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ON REDUCIBLE FINITE
SUBGROUPS OF MAPPING CLASS GROUPS OF SURFACES

YASUSHI KASAHARA (笠原泰)

Department of Mathematics, Tokyo Institute of Technology

Introduction

Let $\Sigma_{g}$ be the closed connected orientable surface of genus $g\geq 2$ . By an

automorphism of $\Sigma_{g}$ , we mean an element of the mapping class group $\mathcal{M}_{g}$ which is

the group of the isotopy classes of orientation preserving diffeomorphisms. We recall

some definitions mainly from [T]. A periodic automorphism is the one which is of

finite order in $\mathcal{M}_{g}$ . A non empty l-submanifold is said to be essential if it is compact,

and its no two components are homotopic and no components are null-homotopic.

A reducible automorphism is the one which fixes the isotopy class of some essential

l-submanifold of $\Sigma_{g}$ .

In \S 1, we describe the relation between order and reducibility of periodic auto-

morphisms. The result shows that the order of a periodic automorphism determine

its reducibility unless $g$ is even and the order is $2g+2$ . This exception occurs because

there is a periodic diffeomorphism $\Sigma_{g}arrow\Sigma_{g}$ of order $4g+2$ with a fixed point for

any $g\geq 1$ . The proof is based on the geometric characterization of irreducible finite

subgroup of $\Sigma_{g}$ by Gilman, and cyclicity condition for 2-orbifolds by Harvey. Details

of this section can be found in [Ka].

In \S 2, via Nielsen realization theorem [$N$ , Ke], we consider decompositions of

any finite subgroup of $\mathcal{M}_{g}$ along oriented essential l-submanifolds, and describe the

quotient orbifold types appearing in “irreducible” decompositions after capping off

2-disks to obtain closed orbifolds.
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Notation. We denote by $\Sigma_{\gamma}(m_{1}, m_{2}, \cdots m_{n})$ the 2-dimensional orbifold whose un-

derlying surface is $\Sigma_{\gamma}$ and whose singular locus consists of $n$ cone points with singular

indices $m_{1},$ $m_{2},$ $\cdots,$ $m_{n}$ , respectively. We also write $S^{2}(m_{1}, \cdots m_{n})$ when $\gamma=0$ .

1. Reducibility and orders of periodic automorphisms

This section is devoted to prove the following.

Theorem 1.1. Let $f\in \mathcal{M}_{g}$ be a $p$eriodic automorph$ism$ of order N. Then, the

followings hold:

(I) if $f$ is irreducible, then $N\geq 2g+1$ ,

(II) if $f$ is reducible, then $N\leq 2g+2$ an$dN\neq 2g+1$ ;

furthermore, if the genus $g$ is odd, $th$ en $N\leq 2g$ .

All the inequalities are $b$ est possi $ble$ . That is to $say$, there certain$ly$ exists a

periodi $c$ au tomorphism of $\Sigma_{9}$ having as order the value of the right-han $d$ term of $each$

inequality, with require$d$ reducibili $ty$. On the other hand, $\Sigma_{g}h$as always a $p$eriodic

and irreducible automorphism of order $2g+2$ .

Proof of inequalities.

Given a periodic automorphism $f\in \mathcal{M}_{g}$ of order $N$ , by Nielsen realization

theorem, it can be represented by a periodic diffeomorphism $f:\Sigma_{g}arrow\Sigma_{g}$ of the

same order $N$ . We denote by $O_{f}$ the quotient orbifold of $\Sigma_{g}$ by the cyclic action

generated by $f$ . Then $f$ is irreducible if and only if $O_{f}$ is of the form $S^{2}(m_{1}, m_{2}, m_{3})$

where $m_{1},$ $m_{2},$ $m_{3}\geq 2$ for any (and then necessarily all) Nielsen realization $f$ [Gi].

