# ON REDUCIBLE FINITE SUBGROUPS OF MAPPING CLASS GROUPS OF SURFACES

## YASUSHI KASAHARA (笠原 泰)

Department of Mathematics, Tokyo Institute of Technology

### Introduction

Let  $\Sigma_g$  be the closed connected orientable surface of genus  $g \geq 2$ . By an automorphism of  $\Sigma_g$ , we mean an element of the mapping class group  $\mathcal{M}_g$  which is the group of the isotopy classes of orientation preserving diffeomorphisms. We recall some definitions mainly from [T]. A periodic automorphism is the one which is of finite order in  $\mathcal{M}_g$ . A non empty 1-submanifold is said to be essential if it is compact, and its no two components are homotopic and no components are null-homotopic. A reducible automorphism is the one which fixes the isotopy class of some essential 1-submanifold of  $\Sigma_g$ .

In §1, we describe the relation between order and reducibility of periodic automorphisms. The result shows that the order of a periodic automorphism determine its reducibility unless g is even and the order is 2g+2. This exception occurs because there is a periodic diffeomorphism  $\Sigma_g \to \Sigma_g$  of order 4g + 2 with a fixed point for any  $g \ge 1$ . The proof is based on the geometric characterization of irreducible finite subgroup of  $\Sigma_g$  by Gilman, and cyclicity condition for 2-orbifolds by Harvey. Details of this section can be found in [Ka].

In §2, via Nielsen realization theorem [N, Ke], we consider decompositions of any finite subgroup of  $\mathcal{M}_g$  along oriented essential 1-submanifolds, and describe the quotient orbifold types appearing in "*irreducible*" decompositions after capping off 2-disks to obtain closed orbifolds.

Typeset by  $\mathcal{AMS}$ -TEX

Notation. We denote by  $\Sigma_{\gamma}(m_1, m_2, \dots, m_n)$  the 2-dimensional orbifold whose underlying surface is  $\Sigma_{\gamma}$  and whose singular locus consists of n cone points with singular indices  $m_1, m_2, \dots, m_n$ , respectively. We also write  $S^2(m_1, \dots, m_n)$  when  $\gamma = 0$ .

## 1. Reducibility and orders of periodic automorphisms

This section is devoted to prove the following.

**Theorem 1.1.** Let  $\mathfrak{f} \in \mathcal{M}_g$  be a periodic automorphism of order N. Then, the followings hold:

- (I) if f is irreducible, then  $N \ge 2g + 1$ ,
- (II) if f is reducible, then  $N \leq 2g + 2$  and  $N \neq 2g + 1$ ; furthermore, if the genus g is odd, then  $N \leq 2g$ .

All the inequalities are best possible. That is to say, there certainly exists a periodic automorphism of  $\Sigma_g$  having as order the value of the right-hand term of each inequality, with required reducibility. On the other hand,  $\Sigma_g$  has always a periodic and irreducible automorphism of order 2g + 2.

#### **Proof of inequalities.**

Given a periodic automorphism  $\mathfrak{f} \in \mathcal{M}_g$  of order N, by Nielsen realization theorem, it can be represented by a periodic diffeomorphism  $f: \Sigma_g \to \Sigma_g$  of the same order N. We denote by  $O_f$  the quotient orbifold of  $\Sigma_g$  by the cyclic action generated by f. Then  $\mathfrak{f}$  is irreducible if and only if  $O_f$  is of the form  $S^2(m_1, m_2, m_3)$ where  $m_1, m_2, m_3 \geq 2$  for any (and then necessarily all) Nielsen realization f [Gi].

Then, the inequality of (i) directly follows from the Riemann-Hurwitz formula for the canonical projection  $\pi: \Sigma_g \to O_f (=S^2(m_1, m_2, m_3))$  since each  $m_i \leq N$ .

