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FLOER’S INFINITE DIMENSIONAL MORSE
THEORY AND HOMOTOPY THEORY

R.L. COHEN, J.D.S. JONES, AND G.B. SEGAL

\S 1 INTRODUCTION

This paper is a progress reportl on our efforts to understand the ho-
motopy theory underlying Floer homology. Its objectives are as follows:

(A) to describe some of our ideas concerning what, exactly, the Floer
homology groups compute;

(B) to explain what kind of an object we think the ‘Floer homotopy
type’ of an infinite dimensional manifold should be;

(C) to work out, in detail, the Floer homotopy type in some examples.
$\backslash Ve$ have not solved the problems posed by the underlying questions, but $\backslash ve$

do have aprogramme which we hope will lead to solutions. Thus it seems
worthwhile to describe.our ideas now, especially in avolume of papers
dedicated to the memory of Andreas Floer. $\backslash 4^{t}e$ plan to write acomplete
account of this approach to Floer homotopy $t$,heory in afuture paper.

Floer homology arises in two different contexts, the study of $c\iota lrves$

and surfaces in symplectic manifolds, and gauge theory on three- and four-
dimensional manifolds. In each of these contexts there are two different
perspectives, which one can think of as ‘Hamiltonian’ and ‘Lagrangian’.

The theory began with Floer’s proof of the Arnold conjecture. On
acompact symplectic manifold $M$ aHamiltonian flow is generated by a
Hamiltonian function $h$ : $Marrow \mathbb{R}$ , and the stationary points of the flow
are the critical points of $h$ . Classical Morse theory tells us that $ther\dot{e}$ are
at leaet ae many such points as the dimension of the homology $H_{*}(M;\mathbb{R})$ .
Arnold conjectured that the same is true of the number of fixed points
of adiffeomorphism $\varphi_{1}$ : $Marrow M$ which arises from atime dependent
Hamiltonian flow $\{\varphi_{t}\}_{0\leq t\leq 1}$ . The trajectories of such aflow are critical
points of the ‘action functional’ $S_{h}$ on the space of paths $\gamma$ : $[0,1]arrow M$ ,
where

$S_{h}( \gamma)=\int_{\gamma}(pdq-hdt)$ ,

1The following quotation from Blaise Pasca4, Lctt$res$ Provinciales XVI (1657), is
quite appropriate: Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir
de la faire plus courte.
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and $h:Mx\mathbb{R}arrow \mathbb{R}$ is the varying Hamiltonian. The fixed points of $\varphi_{1}$ are
therefore the critical $poi_{l1}ts$ of $S_{h}$ on the space $\mathcal{L}M$ of loops of length 1in
M. Thus Arnold’s conjecture would follow from aversion of Morse theory
applicable to the function $S_{h}$ : $\mathcal{L}Marrow \mathbb{R}$ , but relating its critical points
to the homology of $M$ rather than $\mathcal{L}\Lambda f$ . This was the theory that Floer
developed.

In conventional Morse theory it is geometrically clear why the homo-
topy type of amanifold $X$ is reflected in the disposition of the critical
points of afunction $f$ : $Xarrow \mathbb{R}$ ;for example, if there are no critical points
apart from the minimum, the gradient flow of $f$ provides acontraction of
X. At present there is no comparable homotopy-theoretic $u$nderpinning of
Floer theory. Ordinary homology can be defined in agreat variety of quite
different ways, but one does not know how to define Floer’s groups with-
out using aFloer-Morse function. One of our purposes in $t1_{1}is$ paper is to
speculate about what exactly the Floer groups are describing, or what ad-
ditional structure an infinite dimensional manifold such as $\mathcal{L}M$ must have
for the groups to be defined. We should say at the outset, however, that
we have not solved this problem.

One ingredient in the answer is plain. An $i_{1}nportant$ feature of aFloer-
Morse function, such as $S_{h}$ , is that at critical points its Hessian has infin-
itely many negative as well as positive eigenvalues. In fact at every point
$\gamma$ of $\mathcal{L}M$ the Hessian of $S_{h}$ decomposes the tangent space $T_{\gamma}(\mathcal{L}\Lambda f)$ into
two parts $T_{\gamma}^{\pm}$ corresponding to the positive and negative eigenvalues, with
afinite dimensional ambiguity coming from the zero eigenspace. Such an
approximate splitting of the tangent bundle of an infinite dimensional man-
ifold $X$ we shall call apolarization of X. Aformal definition will be given
in \S 2. The significance of the polarization becomes clearer if we turn to the
second–or $La.grangian-perspective$ on Floer theory.

If we choose aRiemannian metric on $M\iota naking$ it an almost complex
manifold then we can consider pseudo-holomorphic maps $\varphi;\Sigmaarrow M,$ $\backslash vhere$

$\Sigma$ is aRiemann surface. In Arnold’s problem the gradient flow lines of $t1_{1}e$

function $S_{h}$ : $\mathcal{L}Marrow \mathbb{R}$ when $h=0$ are precisely the pseudo-holomorphic
maps $S^{1}x\mathbb{R}arrow M$ . If aclosed surface $\Sigma=\Sigma_{1}\cup\Sigma_{2}$ is the union of two
pieces intersecting in acommon boundary circle then, because apseudo-
holomorphic map $\Sigma_{i}arrow M$ is determined by its boundary values, the finite
dimensional space $z_{\Sigma}=Ho1(\Sigma;M)$ can be regarded as the intersection
of two infinite dimensional submanifolds $Z_{\Sigma_{i}}=Ho1(\Sigma_{i} ; Af)$ of the loop
space $\mathcal{L}If$ . Here the notation Hol means pseudo-holomorphic maps. The
tangent spaces to $z_{\Sigma_{1}}$ and $z_{\Sigma_{2}}$ are close-in asense explained in \S 2-to the
positive and negative parts $T_{\gamma}^{\pm}$ of the polarization of $T_{\gamma}(\mathcal{L}M)$ . Furthermore
$z_{\Sigma_{1}}$ and $z_{\Sigma_{2}}$ define acycle and acocycle respectively in the Floer theory
of $\mathcal{L}M$ , and the pairing between them is, in good cases, the number of
isolated pseudo-holomorphic maps $\Sigmaarrow Af$ .

This suggests, compare [4], that Floer theory is the homology theory of
semi-infinite dimensional cycles in apolarized manifold. $T1_{1}ere$ is anatural
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concept of semi-infinite dimensional differential forms on such amanifold,
and one might hope to use them to give ade Rham definition of Floer
homology; see [11] for interesting work along these lines. To define the
Floer groups for an infinite dimensional manifold it seems clear thal more
structure is needed than just the polarization of X. Acrucial point seems
to be that the critical manifoId of Floer-Morse function is compact, and
it seems conceivable that some preferred class of compact subspaces of $X$

should be an ingredient in the structure.
Though we cannot answer the question $\backslash vhat$ does the Floer homotopy

type of amanifold $d$epend on’, we can do better with another question,
‘what sort of object is the Floer homotopy type of amanifold’. Unfor-
tunately one cannot hope that the Floer groups of $X$ are the ordinary
homology groups of aspace associated to $X$ , or even of a‘stable space’
or a‘spectrum’. We shall show that under reasonable hypotheses one can
associate to the flow category, see [9], of aFloer-Morse function an ob-
ject called apro-spectrum. This is atechnical homotopy-theoretic concept
which hae proved to be central in one of the deepest recent results of ho-
motopy theory. As the pro-spectra involved arise in Floer theory on the
projective spaces of polarized vector spaces and also the loop space $\mathcal{L}\mathbb{C}\mathbb{P}^{n}$ ,
it seems worthwhile to explain this result briefly.

For any positive integers $n>m$ let $P_{m}^{n}$ be the space obtained from real
projective space $\mathbb{R}\mathbb{P}^{n}$ by collapsing the standard linear subspace $\mathbb{R}\mathbb{P}^{m-1}$

to apoint. Now fix two large positive integers $p$ and $q$ and consider the
homotopy groups $\pi_{i+N}(P_{N-q}^{N+p})$ as $Narrow\infty$ . Notice that $P_{N-q}^{N+p}$ is aspace
made of cells whose dimensions range from $N+p$ to $N-q$ , so that for
small $|i|$ we are looking at akind of ‘middle dimensional’ homotopy group.
The following deep theorem of Lin [20], conjectured by Mahowald [21] and
Adams [2], was acrucial step in determining the stable $h_{o1}notopy$ type of
the classifying spaces of finite groups and proving the Segal conjecture; see
[3] and [8] for surveys and further reference$s$ .

Theorem. If $N$ is a $mu$ tiple of $2^{p+q}$ , then there is a map $S^{N-1}arrow P_{N-q}^{N+p}$

which induces isomorphisms

$\pi_{t+N}(P_{N-q}^{N+p})\cong\{\begin{array}{l}Z/2^{a(N)}\pi_{i+N}(S^{N-1})_{(2)}\end{array}$ $ifiifi\neq-1=-1$

$but-p\ll i\ll q$

where $\pi_{t+N}(S^{N-1})_{(2)}$ is the 2-primary componen $t$ of the homotopy $gro$up
$\pi_{t+N}(S^{N-1})$ , and $a(N)arrow\infty$ as $Narrow\infty$ .