Then, the inequality of (i) directly follows from the Riemann-Hurwitz formula

for the canonical projection $\pi:\Sigma_{g}arrow 0_{f}(=S^{2}(m_{1}, m_{2}, m_{3}))$ since each $m_{i}\leq N$ .
To obtain the rest of the inequalities in (ii), instead of estimating order $N$ while

the genus $g$ fixed, we obtain the minimum genus $g_{\min}(N)$ of surfaces which admit a

periodic and reducible automorphism of a fixed order $N$ . Depending on the form of

prime decomposition of $N$ , it is described as follows:

Theorem 1.2. Let $N$ be an in teger $\geq 2$ with prime decomposition $p_{1}^{r_{1}}\cdots p_{k}^{r_{k}}$ where

each $p$; is prim$e,$ $eachr_{i}\geq 1$ , and $p_{1}<p_{2}<--$ $<p_{k}$ . Then, the minimum genus
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$g_{\min}(N)$ of surfa ces which admit a periodic an $d$ reducible automorphism of order $N$

is given by

(i) $g_{\min}(N)=$ $\max\{2,$ $(p_{1}-1) \frac{N}{p_{I}}\}$ , if $r_{1}>1$ or $N$ is prime,

(ii) $g_{\min}(N)=N- \frac{1}{2}(\frac{N}{p_{1}}+\frac{N}{p_{2}}+\frac{N}{p_{3}}-1)$ , if $N=p_{1}p_{2}p_{3}$

and $p_{3} \leq\frac{p_{1}p_{2}-2p_{1}+1}{p_{2}-p_{1}}$

(iii) $g_{\min}(N)=$ $(p_{1}-1)( \frac{N}{p_{1}}-1)$ , otherwise.

Now, we see that the rest of the inequalities follow from Theorem 1.2. Let $N$

be the order of any periodic and reducible automorphism of $\Sigma_{g}$ . Then, by definition,

it holds that $g_{\min}(N)\leq g$ . According to the form of the prime decomposition of $N$ ,

replacing the left-hand side by the term given by Theorem 1.2, we obtain $N\leq 2g+2$ .
Next, we can see that $g_{\min}(2g+1)>g$ and therefore $N$ cannot be $2g+1$ .

Suppose now $g$ is odd. Then we can also see $g_{\min}(2g+2)>g$ , which implies

that $N$ cannot be $2g+2$ , and therefore $N\leq 2g$ .

A sketchy proof of Theorem 1.2 is given in the end of this section.

Examples.

Now, we describe examples of periodic automorphisms which should assure the

best possibility of each inequality. It is known that an orbifold $\Sigma_{\gamma}(m_{1}, m_{2}, \cdots m_{n})$

is an N-cyclic quotient of some compact surface if and only if it satisfies the following

conditions [H]:

(i) $lcm(m_{1}, \cdots\hat{m}_{i}, \cdots m_{n})=lcm(m_{1}, \cdots m_{n})$ where $m_{i}$ denotes the omission

of $m_{i}$ . $(i=1,2, \cdots n)$ ;

(ii) $lcm(m_{1}, \cdots m_{n})$ divides $N$ , and if $\gamma=0,$ $lcm(m_{1}, \cdots m_{n})=N$ ;

(iii) $n\neq 1$ ;

(iv) if $lcm(m_{1}, \cdots m_{n})$ is even, then the number of $m_{i}’ s$ divisible by the maxi-

mum power of 2 dividing $lcm(m_{1}, \cdots m_{n})$ is even.

We call such an orbifold N-cyclic. Note that the genus of N-cyclically covering

surface of a given N-cyclic orbifold is determined uniquely by the Riemann-Hurwitz
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formula. Now, it is easy to see that the following three orbifolds give examples of

periodic and reducible automorphisms of $\Sigma_{g}$ which show that equality holds for each

inequality of Theorem 1.1, respectively: $S^{2}(2g+1,2g+1,2g+1);S^{2}(2,2, g+1, g+1)$

( $g$ : even); $S^{2}(2,2,2g,2g)$ .