To obtain the rest of the inequalities in (ii), instead of estimating order N while the genus g fixed, we obtain the minimum genus  $g_{min}(N)$  of surfaces which admit a periodic and reducible automorphism of a fixed order N. Depending on the form of prime decomposition of N, it is described as follows:

**Theorem 1.2.** Let N be an integer  $\geq 2$  with prime decomposition  $p_1^{r_1} \cdots p_k^{r_k}$  where each  $p_i$  is prime, each  $r_i \geq 1$ , and  $p_1 < p_2 < \cdots < p_k$ . Then, the minimum genus

 $g_{min}(N)$  of surfaces which admit a periodic and reducible automorphism of order N is given by

$$\begin{array}{ll} (i) & g_{min}(N) = & \max\left\{2, (p_1 - 1)\frac{N}{p_1}\right\}, & \text{if } r_1 > 1 \text{ or } N \text{ is prime}, \\ (ii) & g_{min}(N) = N - \frac{1}{2}\left(\frac{N}{p_1} + \frac{N}{p_2} + \frac{N}{p_3} - 1\right), & \text{if } N = p_1 p_2 p_3 \\ & \text{and } p_3 \leq \frac{p_1 p_2 - 2p_1 + 1}{p_2 - p_1}, \\ (iii) & g_{min}(N) = & (p_1 - 1)\left(\frac{N}{p_1} - 1\right), & \text{otherwise.} \end{array}$$

Now, we see that the rest of the inequalities follow from Theorem 1.2. Let N be the order of any periodic and reducible automorphism of  $\Sigma_g$ . Then, by definition, it holds that  $g_{min}(N) \leq g$ . According to the form of the prime decomposition of N, replacing the left-hand side by the term given by Theorem 1.2, we obtain  $N \leq 2g+2$ . Next, we can see that  $g_{min}(2g+1) > g$  and therefore N cannot be 2g+1.

Suppose now g is odd. Then we can also see  $g_{min}(2g+2) > g$ , which implies that N cannot be 2g+2, and therefore  $N \leq 2g$ .

A sketchy proof of Theorem 1.2 is given in the end of this section.

#### Examples.

Now, we describe examples of periodic automorphisms which should assure the best possibility of each inequality. It is known that an orbifold  $\Sigma_{\gamma}(m_1, m_2, \dots, m_n)$  is an *N*-cyclic quotient of some compact surface if and only if it satisfies the following conditions [H]:

- (i)  $lcm(m_1, \dots, \hat{m_i}, \dots, m_n) = lcm(m_1, \dots, m_n)$  where  $m_i$  denotes the omission of  $m_i$ .  $(i = 1, 2, \dots, n)$ ;
- (ii)  $lcm(m_1, \dots, m_n)$  divides N, and if  $\gamma = 0$ ,  $lcm(m_1, \dots, m_n) = N$ ;
- (iii)  $n \neq 1$ ;
- (iv) if  $lcm(m_1, \dots, m_n)$  is even, then the number of  $m_i$ 's divisible by the maximum power of 2 dividing  $lcm(m_1, \dots, m_n)$  is even.

We call such an orbifold N-cyclic. Note that the genus of N-cyclically covering surface of a given N-cyclic orbifold is determined *uniquely* by the Riemann-Hurwitz

43

formula. Now, it is easy to see that the following three orbifolds give examples of periodic and reducible automorphisms of  $\Sigma_g$  which show that equality holds for each inequality of Theorem 1.1, respectively:  $S^2(2g+1, 2g+1, 2g+1)$ ;  $S^2(2, 2, g+1, g+1)$ (g: even);  $S^2(2, 2, 2g, 2g)$ .

Also, the orbifold  $S^2(g + 1, 2g + 2, 2g + 2)$  gives an example of periodic and irreducible automorphism of  $\Sigma_g$  of order 2g + 2. This complete the proof of Theorem 1.1.