In particular note that, when $i$ is small compared to $N,$ $\pi_{i+N}(P_{N-q}^{N+p})$

is independent of $N$ , except that when $i=-1$ it tends to the 2-adic com-
pletion of $\pi_{N-1}(S^{N-1})=Z$ .

There are natural inclusions $P_{N-q}^{N+p}arrow P_{N-q}^{N+P+1}$ and collapsing maps
$P_{N-q}^{N+p}arrow P_{N-f+1}^{N+p}$ . In addition, if $N$ and $M$ are both multiples of $2^{p+q}$ with
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$N\geq M$ , there is ahomotopy equivalence between $P_{N-q}^{N+p}$ and the $(N-\Lambda f)-$

fold suspension $S^{N-M}P_{M-p}^{M+l}$ . It follow$s$ that the system of spaces $P_{N-q}^{N+P}$

form a $pr\alpha\cdot spectrum$ , and this is the prime example of $a$ pro-spectrum.
Let us now outline the contents of this paper. In \S 2 we describe some of

the $homotop\overline{y}$-theoretic properties of polarized manifolds. In \S 3 we describe
the flow categories of Morse functions. In \S 4 we analyse the flow category
of $\mathcal{L}W^{n}$ , and explain how to compactify this category. In \S 5 we- describe
amethod of recovering the stable homotopy type of afinite dimensional
manifold from the flow category of aMorse-Bott function. This method
is not the same as.that used in [9]; in spirit, it is related to the work of
Ranks [14]. We go on to show how apro-spectrum can be associated to the
idealized flow category of aFloer function. In \S 6 we describe how the ideas
of \S 5 can be applied to the projective space of apolarized vector space,
and to the area function on $\mathcal{L}\mathbb{O}P^{n}$ , and we identify the corresponding pro-
spectra. The most surprising point is that the pro-spectrum associated to
the $\dot{c}$ompactified flow category of the area function on $\mathcal{L}\mathbb{C}\mathbb{P}^{n}$ is the complex
analogue of the one occuring in Lin’s theorem.

In an Appendix we give avery brief account, for non-experts, of some
of the ideas which lea.$d$ to the introduction of the stable category of spaces,
the category of spectra, and the notion of apro-spectrum.

\S 2 POLARIZED MANIFOLDS

A polarization of a real topological vector space $E$ is a class of decom-
positons of $E=E_{+}\oplus E_{-}$ which do not differ too much among themselves.
The main example arises when one has an unbo.unded self adjoint Fredholm
operator $D:Earrow E$. This splits $E$ according to the positive and negative
parts of the spectrum $o^{}fD$ : we want to allow the ambiguity of assigning
the O-eigenspace arbitrarily to $E_{+}$ or $E_{-}$ . The most convenient definition
is as follows.
Definition 2.1. A polarisation of $E$ is a class $\mathcal{J}$ of linear operators $J$ :
$Earrow E$, all congruent modu$lo$ the ideal of compact operators, and $such$

that $J^{2}=1$ modulo compact operators. Further, $\mathcal{J}must$ not $contain+1$
or-l.

If $E$ is polarized we can define the restricted general linear group
$GL_{res}(E)$ which consists of all $g\in GL(E)$ which preserve the polariza-
tion. We can also define the restricted Gras$s$mannian $Gr_{res}(E)$ , consisting
of all the $(-1)$-eigenspaces of all $J\in \mathcal{J}$ such that $J^{2}=1$ .

If $E$ is a Banach space then $GL_{res}(E)$ can be regarded as a closed
subgroup of $GL(E)$ with the norm topology. But, in general, it is better
to give it the topology for which $\{g_{\alpha}\}$ converges if both $\{g_{\alpha}\}$ and $\{g_{\alpha}^{-1}\}$

converge in the compact-open topology, and $[J, g_{\alpha}]$ converges in the uniform
topology for some (and hence all) $J\in \mathcal{J}$

A polarized manifold $X$ is one whose tangent spaces $T_{x}X$ are polarized.
More precisely, if $X$ is modelled on $E$ the structural group of the tangent
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bundle of $X$ is reduced to $GL_{res}(E)$ . In all the examples we know the
polarizations are integrable, that is $X$ has an atlas $\{\varphi_{\alpha} : U_{\alpha}arrow X\}$ such
that $D(\varphi\rho\varphi_{\alpha}^{-1})(y)\in GL_{re\epsilon}(E)$ for all $y\in\varphi_{\alpha}(U_{\alpha})$ ; but we shall not need
this. The two basic examples which arise in Floer theory are the following.

(i) An almost complex structure on a Riemannian manifold $Af$ defines
a polarization of the loop space $\mathcal{L}Af$ . The tangent space $T_{\gamma}$ at $\gamma\in$

$\mathcal{L}Af$ is the space of tangent vector fields to $M$ along $\gamma$ , and we have
the self-adjoint operator $jD/D\theta$ : $T_{\gamma}arrow T_{\gamma}$ , where $j$ is the almost-
complex structure of $M$ and $D/D\theta$ is covariant differentiation. The
spectral decomposition of $jD/D\theta$ polarizes $\mathcal{L}Af$ .

(ii) The space $X=A^{\cdot}/\mathcal{G}$ , where $\mathcal{A}^{*}$ is the space of irreducible connec-
tions on a complex vector bundle $E$ with compact structural group
$G$ on a 3-manifold $M$ and $\mathcal{G}=Aut(E)$ is the gauge group of $E$ ,
also carries a natural polarization. The tangent space to $A$ “ at any
point is $\Omega^{1}(M;End(E))$ , and that of $A/\mathcal{G}$ at a connection $A$ is the
cokernel of

$d_{A}$ : $\Omega^{0}(Af;End(E))arrow\Omega^{1}(\Lambda f;End(E))$ .

If $A$ is a flat connection then $d_{A}^{2}=0$ , and the $operator*d_{A}$ induces
a self-adjoint Fredholm operator, and hence a polarization, on the
tangent space $T_{A}=\Omega^{1}/d_{A}\Omega^{0}$ . With more work one can define the
polarization at all points of $X$ .

In both these cases the polarization is $t1_{1}e$ same as the polarization induced
by aFloer-Morse function. In the first case it is the area functional–the
action functional $S_{h}$ , described in the introduction, with $h=0$ . In the
second caee it is the Chern-Simons functional

For the usual topological vector spaces of analysis the group $GL(E)$

is contractible, and so the tangent bundle of amanifold $X$ modelled on $E$

carries rio homotopy-theoretic information. The position is different when
$E$ is polarized. For the group $GL_{res}(E)$ has –for the usual choices of
$E$ –the homotopy type of $ZxBO$ , the classifying space for stable finite
dimensional vector bundles; see [22]. The tangent bundle of $a$’pola.rized
manifold $X$ is therefore described by a $nlapXarrow BGL_{res}(E)$ , determined
up to homotopy, which we call the structural map of X. By Bott periodicity
the homotopy type of $BGL_{res}(E)$ is $U/O$ , where $U=\cup U(n)$ and $O=$

$\cup O(n)$ are the infinite unitary group and orthogonal group respectively.
The space $U/O$ represents $t1_{1}e$ functor $KO^{1}$ . Its fundamental group is $Z$ and
its rational cohomology is an exterior algebra on generators of dimensions
$4k+1$ . Therefore, apolarized manifold $X$ has $c1_{1}aracteristic$ classes in
$H$ $+1(X;\mathbb{Q})$ .

The most obvious information provided by the structural map $Xarrow$

$U/O$ concerns the grading of Floer homology. At each point $x\in X$ we have
the Grassmannian $Gr_{x}=Gr_{res}(T_{x}X)$ , whose connected $compollents$ corre-
spond to the integers $Z$ , though with no preferred choice of zero: two points



73
R.L. Cohen, J.D.S. Jones and G.B. Segal

of $Gr_{x}$ have a well-defined relative dimension, but no absolute dimension
[22]. The sets $X_{x}=\pi_{0}(Gr_{x})$ , as $x$ varies, form a covering space $\tilde{X}$ of $X$ , and
when one goes around a path $\lambda$ in $X$ starting at $x$ the holonomy $\tilde{X}_{x}arrow\tilde{X}_{x}$

shifts $X_{x}$ by the image of $\lambda$ in $\pi_{1}(U/O)=Z$ . This mean$s$ that for a particu-
lar polarized $\overline{m}$anifold $X$ the ‘dimension’ of a semi-infinite subspace $ofT_{x}X$ ,
and hence of a semi-infinite cycle, or Floer homology class, can be taken
to be well-defined modulo the image of $\pi_{1}(X)$ in $\pi_{1}(U/O)=$ Z. On the
covering space $\tilde{X}$ the dimension-or ‘virtual dimension’– is a well-defined
element of Z.

If $M$ is an almost-complex manifold of real dimension $2m$ , then the
tangent bundle of $M$ is classified by a map $\theta$ : $Marrow BU(m)$ . The structural
map of $X=\mathcal{L}M$ is easily seen to be the composite

$\mathcal{L}Marrow^{\mathcal{L}\theta}\mathcal{L}BU(m)arrow\beta Uarrow U/O$ ,

where $\beta$ is the transgression. It is important that the structural map fac-
torizes through $U$ , i.e. the structural group of $T\mathcal{L}M$ is reduced to the
complex restricted general linear group. This means, in particular, that
the grading of $F!oer$ homology is always well defined modulo 2, for the
map $\pi_{1}(U)arrow\pi_{1}(U/O)$ is multiplication by 2.

