_n|+\sum_{n=j+1}^{\infty}(n-\alpha)|a_n| \le (a-\alpha)\left(1-\sum_{n=2}^{j}|a_n|-\sum_{n=j+1}^{\infty}|a_n|\right).$$
 (2)

(2) is equivalent to the hypothesis of Theorem 2. This completes the proof.

We can prove the following theorem by using the same way of Theorem 1 and Theorem 2.

Theorem 3 Let $f(z) \in S$, $0 \le \alpha < 1$ and $\frac{1+\alpha}{2} < \alpha < 1$. If

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \le 2a - 1 - \alpha,$$

then $f(z) \in S_3(a, \alpha)$.

3. Distortion theorems

We denote by $\tilde{S}_1(\alpha, a)$ the subclass of $S(\alpha, a)$ ($0 \le \alpha < 1, 1 \le a \le 2$) consisting of functions which satisfy

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \le 1 - \alpha. \tag{3}$$

Since a function

$$f(z) = z + \frac{1 - \alpha}{n - \alpha} z^n \tag{4}$$

in S belongs to $S(\alpha, a)$ and satisfies the coefficient inequality (3), this function (4) belongs to $\tilde{S}_1(\alpha, a)$. Therefore, the subclass $\tilde{S}_1(\alpha, a)$ is not empty.

Theorem 4 If $f(z) \in \tilde{S}_1(\alpha, a)$ $(0 \le \alpha < 1, 1 \le a \le 2)$, then

$$|z| - \frac{1-\alpha}{2-\alpha}|z|^2 \le |f(z)| \le |z| + \frac{1-\alpha}{2-\alpha}|z|^2.$$

Equality holds for the function

$$f(z) = z + \frac{1 - \alpha}{2 - \alpha} z^2.$$

Proof. By the assumption, note that

$$(2-\alpha)\sum_{n=2}^{\infty}|a_n|\leq \sum_{n=2}^{\infty}(n-\alpha)|a_n|\leq 1-\alpha,$$

that is, that

$$\sum_{n=2}^{\infty} |a_n| \le \frac{1-\alpha}{2-\alpha}.$$

Thus, we have

$$|f(z)| \le |z| + \sum_{n=2}^{\infty} |a_n| |z|^n$$

 $\le |z| + |z|^2 \sum_{n=2}^{\infty} |a_n|$
 $\le |z| + |z|^2 \frac{1-\alpha}{2-\alpha},$

and

$$|f(z)| \ge |z| - \sum_{n=2}^{\infty} |a_n||z|^n$$

 $\ge |z| - |z|^2 \sum_{n=2}^{\infty} |a_n|$
 $\ge |z| - |z|^2 \frac{1-\alpha}{2-\alpha}$

We denote by $\tilde{S}_2(\alpha, a)$ the subclass of $S(\alpha, a)$ ($0 \le \alpha < 1, a > 2$) consisting of functions which satisfy

$$\sum_{n=2}^{j} (2a - n - \alpha)|a_n| + \sum_{n=j+1}^{\infty} (n - \alpha)|a_n| \le 1 - \alpha,$$

where $j < a \le j + 1$. Just as in the case of $\tilde{S}_1(\alpha, a)$, by taking a function

$$f(z) = z + \frac{1-\alpha}{2(2a-k-\alpha)}z^k + \frac{1-\alpha}{2(l-\alpha)}z^l,$$

where $2 \le k \le j$ and $j+1 \le l < \infty$, we see that $\tilde{S}_2(\alpha, a)$ is not empty.

Theorem 5 If $f(z) \in \tilde{S}_2(\alpha, a)$ $(0 \le \alpha < 1, a > 2)$, then

$$|z| - \frac{1 - \alpha}{2a - j - \alpha}|z|^2 \le |f(z)| \le |z| + \frac{1 - \alpha}{2a - j - \alpha}|z|^2, \tag{5}$$

for
$$a - \frac{1}{2} \le j < a$$

and

$$|z| - \frac{1 - \alpha}{j + 1 - \alpha}|z|^2 \le |f(z)| \le |z| + \frac{1 - \alpha}{j + 1 - \alpha}|z|^2,\tag{6}$$

for $a - 1 \le j < a - \frac{1}{2}$. These results are sharp.

Proof. Since $2a - n - \alpha$ and $n - \alpha$ are decreasing and increasing for n, respectively, by the assumption we note that

$$(2a-j-\alpha)\sum_{n=2}^{j}|a_n|+(j+1-\alpha)\sum_{n=j+1}^{\infty}|a_n|\leq 1-\alpha.$$

Then, we have

$$\sum_{n=2}^{\infty} |a_n| \le \frac{1-\alpha}{2a-j-\alpha} \qquad (a - \frac{1}{2} \le j < a), \tag{7}$$

and

$$\sum_{n=2}^{\infty} |a_n| \le \frac{1-\alpha}{j+1-\alpha} \qquad (a-1 \le j < a - \frac{1}{2}).$$
 (8)

By using (7), we have

$$|f(z)| \leq |z| + \sum_{n=2}^{\infty} |a_n||z|^n$$

$$\leq |z| + |z|^2 \sum_{n=2}^{\infty} |a_n|$$

$$\leq |z| + |z|^2 \frac{1 - \alpha}{2a - i - \alpha},$$

and

$$|f(z)| \geq |z| - \sum_{n=2}^{\infty} |a_n| |z|^n$$

$$\geq |z| - |z|^2 \sum_{n=2}^{\infty} |a_n|$$

$$\geq |z| - |z|^2 \frac{1 - \alpha}{2a - j - \alpha}.$$

Equality of (5) holds for the function

$$f(z) = z + \frac{1 - \alpha}{2a - i - \alpha}z^2.$$

Using coefficient inequality (8) we can obtain the latter of Theorem 1 similarly. Equality of (6) holds for the function

$$f(z) = z + \frac{1 - \alpha}{j + 1 - \alpha} z^2.$$

Let $\tilde{S}_3(\alpha, a)$ be the subclass of $S(\alpha, a)$ $(0 \le \alpha < 1, \frac{1+\alpha}{2} < a < 1)$ consisting of functions

which satisfy

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \le 2a - 1 - \alpha.$$

Then, the subclass $\tilde{S}_3(\alpha, a)$ is not empty, because there exists a function

$$f(z) = z + \frac{2a - 1 - \alpha}{n - \alpha} z^n$$

in $\tilde{S}_3(\alpha, a)$.

We can prove the following theorem in the same way of Theorem 4 and 5.

Theorem 6 If $f(z) \in \widetilde{S}_3(\alpha, a)$ $(0 \le \alpha < 1, \frac{1+\alpha}{2} < a < 1)$, then

$$|z| - \frac{2a - 1 - \alpha}{2 - \alpha}|z|^2 \le |f(z)| \le |z| + \frac{2a - 1 - \alpha}{2 - \alpha}|z|^2.$$

Equality holds for the function

$$f(z) = z + \frac{2a - 1 - \alpha}{2 - \alpha}z^2.$$

References

[1] H.Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.

Tadayuki Sekine
Department of Mathematics
College of Pharmacy
Nihon University
7-1, Narashinodai 7-Chome, Funabashi-shi, Chiba 274
Japan

Shigeyoshi Owa Department of Mathematics College of Science and Technology Kinki University Higashi-Osaka, Osaka 577 Japan