#### Proof of Theorem 1.2.

For an N-cyclic orbifold  $\Sigma_{\gamma}(m_1, \dots, m_n)$ , the genus of the N-cyclic covering surface g is given by

(\*) 
$$g = 1 + N(\gamma - 1) + \frac{1}{2}N\sum_{i=1}^{n}(1 - \frac{1}{m_i})$$

Therefore,  $g_{min}(N)$  is the minimum value of (\*) where  $\Sigma_{\gamma}(m_1, \dots, m_n)$  varies all the orbifolds which are not of the type  $S^2(m_1, m_2, m_3)$ , satisfying Harvey's cyclicity conditions (i)-(iv).

So far as  $\gamma = 0$  and n = 4, the minimum of (\*) corresponds to the maximum of  $1/m_1 + 1/m_2 + 1/m_3 + 1/m_4$  where  $lcm(m_2, m_3, m_4) = lcm(m_1, m_3, m_4) =$  $lcm(m_1, m_2, m_4) = lcm(m_1, m_2, m_3) = N$ . By dividing into several subcases carefully, the calculation of this maximum is reduced to the calculation of the maximum of 1/x + 1/y + 1/z where lcm(x, y) = lcm(y, z) = lcm(z, x) = given positive integer. The latter maximum was given by Harvey [H]. The result of calculation gives the value expected for  $g_{min}(N)$ .

If  $\gamma \neq 0$  or  $n \neq 4$ , it can be checked that the value of (\*) does not exceed the minimum for the case  $\gamma = 0$  and n = 4 so far as  $\gamma$  and  $m_i$ 's satisfy (i)-(iv). Therefore,  $g_{min}(N)$  is not less than the expected value.

The following three N-cyclic orbifolds realize the minimum genus according to the form of prime decomposition of N:  $S^2(p_1, p_1, N, N)$ ;  $S^2(p_1, p_2, p_3)$   $(N = p_1p_2p_3)$ ;  $S^2(p_1, p_1, N/p_1, N/p_1)$   $(r_1 = 1, k \ge 2)$ . This completes the proof of Theorem 1.2.

## 2. Irreducible decomposition

Let  $\overrightarrow{\mathcal{E}}$  be the set of the isotopy classes of oriented essential 1-submanifolds of  $\Sigma_g$ . Transformation of 1-submanifolds by diffeomorphisms naturally induces an action of  $\mathcal{M}_g$  on  $\overrightarrow{\mathcal{E}}$ . Let  $\mathfrak{G}$  be a finite subgroup of  $\mathcal{M}_g$ . We denote by  $\overrightarrow{\mathcal{E}\mathfrak{G}}$  the subset of  $\overrightarrow{\mathcal{E}}$  consisting of the elements fixed by every  $g \in \mathfrak{G}$ . If  $G \subset \text{Diff}^+ \Sigma_g$  is any Niesen realization of  $\mathfrak{G}$ , it is easy to see that any  $\overrightarrow{e} \in \overrightarrow{\mathcal{E}\mathfrak{G}}$  has a representative  $\overrightarrow{E} \subset \Sigma_g$ such that  $G(\overrightarrow{E}) = \overrightarrow{E}$ . Then, the action of G on  $\Sigma_g$  decomposes into the pair of:

- (1) the permutation of the connected components of  $\Sigma_g \smallsetminus \vec{E}$ ;
- (2) actions on each connected component of  $\Sigma_g \smallsetminus \overrightarrow{E}$  of its stabilizer.

Note that any  $\overrightarrow{e} \in \overrightarrow{\mathcal{EG}}$  is contained in a maximal element of  $\overrightarrow{\mathcal{EG}}$  according to the inclusion order since the number of the connected components of an essential 1-submanifold is at most 3g - 3. Among the decompositions as above, it might be natural to call a decomposition corresponding to a maximal element of  $\overrightarrow{\mathcal{EG}}$  an *irreducible decomposition* of G.

In this section, we describe the orbifolds appearing as the quotient of connected component of  $\Sigma_g \smallsetminus \vec{E}$  by its stabilizer after capping off 2-disks to the boundary of the component.