The same is true in the gauge theory case, when $X$ has the homotopy
type of Map$(M;BG)$ . Then the structural map is the. composite

Map$(M;BG)arrow Map(Af;BU(k))arrow Uarrow U/O$,

where the first map is induced by the representation $Garrow U(k)$ which de-
fines the bundle $E$ , and the second map is the direct-image map in complex
K-theory. (This map represents the element of $K^{-3}(Map(M;BU(k))$ ob-
tained by pulling back the tautological element of $K(BU(k))$ to $K(Mx$
$Map(M;BU(k)))$ by the evaluation map, and then (integrating’ over the
3-dimensional manifold $M$ , i.e. evaluating on the K-theory fundamental
class in $K_{3}(\Lambda f).)$

From these descriptions of the structural map it is easy to compute its
effect on $\pi_{1}$ . If $M$ is a simply connected almost complex manifold, we have
$\pi_{1}(\mathcal{L}M)=\pi_{2}(M)$ . The homomorphism

$\pi_{2}(Af)=\pi_{1}(\mathcal{L}M)arrow\pi_{1}(U/O)=Z$

is the homomorphism defined by $2c_{1}(Af)$ , and the grading of Floer ho-
mology is well defined modulo its image. In the gauge theory case with
structure group $G=SU(2)$ , we have $\pi_{1}(A^{*}/\mathcal{G})=Z$ . The corresponding
homomorphism is multiplication by 8, and the grading of Floer homology
is well-defined modulo 8.
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\S 3 THE FLOW CATEGORY

Let us begin by considering a Morse-Bott function $f$ : $Xarrow \mathbb{R}$ on a
finite dimensional compact Riemannian manifold $X$ . Morse-Bott means
that the critical set $F$ of $f$ is a smooth manifold, and that the Hessian $D^{2}f$

is non-degenerate on the fibres of the normal bundle to $F$ in $X$ .
In this situation we can define a category $C_{f}$ whose objects are the

critical points of $f$ and whose morphisms from $x$ to $y$ are the piecewise
gradient trajectories (or flow lines) $\gamma$ of $f$ from $x$ to $y$ . This mean$s$ one
permits $\gamma$ to stop at intermediate critical points en route. More precisely,
$\gamma$ is a sequence $\gamma\cdot=(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{p})$ where $\gamma$; : $\mathbb{R}arrow X$ is a descending
trajectory of $grad(f)$ such that

$\gamma;(t)arrow x_{i}^{\pm}$ , as $tarrow\pm\infty$

$x=x_{0}^{-}$ , $X_{1}^{+}=x_{i+1}^{-}$ , $x_{p}^{+}=y$ .

We identify two such sequences if they differ only by translating the param-
eters of the $\gamma_{i}$ . The category $C_{J}$ is a topological category [23], in that the sets
$Ob(C_{f})$ and $Mor(C_{J})$ , of objects and morphisms, have natural topologies,
and the structure map$s$ of $C_{f}$ are continuous.

In the case where the gradient flow of the function $f$ also satisfes an
appropriate version of the Smale transversality condition, see [26], these
spaces have a great deal of extra structure which we now describe in detail.
Let the critical values of $f$ be $t_{n}>t_{n-1}\cdots>t_{0}$ , and let the critical
manifold with critical value $t$ ; be $F_{i}$ ; then

$Ob(C_{f})=LI^{F_{i}}$ .

If $j>i$ , let the space of morphisms from points on $F_{j}$ to points on $F_{i}$ be
$F(j, i)$ . It is known, see [26] and [6], that $F(j, i)$ is a compact manifold
with corners. By a manifold with corners we mean a manifold modelled on
the space $\mathbb{R}_{+}^{d}$ , where $\mathbb{R}+is$ the set of real numbers $x$ with $x\geq 0$ , and by
the boundary of a manifold with corners we mean the set of points which
in coordinate charts do not lie in the interior of $\mathbb{R}_{+}^{d}$ .

If $I=(i_{k+1}, i_{k}, \ldots, i_{0})$ is a sequence with

$j=i_{k+1}>i_{k}>\cdots>i_{0}=i$,

let $F(I)$ be the part of $F(j, i)$ consisting of piecewise trajectories which stop
at all of the $F_{1_{r}}$ for $1\leq r\leq k$ . Then $F(j, i)$ is stratified by the $F(I)$ , and
$F(I)$ is a compact submanifold of codimension $k$ in $F(j, i)$ . Furthermore,
$\partial F(I)$ is the union of the $F(J)$ with $J\supset I$ . In a neighbourhood of a point
of $F(I)$ the space $F(j, i)$ is modelled on $\mathbb{R}_{+}^{k}x\mathbb{R}^{m-k}$ where $m=\dim F(j, i)$ .
Composition in the category maps $F(j, r)xF(r, i)$ diffeomorphically to
$F(j, r, i)\subset\partial F(j, i)$ . Finally the beginning and end point $m$ aps

$\ovalbox{\tt\small REJECT}$ 為 $F(j$,の為昂
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are fibrations.
We shall call a category of the type just described a compact smooth

category. In the finite dimensional case it has one further basic property:
it is framed, in the following sense.

Let $E_{1}$ be the downward part of the tangent bundle to $X$ alon$gF_{i}$ .
That is, $E_{i}$ is the sub-vector-bundle of the normal bundle of $F_{i}$ spanned by
the eigenvectors of the Hessian $D^{2}f$ corresponding to negative eigenvalues.
The geometry of the flows gives us canonical isomorphisms of vector bundles
on $F(j, i)$

(3.1) $\pi_{j^{*}}E_{j}\cong T_{ji}\oplus \mathbb{R}\oplus\pi_{i}E;$ ,

where $T_{ji}$ is the tangent bundle along the fibres of the projection $\pi_{j}$ :
$F(j, i)arrow F_{j}$ . These isomorphisms are compatible with the compositions
in the category $C_{f}$ . In the case when the function $f$ has isolated critical
points the isomorphism (3.1) is a stable framing of the flow manifold in the
usual sense.

To see that (3.1) holds, observe that $F(j, i)$ embeds in the sphere bundle
$S(E_{j})$ of $E_{j}$ . (Actually the natural map $F(j, i)arrow S(E_{j})$ is not injective on
$\partial F(j, i)$ , but that is irrelevant to the present argument, and in any case the
map can be made injective by a canonical small deformation.) The normal
bundle to $F(j, i)$ in $S(E_{j})$ can be identified canonically with $\pi_{i}^{*}E_{i}$ , as its
fibre at $\gamma\in F(j, i)$ consists of the piecewise trajectories emanating from
$\pi_{j}(\gamma)$ which just miss $F_{i}$ .

In the infinite dimensional situation which Floer considered the func-
tion $f$ always has a compact critical manifold $F$, and there is a flow category
$C_{J}$ in which each connected component of the space of morphisms is finite
dimensional. Three new features, however, need to be considered.

(i) The function $f$ is not usually single-valued. Usually it takes val$u$es
in $\mathbb{R}/Z$, but in principle it might be the indefinite integral of any
closed l-form representing a class $\alpha$ in $H^{1}(X;\mathbb{R})$ . Floer theory
seems to work well only in the monotone case where $\alpha$ is a multiple
of the basic element of $H^{1}(X;Z)$ defined by the structural map
$Xarrow U/O$ of the polarized manifold $X$ . We shall confine ourselves
to this case. Then $f$ can be lifted to a map $\tilde{f}$ : $\tilde{X}arrow \mathbb{R}$ , where $\tilde{X}$

is the infinite cyclic cover of $X$ defined by $Xarrow U/O$ . The critical
set of $\tilde{f}$ is then an infinite disjoint union $U_{i\in z^{F_{i}}}$ , where each $F_{i}$ is
compact, and is periodic in $i$ with some finite period. Henceforth,
when we speak of the flow category of a Floer function we shall
mean the flow category of $\tilde{f}$.

(ii) The flow category is no longer framed. We still have the isomor-
phisms (3.1), but now the bundles $E_{i}$ are infinite dimensional, and
so give no information about the tangent bundle $T_{ji}$ , except to give
it a complex structure when the structural map $Xarrow U/O$ of the
polarized manifold $X$ lifts to $U$ . This feature was pointed out long
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$ago$ by Floer himself. We shall see that whether the flow category
is framed is essentially the same question as whether the structural
map $\tilde{X}arrow U/O$ is homotopic to a constant map.

(iii) Because of the phenomenon of ‘bubbling’, the flow spaces $F(j, i)$ are
no longer compact. This is the most important difference from the
finite dimensional case, and the hardest to handle. In the cases that
we have studied in detail there is a natural way to compactify the
$F(j, i)$ so that one has a compact smooth category, but the precise
relation between the categories before and after compactification is
still not well-understood.