Also, the orbifold $S^{2}(g+1,2g+2,2g+2)$ gives an example of periodic and

irreducible automorphism of $\Sigma_{g}$ of order $2g+2$ . This complete the proof of Theorem

1.1.

Proof of Theorem 1.2.

For an N-cyclic orbifold $\Sigma_{\gamma}(m_{1}, \cdots m_{n})$ , the genus of the N-cyclic covering

surface $g$ is given by

$(^{*})$ $g=1+N( \gamma-1)+\frac{1}{2}N\sum_{i=1}^{n}(1-\frac{1}{m_{i}})$

Therefore, $g_{\min}(N)$ is the minimum value of $(^{*})$ where $\Sigma_{\gamma}(m_{1}, \cdots m_{n})$ varies all

the orbifolds which are not of the type $S^{2}(m_{1}, m_{2}, m_{3})$ , satisfying Harvey’s cyclicity

conditions $(i)-(iv)$ .

So far as $\gamma=0$ and $n=4$ , the minimum of $(^{*})$ corresponds to the maxi-

mum of $1/m_{1}+1/m_{2}+1/m_{3}+1/m_{4}$ where $lcm(m_{2}, m_{3}, m_{4})=lcm(m_{1}, m_{3}, m_{4})=$

$lcm(m_{1}, m_{2}, m_{4})=lcm(m_{1}, m_{2}, m_{3})=N$ . By dividing into several subcases care-

fully, the calculation of this maximum is reduced to the calculation of the maximum

of $1/x+1/y+1/z$ where $lcm(x, y)=lcm(y, z)=lcm(z, x)=given$ positive integer.

The latter maximum was given by Harvey [H]. The result of calculation gives the

value expected for $g_{\min}(N)$ .

If $\gamma\neq 0$ or $n\neq 4$ , it can be checked that the value of $(^{*})$ does not exceed the

minimum for the case $\gamma=0$ and $n=4$ so far as $\gamma$ and $m_{i}’ s$ satisfy $(i)-(iv)$ . Therefore,

$g_{\min}(N)$ is not less than the expected value.

The following three N-cyclic orbifolds realize the minimum genus according to

the form of prime decomposition of $N:S^{2}(p_{1},p_{1}, N, N);S^{2}(p_{1},p_{2},p_{3})(N=p_{1}p_{2}p_{3})$ ;

$S^{2}(p_{1},p_{1}, N/p_{1}, N/p_{I})(r_{1}=1, k\geq 2)$ . This completes the proof of Theorem 1.2.
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2. Irreducible decomposition

$Letarrow \mathcal{E}$ be the set of the isotopy classes of oriented essential l-submanifolds

of $\Sigma_{g}$ . Transformation of l-submanifolds by diffeomorphisms naturally induces an

action of $\mathcal{M}_{g}$ on $arrow \mathcal{E}$ . Let $\emptyset$ be a finite subgroup of $\mathcal{M}_{g}$ . We denote by $\mathcal{E}\emptysetarrow$ the subset
$ofarrow \mathcal{E}$ consisting of the elements fixed by every $g\in \mathfrak{G}$ . If $G\subset Diff^{+}\Sigma_{g}$ is any Niesen

realization of $\emptyset$ , it is easy to see that $anyarrow e\in \mathcal{E}\emptysetarrow$ has a representative $\not\supset\subset\Sigma_{g}$

such that $G(E)arrow=arrow E$ . Then, the action of $G$ on $\Sigma_{g}$ decomposes into the pair of:

(1) the permutation of the connected components of $\Sigma_{g}\backslash \Xi$ ;

(2) actions on each connected component of $\Sigma_{g}\backslash arrow E$ of its stabilizer.

Note that any $arrow e\in \mathcal{E}\mathfrak{G}arrow$ is contained in a maximal element of $\mathcal{E}\emptysetarrow$ according to

the inclusion order since the number of the connected components of an essential

l-submanifold is at most $3g-3$ . Among the decompositions as above, it might

be natural to call a decomposition corresponding to a maximal element of $\mathcal{E}\emptysetarrow$ an

irreducible decomposition of $G$ .