Now, we set the notation. We fix G and  $\vec{E}$  as above. We denote by  $S_i$  a connected component of  $\Sigma_g \setminus \vec{E}$ . We take a completion  $M'_i$  of  $S_i$  as follows. Let  $\tilde{S}_i$  be the universal covering of  $S_i$  embedded in  $\tilde{\Sigma}_g$  via a lift of the inclusion  $S_i \to \Sigma_g$ . Then  $\pi_1(S_i)$  acts on the closure  $\tilde{S}_i$ . We set  $M'_i$  as the quotient  $\tilde{S}_i/\pi_1(S_i)$ . Next, for each boundary component of  $M'_i$ , we cap off 2-disk identifying it with the cone of the boundary component, and obtain a closed surface  $M_i$ . Then, the stabilizer  $G_i$  of  $S_i$  naturally acts on  $M_i$ . We denote the quotient orbifold  $M_i/G_i$  by  $O_i$ .

**Theorem 2.1.** Let  $\overrightarrow{E} \subset \Sigma_g$  be an oriented essential 1-submanifold which is invariant under the G-action. If its representing class  $[\overrightarrow{E}]$  is maximal in  $\overrightarrow{\mathcal{EG}}$ , then the corresponding quotient orbifold  $O_i = M_i/G_i$  for any connected component  $S_i$  of  $\Sigma_g \smallsetminus \overrightarrow{E}$  is described as follows:

(i) If  $G_i$  is a trivial group, then  $O_i$  is isomorphic to the 2-sphere  $S^2$ .

(ii) If  $G_i$  is not trivial, then the orbifold isomorphism class of  $O_i$  is one of the followings according to the genus  $g_i$  of  $M_i$ .

- (a)  $g_i \ge 2$ :  $S^2(2, 2, 2, 2, 2)$ ,  $S^2(2, 2, 2, m)$   $(m \ge 3)$ ,  $S^2(m_1, m_2, m_3)$   $(m_1, m_2, m_3 \ge 2$ , and  $\frac{1}{m_1} + \frac{1}{m_2} + \frac{1}{m_3} < 1$ ;
- (b)  $g_i = 1$ :  $S^2(2, 2, 2, 2)$ ,  $S^2(3, 3, 3)$ ,  $S^2(2, 4, 4)$ ,  $S^2(2, 3, 6)$ ;
- (c)  $g_i = 0$ :  $S^2(2,3,3)$ ,  $S^2(2,3,4)$ ,  $S^2(2,3,5)$ ,  $S^2(2,2,m)$ ,  $S^2(m,m)$   $(m \ge 2)$ .

Moreover, any orbifold type above certainly appears in some irreducible decomposition for some  $g \ge 2$ .

The theorem follows from the next two lemmas.

**Lemma 2.2.** There exists an oriented essential 1-submanifold  $\overrightarrow{E}_0$  of  $M_i$  invariant under the  $G_i$ -action so that  $\overrightarrow{E}_0 \subset \mathring{M}'_i$ .

**Lemma 2.3.** Let  $\vec{E}_0 \subset S_i$  be another  $G_i$ -invariant oriented essential 1-submanifold of  $\Sigma_g$ . Suppose that  $\vec{E}_0 \cup \vec{E}$  also form an essential 1-submanifold of  $\Sigma_g$ . Then,  $G(\vec{E}_0) \cup \vec{E}$  is a G-invariant oriented essential 1-submanifold of  $\Sigma_g$ .

#### References

- [Gi] J. Gilman, Structures of elliptic irreducible subgroups of the modular group, Proc. London Math. Soc. (3) 47 (1983), 27-42.
- [H] W.J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J.
  Math. Oxford (2) 17 (1966), 86-97.
- [Ka] Y. Kasahara, Reducibility and orders of periodic automorphisms of surfaces, Osaka J. Math.
  28 (1991), 985-997.
- [Ke] S.P. Kerckhoff, The Nielsen realization problem, Ann. Math. 117 (1983), 235-265.
- [N] J. Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1942), 23-115.
- [T] W.P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer.
  Math. Soc. 19 (1988), 417-431.