A topological category $C$ has a realization $|C|$ as a topological space;
see [23]. For a Morse-Bott function on a finite dimensional manifold it is
not difficult to prove that the realization $|C_{f}|$ is homotopy equivalent to $X$ .
Indeed, in the case of a Morse-Bott-Smale function, that is a Morse-Bott
function whose gradient flow $s$atisfies an approriate transversality condi-
tion‘, $|C_{J}|$ is even homeomorphic to $X$ . These results are proved in [9].

It is striking that for the flow categories of the usual Floer functions it
still seems to be true that $|Cj|$ is homotopy equivalent to $X$ , if one does not
compactify the category. Thus if $X=\mathcal{L}M$ is the loop space of a K\"ahler

manifold $M$ with $\pi_{2}(Af)=Z$ for which one knows t,ha.$t$ the inclusion

(3.2) $H61_{k}(S^{2} ; Af)arrow Map_{k}$ ( $S^{2}$ ; If)

of holomorphic maps of degree $k$ into $smoot1_{1}$ map$s$ of degree $k$ tends to
a homotopy equivalences as $karrow\infty$ , then, as we shall show in a future
paper, $|C_{f}|\simeq X$ . The hypothesis is known to hold when $X$ is $\mathbb{C}\mathbb{P}^{n}[24]$ , or
more generally a Grassmannian [17]. Furthermore the appropriate version
of (3.2) (taking account of the fact that $\pi_{2}$ is free abelian on more than
one generator) is also true for a flag manifold [16].

A version of (3.2) is also true for the flow category arising in the context
of gauge theory for a compact group $G$ , in virtue of the corresponding
homotopy approximation property for the inclusion

$Ho1_{k}(S^{2}; \Omega G)arrow Map_{k}(S^{2} ; \Omega G)$ .

In fact to show that $|C_{J}|\simeq X$ one needs only the weak version of this result
-called the Atiyah-Jones conjecture [5]-which was proved by Taubes [27],
and Gravesen [15], rather than the stronger version proved in [7] and [18].

We should also point out that for any compact smooth category $C$ with

$Ob(C)=$ 垣 $F_{i}$ , $Mor(C)=$ 垣 $F(j,i)$ ,

the tangent bundles along the fibres of $F(j, i)arrow F_{j}$ really define a functor
from the topological category $C$ to a topological category V. This cate-
gory V has one object; its morphisms Mor(V) are finite dimensional vector
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spaces; and the composition law is direct sum. The functor assigns to a
morphism $\gamma\in F(j, i)$ the vector space $T_{ji,\gamma}\oplus \mathbb{R}$ .

To be more precise, V is the topological semi-group

$\mathcal{V}=I\lrcorner_{0}BGL_{p}(\mathbb{R})P\geq$

and the functor is a coherent collection of maps $F(j, i)arrow \mathcal{V}$ which are
classifying maps for the bundles $T_{ji}\oplus \mathbb{R}$ . The realization $|\mathcal{V}|=B\mathcal{V}$

.
is the

space $U/O$ of \S 2, and so the functor $Carrow \mathcal{V}$ induces a map $|C|arrow U/O$

which, when $|C|\simeq X$ , is the structural map of the polarization of $X$ .

\S 4 THE AREA FUNCTION ON $\mathcal{L}\mathbb{O}P^{n}$

We now analyse the flow category of the area functional on $\mathcal{L}\mathbb{C}\mathbb{P}^{n}$ .
Our main objective is to show that even though this flow category is not
compact it does have a natural compactification, which turns out to be the
flow category of a function on an infinite dimensional complex projective
space. For simplicity we describe the details for CIP‘1 $=S^{2}=\mathbb{C}\cup\infty$ .

As we saw in \S 2, we must $\acute{r}eally$ consider the area functional on the
universal cover $\tilde{\mathcal{L}}S^{2}$ of $\mathcal{L}S^{2}$ . This is the space of smooth map$sS^{1}arrow S^{2}$

together with an extension to a smooth map $D^{2}arrow S^{2}$ which is well-defined
up to homotopy relative to the boundary. If $f$ : $D^{2}arrow S^{2}$ is a smooth map
its area is given by

$\int_{D^{2}}f^{*}\omega$ ,

where $\omega$ is the standard symplectic 2-form on $S^{2}$ . This gives smooth func-
tions

$\tilde{A}:\tilde{\mathcal{L}}S^{2}arrow \mathbb{R}$ , $A:\mathcal{L}S^{2}arrow \mathbb{R}/4\pi Z$.
The critical points of $A$ are the constant loops, and those of $\tilde{A}$ are pairs
$(\gamma, n)$ , where $\gamma$ is a constant loop and $n$ is the degree of the extension.
Thus the critical manifold of $A$ is $S^{2}$ , and that of $\tilde{A}$ is $S^{2}x$ Z.

It is easy to see, compare [12], that the gradient vector field of $\mathcal{A}$ at
a loop $\gamma$ is the vector field along $\gamma$ given by $j\dot{\gamma}$ , where $j$ is the complex
structure on $TS^{2}$ . This means that flow lines of $A$ are given by holomorphic
maps $h:S^{2}arrow S^{2}$ in the following way. Consider the path in $\mathcal{L}S^{2}$ given by
$trightarrow h_{t}$ where

$h_{t}(s)=h(e^{-t+ts})$ .
(We have parametrized loops by the closed interval $[0,2\pi].$ ). Then $h_{t}$ con-
verges to the constant loop at $h(\infty)=a$ as $tarrow-\infty$ , and as $tarrow\infty$ it
converges to the constant loop at $h(O)=b$ . This path $h_{\ell}$ is a flow line of
$A$ , and every flow line from $a$ to $b$ is of this form.

The holomorphic map $h$ gives a natural exension of the loop $h_{t}$ to the
lower hemisphere of $S^{2}$ and this defines a path $\tilde{h}_{t}$ in $\tilde{\mathcal{L}}S^{2}$ . This path $\tilde{h}_{\ell}$ is
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a flow line of $\tilde{A}$ from $(a, k)$ to $(b, 0)$ , where $k$ is the degree of $h$ , and every
such flow line arises in this way. The flow lines from $(a, n+k)$ to $(b, n)$ are
given by applying the appropriate covering translation to flow lines from
$(a, k)$ to $(b, 0)$ .

Let $W(n, m)\subset\tilde{\mathcal{L}}S^{2}$ be the space of points which lie on flow lines from
a critical point of the form $(a, n)$ to one of the form $(b, m)$ . Thus a point
is in $W(n, m)$ if and only if it is on a flow line of $A$ which starts at level $n$

and ends at level $n$ . The above identification of the flow lines of $A$ shows
that

$Ti^{\gamma}(n, m)=Rat_{n-m}$

where $Rat_{n-m}$ is the space of holomorphic maps, or rational functions,
$h$ : $S^{2}arrow S^{2}$ of degree $n-m$ .

The space $Rat_{k}$ is not compact and it is very $i_{1}nportant$ to understand
this non-compactness. Arational function $h:S^{2}arrow S^{2}$ of degree $k$ is given
by $h=p/q$ where $p$ and $q$ are polynomials of degree $\leq k$ with no roots
in common. Throughout we allow roots at infinity: thus if $p$ has degree $r$

with $r<k$ then we say $p$ has $k-r$ roots at infinity. This is aconvenient
device which, for example, allows us to say that $t1_{1}e$ zeroes of the rational
function $p/q$ are the roots of $p$ , and its poles are the roots of $q$ . Suppose
we now take asequence of rational futlctions $h_{n}=p_{n}/q_{n}$ where aroot $\alpha_{n}$

of $p_{n}$ converges to aroot $\beta_{n}$ of $q_{n}$ . Then this sequence does not converge
in Rat$k$ . This is the bubbling phenomenon for rational functions and we
shall say that abubble occurs at the point $a$ which $1lst1_{1}e$ comlnon limit of
$\alpha_{n}$ and $\beta_{n}$ .

The reason for this terminology is as $follo\backslash vs$ . Suppose that $|\alpha_{n}-\beta_{n}|$ is
extremely small, and that $\epsilon>0$ is a[so very small but much greater than
$|\alpha_{n}-\beta_{n}|$ . Let $D$ be the disc of radius $\epsilon$ around $\beta_{n}$ . Then $p_{n}/q_{n}$ is almost
constant on $\partial D$ . Outside $D$ the function $p_{n}/q_{n}$ is almost equal to arational
function of degree $k-1$ , namely $(x-\beta_{n})p_{n}/(x-\alpha_{n})q_{n}$ . The interior of $D$ ,
however, is mapped by amap which is almost surjective with degree 1.

If we have asequence of rational functions $h_{n}$ in which abubble occurs
at either $\infty$ or $0$ then the corresponding sequence of paths in $\tilde{\mathcal{L}}S^{2}$ converges
to apiecewise flow line. However, if the bubble occurs at any other point
the corresponding sequence of paths, no $\iota natter$ how it is parametrized,
does not even converge. to apath in $\tilde{\mathcal{L}}S^{2}$ . Thus the flow category $C_{A}$ is not
compact.