In this section, we describe the orbifolds appearing as the quotient of connected

component of $\Sigma_{g}\backslash arrow E$ by its stabilizer after capping off 2-disks to the boundary of

the component.

Now, we set the notation. We fix $G$ and $arrow E$ as above. We denote by $S_{i}$ a

connected component of $\Sigma_{g}\backslash arrow E$ . We take a completion $M_{i}’$ of $S_{i}$ as follows. Let $\tilde{S}_{i}$

be the universal covering of $S_{i}$ embedded in $\Sigma_{g}^{\sim}$ via a lift of the inclusion $S_{i}arrow\Sigma_{g}$ .
Then $\pi_{1}(S_{i})$ acts on the closure $\overline{\tilde{S}}_{i}$ . We set $M_{i}’$ as the quotient $\overline{\tilde{S}}_{i}/\pi_{1}(S_{i})$ . Next, for

each boundary component of $M_{i}’$ , we cap off 2-disk identifying it with the cone of the

boundary component, and obtain a closed surface $M_{i}$ . Then, the stabilizer $G_{i}$ of $S_{i}$

naturally acts on $\Lambda\phi_{i}$ . We denote the quotient orbifold $M_{i}/G_{i}$ by $O_{i}$ .

Theorem 2.1. $Letarrow E\subset\Sigma_{g}$ be an orien$ted$ essen $tiaJ$ l-submanifold which is in-

varian $t$ under the G-a ction. If its representing class $[E]arrow$ is maxim$aJ$ in $\mathcal{E}\emptysetarrow$ , then

the corresponding $Q$ uotient orbifold $O_{i}=M_{i}/G_{i}$ for any $conn$ected component $S_{i}$ of
$\Sigma_{9}\backslash arrow E$ is described as follows:

(i) If $G_{i}$ is a trivial $gro$up, $th$en $O_{i}$ is isomorphic to the 2-sphere $S^{2}$ .
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(ii) If $G_{i}$ is not trivial, then the orbifold isomorphism class of $O_{i}$ is one of the

followings accord$ing$ to the genus $g_{i}$ of $M_{i}$ .

(a) $g_{i}\geq 2:S^{2}(2,2,2,2,2),$ $S^{2}(2,2,2, m)(m\geq 3),$ $S^{2}(m_{1}, m_{2}, m_{3})(m_{1},$ $m_{2}$ ,

$m_{3}\geq 2$ , and $\frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}}<1$ );

(b) $g_{i}=1:S^{2}(2,2,2,2),$ $S^{2}(3,3,3),$ $S^{2}(2,4,4),$ $S^{2}(2,3,6)$ ;

(c) $g_{i}=0:S^{2}(2,3,3),$ $S^{2}(2,3,4),$ $S^{2}(2,3,5),$ $S^{2}(2,2, m),$ $S^{2}(m, m)(m\geq 2)$ .

Moreo$ver$, any orbifold type above $cer$tainly appears in some irreducible decom-

position for some $g\geq 2$ .

The theorem follows from the next two lemmas.

Lemma 2.2. There exists an oriented essential 1-subm$anifoldarrow E_{0}$ of $M_{i}$ invariant

under the $G_{i}$ -action so $thatarrow E_{0}\subset\mathring{M}_{i}$ .

Lemma 2.3. $Letarrow E_{0}\subset S_{i}$ be another $G_{i}$ -invariant orien $ted$ essential l-submanifold

of $\Sigma_{g}$ . Suppos$ethatarrow E_{0}\cuparrow E$ also form an essential l-submanifold of $\Sigma_{g}$ . Then,
$G(E_{0})arrow\cuparrow E$ is a G-invariant oriented $ess$ential l-submanifold of $\Sigma_{g}$ .
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