$\backslash Ve$ now construct acolnpactification of $C_{A}$ . Let $W=\mathbb{C}[z,\cdot z^{-1}]$ be
the vector space of Laurent polynomials topologized as aspace of maps
$\mathbb{C}^{x}arrow \mathbb{C}$ , where $\mathbb{C}^{x}=\mathbb{C}\backslash 0$ . Now the linear flow $z^{n}\mapsto e^{nt}z^{n}$ defines aflow
$\Phi$ on $\mathbb{P}(G\otimes W).$ It. is straightforward to check that the space of stationary
points of $\Phi$ is $S^{2}xZ$ , where $S^{2}xn$ is the subspace $\mathbb{P}(\sigma\otimes z^{n})\subset \mathbb{P}(0\otimes W)$ .
Let $W_{m}^{n}$ be the subspace of $W$ spanned by $z^{i}\backslash vithn\leq i\leq m$ . $T1_{1}e$ space
of points which lie on piecewise flow lines of $\Phi$ which go from level $n$ to
level $m$ is $\mathbb{P}(\sigma\otimes W_{m}^{n})=\mathbb{C}\mathbb{P}^{2(n-m)+1}$ , and since this space is compact the
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flow category $C_{\Phi}$ is compact.
A pair $(f_{0}, f_{1})$ of elements of $W$ with no roots in common except,

possibly, at $0$ and $\infty$ defines a map

$f$ : $\mathbb{C}^{x}arrow \mathbb{C}\mathbb{P}^{1}=S^{2}$ .

Since this map is algebraic it extends to a holomorphic map $f$ : $C\cup\infty=$

$S^{2}arrow S^{2}$ . Let $\mathcal{U}$ be the open subset of the projective space $\mathbb{P}(\sigma\otimes W)$

defined by the pairs $(f_{0}, f_{1})$ with no roots in common in $\mathbb{C}^{x}$ . Then there
is a map

$i$ : $\mathcal{U}arrow\tilde{\mathcal{L}}S^{2}$

defined by restricting the holomorphic map $f$ : $S^{2}arrow S^{2}$ given by the pair
$(f_{0}, f_{1})$ to the unit circle and using the extension of this loop to the lower
hemisphere to get an element of $\tilde{\mathcal{L}}S^{2}$ . It is clear that $\mathcal{U}\subset \mathbb{P}(\sigma\otimes W)$ is
invariant under the flow $\Phi$ and that $i:\mathcal{U}arrow\tilde{\mathcal{L}}S^{2}$ is equivariant with respect
to the flow $\Phi$ on $\mathcal{U}$ and the gradient flow of $A$ on $\tilde{\mathcal{L}}S^{2}$ . Furthermore it is
straightforward to check that $i$ : $\mathcal{U}arrow\tilde{\mathcal{L}}S^{2}$ defines an isomorphism of flow
categories. In fact, this map $i$ is a homotopy equivalence, as we will show
in a future paper, but we do not need this for our present purpose.

The diagram
$\tilde{\mathcal{L}}S^{2}arrow i\mathcal{U}arrow j\mathbb{P}(\mathbb{C}^{2}\otimes Ti^{\gamma})$

(where $j$ is the inclusion), together with the fact that $i$ induces an isomor-
phism of flow categories, gives us an embedding of flow categories

$C_{A}arrow C_{\Phi}$ .

The flow category $C_{\Phi}$ is compact and $C_{A}$ is embedded as an open dense
subcategory; therefore $C_{\Phi}$ is a compactification of $C_{A}$ . Moreover, it is
natural to view the flow $\Phi$ on $\mathbb{P}(\sigma\otimes T\phi^{\gamma})$ as a ‘compactification’ of the
gradient flow of $\tilde{A}$ on $\tilde{\mathcal{L}}S^{2}$ .

The above compactification of $C_{A}$ gives a compactification of the space
of rational functions Rat$k=W_{A}(n+k, n)$ as $\mathbb{O}^{2k+1}$ . This is the precise
analogue for rational functions of the Donaldson-Uhlenbeck compactifica-
tion of the moduli space of instantons on a 4-manifold, compare [10, \S 4.4].
To see the analogy regard $\mathbb{C}\mathbb{P}^{2k+1}$ as the projective space of the vector
space of pairs of polynomials $(p, q)$ where $\deg p,$ $\deg q\leq k$ . Then

$\mathbb{C}\mathbb{P}^{2k+1}=\bigcup_{l}Rat_{k-l}xSP^{1}(S^{2})$

where $SP^{l}(S^{2})$ is the l-th symmetric product of $S^{2}$ , that is the space of
unordered sets of 1, not necessarily distinct, points in $S^{2}$ . To a pair of
polynomials $(p, q)$ we associate the rational function $f=p/q$ which has
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degree $k-l$ where $p$ and $q$ have $l$ roots in common, and the point of
$SP^{l}(S^{2})$ given by the $l$ common roots allowing, as above, roots at infinity.

This construction of a compactification works equally well for the area
functional on $\mathcal{L}\mathbb{C}\mathbb{P}^{n}$ and it gives the flow category of the flow $\Phi^{(n)}$ on
$\mathbb{P}(\alpha+1\otimes W^{-})$ defined by the linear flow $v\otimes z^{n}\mapsto v\otimes e^{nt}z^{n}$ on $\mathbb{C}^{n+1}\otimes W$ .
It is striking that the compactification of the flow category of the area
functional on the loop space of $\mathbb{C}\mathbb{P}^{n}=\mathbb{P}(\alpha+1)$ is given by the flow category
of a function on $\mathbb{P}(\alpha+1\otimes \mathbb{C}[z, z^{-1}])$ .

\S 5 MORSE THEORY AND HOMOTOPY THEORY

The most important result of finite dimensional Morse theory is the
relation between the topology of a compact manifold $X$ and that of the
manifold $F$ of critical points of a smooth function $f$ : $Xarrow \mathbb{R}$ . It asserts
that after changing the grading of the chain groups $C_{*}(F)$ appropriately
ther.$e$ is a differential $\tilde{d}$ on $C_{*}(F)$ whose homology is $H_{*}(X)$ .

In fact more is true. Let $F_{i}$ be the part of the critical set $F$ where the
downward part of the tangent bundle of $X$ , defined in \S 3, has dimension
$i$ . (Note that, compared to \S 3, we have made a slight chan$ge$ in notation.)
This means that $F_{i}$ may be empty for some values of $i$ , but that for $j>i$
the manifold with corners $F(j, i)$ has dimension $j-i-1$ whenever it is
non-empty. We get a filtration of $X$

$X_{0}\subset X_{1}\subset\cdots\subset X_{n}=X$

by closed subspaces, where $X$; consists of the points on downward piecewise
trajectories emanating from $F_{i}$ . (Here $n$ is the dimension of $X.$ ) The
successive quotient spaces $Y_{k}=X_{k}/X_{k-1}$ are the Thom spaces $Y_{k}=F_{k}^{E_{k}}$

of the downward bundles $E_{k}$ on $F_{k}$ . Recall that the Thom space $X^{E}$ of a
bundle $E$ over a compact space $X$ is tlie one-point compactification $E^{+}$ of
the total space of $E$ .

This leads to the homological assertion above because of tlie following
general principle. Although the homotopy type of a filtered space $X$ is not
determined by the quotients $Y_{k}=X_{k}/X_{k-1}$ , nevertheles$s$ the stable ho-
motopy type-more precisely, the homotopy type of the n-fold suspension
$S^{n}X-is$ determined by the $Y_{k}$ together with certain maps between them.

Thus if $n=1$ , the Puppe construction for the inclusion $X_{0}arrow X_{1}$ tells
us that the suspension $SX_{1}$ is obtained by attaching a cone $C(Y_{1})$ on $Y_{1}$

to $SX_{0}$ by a map $\partial_{1}$ : $Y_{1}=X_{1}/X_{0}arrow SX_{0}$ :

$SX_{1}\simeq SX_{0}\cup C(Y_{1})$ .

When $n=2$ , one finds that

$S^{2}X_{2}\simeq S^{2}X_{0}\cup C(SY_{1})\cup C^{2}(Y_{2})$ .
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To reconstruct $S^{2}X_{0}$ in this way we need the maps $\partial_{2}$ : $Y_{2}arrow SY_{1}$ and
$\partial_{1}$ : $Y_{1}arrow SX_{0}$ , obtained from the Puppe construction, together with a
null-homotopy of the composite $S\partial_{1}0\partial_{2}$ . Explicitly, this null-homotopy
provides a map $SY_{1} \bigcup_{\partial_{2}}C(Y_{2})arrow S^{2}(X_{0})$ whose restriction to $SY_{1}$ is equal
to $S\partial_{1}$ , and the mapping cone of this map is homotopy equivalent to $S^{2}X_{2}$ .
In general, one finds that

$S^{n}X_{n}\simeq S^{n}X_{0}\cup C(S^{n-1}Y_{1})\cup\cdots\cup C^{n}(Y_{n})$ .

To describe the map$s$ and homotopies needed to reconstruct $S^{n}X_{n}$ in this
way requires some technology.

Let $\mathcal{J}$ be the topological category whose objects are the integers $Z$ ,
and whose non-identity morphisms $jarrow i$ , when $j>i$ , form a space $J(j, i)$

which is the one-point compactification of the space of sequences of real
numbers $\{\lambda_{k}\}_{k\in \mathbb{Z}}$ such that

$\lambda_{k}\geq 0$ , for all $k$ , and
$\lambda_{k}=0$ , unless $i<k<j$ .

There are no non-identity morphisms unless $j>i$ . Composition of mor-
phisms is the map $J(k,j)xJ(j, i)arrow J(k, i)$ induced by addition of $s$e-
quences. Thus $J(j, i)$ is a compact space of dimension $j-i-1$ , with $\infty$

as a distinguished base-point. If $j-i=1$ , then $J(j, i)$ has just two points
$0$ and $\infty$ ; if $j-i=2$ , then $J(j, i)$ is a closed interval $[0, \infty]$ . Indeed, if
$j-i\geq 2$ , then $J(j, i)$ is homeomorphic to a disc of dimension $j-i-1$ .
We shall also consider the full subcategory $\mathcal{J}_{a^{b}}$ of $\mathcal{J}$ spanned by the objects
$a,$ $a+1,$ $\ldots b$

)

There is a close relation between sequences of compact spaces

$\underline{X}=\{X_{a}arrow X_{a+1}arrow\cdotsarrow X_{b}\}$

and base-point-preserving covariant functors $Z$ : $\mathcal{J}_{a^{b}}arrow \mathcal{T}_{*}$ . Here $\mathcal{T}_{*}$ is the
category of compact spaces with base-point, and a base-point-preserving
functor is one that map$s\infty$ in $J(j, i)$ to the zero map (i.e. the constant
map with value the base-point) $Z(j)arrow Z(i)$ .

Let us assume for simplicity that the maps in $\underline{X}$ are inclusions. Then,
the sequence $\underline{X}$ gives rise to a functor $Z:\mathcal{J}_{a^{b}}arrow T_{*}$ with

$Z(i)=S^{b-i}(X;/X_{i-1})$ ,

for $i>a$ , and
$Z(a)=S^{b-a}(X_{a}^{+})=(\mathbb{R}^{b-a}xX_{a})^{+}$ .

Here, if $X$ is compact the notation $X^{+}$ means $X$ with a disjoint base-point,
denoted by $\infty$ , adjoined, and if $X$ is not compact it means the one-point
compactification of $X$ .
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We will give the construction of the functor $Z$ later, but for the mo-
ment, let us note two of its properties.

(i) The map $Z(i+1)arrow Z(i)$ induced by the nontrivial morphism
$i+1arrow i$ in $\mathcal{J}$ is the $(b-i-1)$-fold suspension of the map

$x_{t+1}/X_{i}arrow S(X;/X_{i-1})$

obtained by applying the Puppe construction to the inclusion
$X_{1}/X_{i-1}arrow X_{i+1}/X_{i-1}$ .

(ii) The functor $Z$ gives a map

$J(i+2, i)xS^{b-i-2}(X_{i+2}/X_{t+1})arrow S^{b-i}(X;/X_{i-1})$ .

The space of morphisms $J(i+2, i)$ is the closed interval $[0, \infty]$ , and
this map is given by the $(b-i-2)$-fold suspension of a null-homotopy
of the composite

$X_{t+2}/X_{t+1}arrow SX_{i+1}/X;arrow S^{2}X;/X_{i-1}$ .

In the other direction, a functor $Z$ : $\mathcal{J}_{a^{b}}arrow \mathcal{T}_{*}$ has a realization $|Z|$ as
a compact space. This is constructed from the disjoint union

$LIZ(i)\wedge J(i, a-1)$

$a\leq i\leq b$

by identifying the image of $Z(j)xJ(j, i)xJ(i, a-1)$ in $Z(j)\wedge J(j, a-1)$

with its image in $Z(i)\wedge J(i, a-1)$ whenever $a\leq i\leq j\leq b$ . Notice that

$Z(i)\wedge J(i,p-1)=C^{i-a}(Z(i))$

$|Z|=Z(a)\cup C(Z(a+1))\cup\cdots\cup C^{b-a}(Z(b))$ .

If $Z$ is the functor defined by a sequence of spaces $X_{a}arrow\cdotsarrow X_{b}$ , then
the comparison between this decomposition of $|Z|$ and the decomposition
of $S^{b-a}X_{b}$ described above leads, very naturally, to the following result.

Proposition 5.1. (i) If $Z$ is the $f_{tJ}$nctor associated to a sequence of com-
$pact$ spaces $\underline{X}$, then there is $a$ canonical homotopy $eq$uivalence

$|Z|\simeq S^{b-a}(X_{b}^{+})$ .

(ii) For any functor $Z$ : $\mathcal{J}_{a^{b}}arrow \mathcal{T}_{*}$ , the homology $H_{*}(|Z|)$ can be calcu-
lated from the double complex

$C_{*}(Z)= \bigoplus_{a\leq i\leq b}C_{*}(Z(i))$
.
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The proof of Proposition 5.1 is straightforward, given the construction
of the functor $Z$ : $\mathcal{J}_{a^{b}}arrow \mathcal{T}_{*}$ from a sequence of compact spaces

$\underline{X}=\{X_{a}arrow X_{a+1}arrow\cdotsarrow X_{b}\}$ .

To construct $Z$ we shall, as above, assume that the maps in $\underline{X}$ are inclu-
sions. If $a\leq i\leq b$ , let $Z_{i}$ be the open subspace of $X_{b}x\mathbb{R}_{+}^{b-a}$ consisting of
all points $(x;\lambda_{a}, \ldots, \lambda_{b-1})$ such that:

(i) $\lambda_{r}>0$ if $r\geq i$ , and
(ii) if $\lambda_{r}>0$ then $x\in X_{r}$ .

We now show that the one-point compactification $Z_{i^{+}}$ is homotopy equiv-
alent to $S^{b-i}(X;/X_{i-1})$ . First note that $Z$;is the product of asubset of
$X_{i}x\mathbb{R}_{+}^{i-a}$ with the extra factor $(0, \infty)^{b-:}$ . The factor $(0, \infty)^{b-i}$ accounts
for the suspension, and it is enough to consider $Z_{b}^{+}$ . This space is ob-
tained from $X_{a}$ by attaching acone $C(X_{a+1})$ on $X_{a+1}$ and then acone on
$C(X_{a+2})\subset C(X_{a+1})$ , and so on. Contracting these cones in the standard
way shows that $Z_{b}^{+}$ is homotopy equivalent to $X_{b}/X_{b-1}$ .

If $j>i$ then $Z_{i}$ is an open subset of $Z_{j}$ , so there is anatural map
$Z_{j}^{+}arrow Z_{i}^{+}$ . Let $W_{ij}$ be the open subspace of $Z_{i}$ consisting of all points
with $\lambda_{j}>0$ . Then $Z_{i}\subset W_{ij}\subset Z_{j}$ , and so the map $Z_{j}^{+}arrow Z_{i}^{+}$ factors
through $W_{ij}^{+}$ . Furthermore there is aproper ma.$p\mathbb{R}_{+}^{j-i-1}xW_{ij}arrow T\phi_{ij}^{7}$

which simply adds the coordinates labelled $i+1,$ $i+2,$ $\ldots,j-1$ . This
induces $J(j, i)\wedge W_{ij}arrow W_{ij}$ , and hence $J(j, i)\wedge Z_{j}^{+}arrow Z_{i}^{+}$ giving us the
desired functor.

Our next task is to see that the $comp_{d}ct$ smooth framed category
which arises in \S 3 from aMorse-Bott-Smale function gives rise to afunctor
$Z$ : $\mathcal{J}_{0^{\hslash}}arrow \mathcal{T}_{*}$ such that

$Z(i)=S^{n-i}(F_{i}^{E_{j}})$ .
This is just a version of the Pontryagin-Thom construction. We have seen
that the manifold with corners $F(j, i)$ embeds in the sphere bundle $S(E_{j})$ ,
with normal bundle $\pi_{i}^{*}E_{i}$ . Let us map it further into $E_{j}$ with normal bundle
$\pi_{i}^{*}E_{i}\oplus \mathbb{R}$ . We can choose a map $F(j, i)arrow \mathbb{R}_{+}^{k}$ inducing the str\’atification
of $F(j, i)$ , where $k=j-i-1=\dim F(j, i)$ . This gives us an embedding of
$F(j, i)$ in $E_{j}x\mathbb{R}_{+}^{k}$ , compatible with the boundary structure, with normal
bundle

$\nu_{ji}=\pi_{i}^{l}E:\oplus \mathbb{R}^{j-i}$ .
In other words, we have map$s$

$\mathbb{R}_{+}^{k}xE_{j}arrow\nu_{ji}arrow E;x\mathbb{R}^{j-i}$ ,

where the first is an open inclusion, and the second is proper. Passing to
the one-point compactifications this gives

$J(j, i)\wedge F_{j}^{E_{j}}arrow\nu_{ji}^{+}arrow S^{j-i}(F_{i}^{E_{i}})$ ,
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and, after applying $S^{n-j}$ , this is exactly what we need to define abase-
point-preserving functor $Z:\mathcal{J}_{0}^{n}arrow T_{*}$ with $Z(i)=S^{n-:}(F_{i}^{E_{i}})$ .

The method, described above, of reconstructing the manifold $X$ from
the data provided by the function $f$ is quite different from that used in [9].
It uses the framings of the spaces $F(j, i)$ , and their compatibility under
the composition law in $C_{J}$ to recover the stable homotopy type of X. For
example, in the case where $f$ is aMorse-Smale function (that is one with
isolated non-degenerate critical points whose gradient flow satisfies Smale’s
transversality condition) the method amounts to the following construction.
Take acell of dimension $j$ for each critical point of index $j$ ;now one con-
structs aCW complex inductively, using the fralnin$gs$ of the spaces of florv
lines to give the maps needed to attach appropriate suspensions of these
cells to the lower skeleta. In this way we recover the stable homotopy type
of M. Thus, the construction is similar in spirit to the work of Franks [14].
Note that the Morse-Smale chain complex simply uses the framings of the
zero. dimensional spaces $F(i+1, i)$ to define the boundary map.

Now let us consider what happens when we apply this lnethod to the
infinite dimensional $situatio\dot{n}s$ studied by Floer. Here we confine ourselves
to summarising the basic points; we will give acomplete account in afuture
paper.

Clearly, the first step is to consider functors $Z$ defined on the whole
category $\mathcal{J}$ . If we have a functor $Z$ : $\mathcal{J}arrow \mathcal{T}_{*}$ , then we get a functor
$Z_{a}^{b}$ : $\mathcal{J}_{a^{b}}arrow \mathcal{T}_{*}$ , and a compact space $|Z|_{a}^{b}=|Z_{a}^{b}|$ for each $a<b$ . It is
important to observe that, from the construction of the realizations, there
are maps

$S^{b’-b}|Z|_{a}^{b}arrow|Z|_{a’}^{b}$ , $|Z|_{a}^{b},$ $arrow S^{a-a’}|Z|_{a}^{b}$

when $a’\leq a<b\leq b’$ . Such a system of spaces and maps defines a
pro-spectrum; see the Appendix for a brief discussion of pro-spectra, and
further references. Thus, in the case of a functor $Z$ : $\mathcal{J}arrow \mathcal{T}_{*}$ , the output
is a pro-spectrum, rather than a stable homotopy type.

If we have a compact smooth framed category with objects $\{\Gamma_{i}\}_{i\in \mathbb{Z}}$ we
do not quite get a functor $\mathcal{J}arrow \mathcal{T}.$ . The framing only provides us $\backslash vith$

‘stable’ or ‘virtual‘ bundles $E$; instead of genuine finite dimensional vector
bundles. The space $F_{i}^{E;}$ is then an object in the ‘stable category’ $S$ , which
is described in the Appendix. Thus we get a functor $Z$ : $\mathcal{J}arrow S$ , with
$Z(i)=S^{-i}(F_{i}^{E;})$ and such a functor still defines a pro-spectrum.

What happens when we have a compact smooth category $whiCh$ is not
framed? The essential point is to understand how to extract some kind of
stable map $S^{2m}Aarrow B$ from a diagram of compact manifolds

(52) $Aarrow\pi_{1}Carrow^{\pi_{2}}B$ ,

where $\pi_{1}$ is a fibration whose fibres are closed almost complex manifolds
of (real) dimension $2m$ . Evidently, we can lift $\pi_{1}$ to an embedding $Carrow$
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$A$ $x\mathbb{C}^{m+p}$ for some $p$ . Let the normal bundle be $\nu$ . Then we have

$S^{2m+2p}(A^{+})arrow C^{\nu}$ , $Carrow B$ .

To proceed we must pass to a category in which $C$ and $C^{\nu}$ are equivalent.
If $\nu$ is trivialized, then $C^{\nu}=S^{2p}(C^{+})$ , and the usual stable category will
serve. In general, we must do something more brutal, which we will digress
to explain.

The stable category of compact spaces is described in the Appendix. In
this category, two compact spaces $X$ and $Y$ become homotopy equivalent
if their suspensions $S^{p}X$ and $S^{p}Y$ are homotopy equivalent for large $p$ .
The notion of a spectrum, a sequence of spaces $K=\{K_{p}\}$ with map$s$

$S^{q}K_{p}arrow K_{p+q}$ , is also described in the Appendix. We are concerned here
with ring spectra, where there are associative pairings $K_{p}\wedge K_{q}arrow K_{p+q}$ .
The spheres themselves form a natural example. For a ring spectrum $K$ we
can define the K-homotopy category: its objects are compact spaces and
its morphisms from $X$ to $Y$ are

$Mor_{K}(X, Y),=\lim_{parrow\infty}[S^{p}X, K_{p}\wedge Y]$ .

Thus if $K_{p}=S^{p}$ this is the stable homotopy category.
There is an optimal spectrum $M$ with the property that for any p-

dimensional complex vector bundle on a compact space $C$ the Thom space
$C^{\nu}$ is canonically M-homotopy equivalent to the suspension $S^{2p}(C^{+})$ . For
this choice of $M$ , the diagram (5.2) induces a map $S^{2m}(A^{+})arrow B^{+}$ in the
M-homotopy category.

We can now carry out the Pontryagin-Thom construction for an arbi-
trary compact smooth category, and we shall obtain an object $|Z|_{a}^{b}$ of the
M-homotopy category for each pair of integers $a<b$ . If $a’\leq a<b\leq b’$

there will be a natural M-maps

$S^{b’-b}|Z|_{a}^{b}arrow|Z|_{a’}^{b}$ , $|Z|_{a}^{b},$ $arrow S^{a-a’}|Z|_{a}^{b}$ .

This system of spaces and maps again defines a pro-spectrum and it is our
desired output.

For fixed $a$ , the spaces $|Z|_{a}^{b}$ and M-map$sS^{b’-b}|Z|_{a}^{b}arrow|Z|_{a’}^{b}$ define
an object $|Z|_{a}$ of the M-homotopy category of spectra. Furthermore, for
the flow categories of Floer functions $S^{d}|Z|_{a}^{b}$ and $|Z|_{a}^{b}\ddagger^{d}d$ are M-homotopy
equivalent, where $d$ is the periodicity of the virtual dimension, conipare \S 2.
This gives a periodicity map $|Z|_{a}arrow S^{d}|Z|_{a}$ . Therefore the pro-spectrum,
which is the output of the construction, is of a particularly simple kind; it
is given by the inverse system ofspectra

$Zarrow S^{-d}Zarrow S^{-2d}Zarrow\cdots$

where $Z=|Z|_{0}$ and the map $S^{-d}Zarrow Z$ is the periodicity map.
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The spectrum $M$ is traditionally called the AfU-spectrum. The
space $M_{2p}$ is the Thom space of the universal $\emptyset$ bundle on $BGL_{p}(\mathbb{C})$ ,
and $M_{2p+1}=SM_{2p}$ . If $\nu$ is a $\emptyset$ -bundle on $C$ the classifying map
$Carrow BGL_{p}(\mathbb{C})$ extends to $C^{\nu}arrow M_{2p}$ . Putting this together with the
projection $uarrow C$ gives

$C^{\nu}arrow M_{2p}\wedge(C^{+})$

which is an M-equivalence $C^{\nu}arrow S^{2p}(C^{+})$ . This M-equivalence does not
depend on the choice of a classifying map for $\nu$ though it would take us
too far afield to explain that here: the point is the functoriality of the
transformation $Carrow \mathcal{V}$ mentioned at the end of \S 3.

Spectra are the $s$ame thing as generalized cohomology theories. If
we define $h^{p}(X;K)=Mor_{K}(X;S^{p})$ then $h^{*}(-;K)$ is a cohomology the-
ory, and the correspondence $Krightarrow h^{*}(-;K)$ is one-to-one. The theory
$h(-;M)$ , called complex cobordism, is universal among $s$o-called complex
oriented theories [25], which include ordinary cohomology and K-theory
and it determines them algebraically. So our construction gives us defini-
tions of Floer cobordism and Floer K-theory, as well as Floer cohomology.

\S 6 FLOER THEORY FOR THE PROJECTIVE SPACE
OF A POLARIZED VECTOR SPACE AND $\mathcal{L}\mathbb{C}\mathbb{P}^{n}$

We now explain what the method described in the previous section
gives in some infinite dimensional examples. Motivated by the fact that
the compactification of the flow category of the area functional on $\mathcal{L}\mathbb{C}\mathbb{P}^{n}$ ,
constructed in \S 4, is the flow categofy of a function on an infinite dimen-
sional projective space, we begin by considering projective spaces.

Example 6.1 –Real projective space. Let $V$ be the real vector space
of sequences $x=\{x_{n}\}_{n\epsilon z}$ with only a finite number of non-zero terms,
topologized as the direct limit of its finite dimensional subspaces. We use
the usual Hilbert norm $||-||$ on $V$ ; of course $V$ is not complete in this
norm. Let $S(V)$ be the sphere in $V$ and consider the function $f$ : $S(V)arrow \mathbb{R}$

defined by

$f(x)=- \sum_{n=-\infty}^{\infty}nx_{n}^{2}$ .

This descends to a function

$f$ : $\mathbb{P}(V)arrow \mathbb{R}$

with critical points $c;=[\delta_{i}],$ $i\in Z$ , where $\delta$; is the i-th element in the
standard basis for $V$ . The gradient flow of $f$ , with respect to the Hilbert
norm, is the flow on $P(V)$ defined by the linear flow $\psi$ on $V$ where $\psi_{t}(\delta_{n})=$

$e^{n2}\delta_{n}$ . We could replace $V$ by a space of sequences of suitably rapid decay,
but this does not make any real difference.
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The unstable manifold $W^{u}(c;)$ and the stable manifold $W^{s}(c_{i})$ are
given by

$W^{u}(c_{i})=$ { $[x]\in \mathbb{P}(V):x_{i}\neq 0,$ $x_{j}=0$ if $j<i$}
$-W^{s}(c;)=$ { $[x]\in \mathbb{P}(V):x;\neq 0,$ $x_{j}=0$ if $j>i$}.

Neither $W^{u}(c_{i})$ nor $W^{s}(c;)$ is finite dimensional but the intersection
$W^{u}(c;)\cap W^{s}(c_{j})$ is transverse, finite dimensional, and

$\dim W^{s}(c_{j})\cap W^{u}(c_{j})=j-i$ if $j\geq i$ .

From this it is not difficult to identify the flow category $C=C_{f}$ explicitly.
Now consider the question of whether this category is framed in the

sense of \S 3. Fix a pair of integers $a<b$ and let $C_{a}^{b}$ be the full subcategory
generated by the critical points $c_{i}$ with $a\leq i\leq b$ . This category is the flow
category of the function

$f(x)= \sum_{n=a}^{b}nx_{n}^{2}$

on $\mathbb{R}\mathbb{P}^{b-a}=\mathbb{P}(V_{a}^{b})$ where $V_{a}^{b}$ is the finite dimensional subspace of $V$ with
basis $\delta;,$ $a\leq i\leq b$ , and we are using the natural homogeneous coordinates
$x=[x_{a}, \ldots, x_{b}]$ with $\sum x_{n}^{2}=1$ on $\mathbb{P}(V_{a}^{b})$ . Therefore, $C_{a}^{b}$ is a framed
category and each of the spaces of morphisms $F(j, i)$ with $a\leq i<j\leq b$

inherits a framing $\varphi_{a}^{b}$ from the flow category $C_{a}^{b}$ . The framing $\varphi_{a}^{b}$ comes
from embedding $F(j, i)$ in the unstable spher.$e$ of the critical point $c_{j}$ in
$\mathbb{R}\mathbb{P}^{b-a}$ , which, since $c_{j}$ has index $j-a$ in $\mathbb{R}\mathbb{P}^{b-a}$ , is a sphere of dimension
$j-a-1$ . In particular, this shows that the framings $\varphi_{a}^{b}$ and $\varphi_{a}^{b’}$ are
identical. However, the framings $\varphi_{a}^{b}$ and $\varphi_{a}^{b}$ , are not the $s$ame, as we will
show.

Let us work in the stable category $S$ , described in the Appendix, and
define

$|(C_{a}^{b}, \varphi)|=S^{a-b}|Z|$

where $Z$ : $\mathcal{J}_{a^{b}}arrow \mathcal{T}_{*}$ is the functor defined by the category $C_{a}^{b}$ equipped
with the framing $\varphi$ . This has the effect of removing the suspensions which
occur in the statement of Proposition (5.1) and it simplifies notation; it is
a straightforward matter to keep track of the suspensions, if necessary.

The manifold $F(i+1, i)$ has dimension zero and, using $\varphi_{a}^{b}$ , is framed
in $S^{i-a}$ , the unstable sphere of the critical point $c_{i+1}$ in $\mathbb{R}\mathbb{P}^{b-a}$ . Thus it
gives a map of spheres $S^{i-a}arrow S^{i-a}$ . This map is the relative attaching
map between the $(i-a+1)$-cell and the $(i-a)$-cell in $|(C_{a}^{b}, \varphi_{a}^{b})|=\mathbb{R}\mathbb{P}^{b-a}$ .
Therefore it has degree $1-(-1)^{i-a}$ . Using the framing $\varphi_{a-1}^{b}$ of $F(i+1, i)$
in the unstable $S^{i-a+1}$ of the critical point $c_{i+1}$ in $\mathbb{R}\mathbb{P}^{b-a+1}$ we get a map
$S^{i-a+1}arrow S^{i-a+1}$ which is the relative attaching map between the $(i-$
$a+2)$-cell and the $i+1-a$-cell of $|(C_{a-1}^{b}, \varphi_{a-1}^{b})|=\mathbb{R}\mathbb{P}^{b-a+1}$ ; therefore it
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has degree $1-(-1)^{i-a+1}$ . So the framings $\varphi_{a}^{b}$ and $\varphi_{a-1}^{b}$ produce different
maps.

For $a’<a$ the framin$gs\varphi_{a}^{b}$ , and $\varphi_{a}^{b}$ differ because the normal bundle
to $\mathbb{R}\mathbb{P}^{b-a}$ in $\mathbb{R}\mathbb{P}^{b-a’}$ , that is $(a-a’)\eta$ where $\eta$ is the real Hopf line bundle,
is non-trivial. Furthermore, it is straightforward to check that

$|(C_{a}^{b}, \varphi_{a}^{b}’)|=(\mathbb{R}\mathbb{P}^{b-a})^{(a-a’)\eta}$ .

Since the framings $\varphi_{a}^{b’}$

’ and $\varphi_{a}^{b}$

’ agree it follows that

$|(C_{a}^{b}, \varphi_{a}^{b’})|=(\mathbb{R}\mathbb{P}^{b-a})^{(a-a’)\eta}$

whenever $a’\leq a<b\leq b’$ .
From the construction of the realization there are maps

$|(C_{a}^{b}, \varphi_{a}^{b})|arrow|(C_{a}^{b’}, \varphi_{a}^{b’})|$ , $|(C_{a}^{b},, \varphi_{a}^{b})|arrow|(C_{a}^{b}, \varphi_{a’}^{b})|$

for $a’\leq a<b\leq b’$ which we now identify. The first is the inclusion

$\mathbb{R}\mathbb{P}^{b-a}arrow \mathbb{R}\mathbb{P}^{b’-a}$

and the second is the map

$\mathbb{R}\psi-a’arrow(\mathbb{R}\mathbb{P}^{b-a})^{(a-a’)\eta}$

obtained from the Pontryagin-Thom construction applied to the embedding
$\mathbb{R}\mathbb{P}^{b-a}arrow \mathbb{R}\mathbb{P}^{b-a’}$ ; we describe this construction briefly.

Suppose we have an embedding $Parrow M$ of compact manifolds. Let
$\nu$ be the normal bundle of the embedding and let $N_{P}$ be an open tubu-
lar neighbourhood of $P$ in $Af$ . Then the inclusion $N_{P}arrow Af$ is an open
embedding and so it gives a map $N_{P}^{+}arrow Af$ where $N_{P}^{+}$ is the one-point
compactification of $N_{P}$ . Now $N_{P}^{+}$ is just the Thom complex of $\nu$ and so
the embedding $Narrow M$ gives a map $Marrow P^{\nu}$ . Applied to the embedding
$\mathbb{R}\mathbb{P}^{b-a}arrow \mathbb{R}\mathbb{P}^{b-a’}$ , with normal bundle $(a-a’)\eta$ , this gives the required
map.

We now explain how to assemble the spaces $|(C_{a}^{b}, \varphi_{a}^{b’},)|$ into a single,
a pro-spectrum, which correctly reflects the relation between the different
spaces. To do this, we use the maps we have just described. The bundle
$(a-a’)\eta$ extends over $\mathbb{R}\mathbb{P}^{b-a}$ and so, using the theory of Thom spaces
of virtual bundles described in the Appendix, we can convert the map
$\mathbb{R}\mathbb{P}^{b-a’}arrow(\mathbb{R}\mathbb{P}^{b-a})^{(a-a’)\eta}$ into a stable map

$(\mathbb{R}\mathbb{P}^{b-a’})^{-(a-a’)\eta}arrow \mathbb{R}\mathbb{P}^{b-a}$ .

Therefore we can construct the sequence

$\mathbb{R}\mathbb{P}^{b-a}arrow(\mathbb{R}\mathbb{P}^{b-a+1})^{-\eta}arrow(\mathbb{R}\mathbb{P}^{b-a+2})^{-2\eta}arrow\ldots$
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in the stable category of compact spaces. As explained in the Appendix,
this sequence defines a pro-spectrum.

Using the inclusions $\mathbb{R}\psi-aarrow \mathbb{R}\mathbb{P}^{b’-a}$ we can take the limit over $b$

and then, using Thom spaces of virtual vector bundles over CW complexes
of finite type (see the Appendix), we get the pro-spectrum defined by the
sequence of Thom spectra

$\mathbb{R}\mathbb{P}^{\infty}arrow(\mathbb{R}\mathbb{P}^{\infty})^{-\eta}arrow(\mathbb{R}\mathbb{P}^{\infty})^{-2\eta}arrow\cdots$

This pro-spectrum is the final output of the construction; it is the Floer
homotopy type associated to the function $f$ : $\mathbb{P}(V)arrow \mathbb{R}$ . In fact, this pro-
spectrum, which is usually denoted by $\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}}$ , is exactly the pro-spectrum
which occurs in the theorem of Lin mentioned in the introduction.

Floer’s method of associating a chain complex to the function $f$ :
$\mathbb{P}(V)arrow \mathbb{R}$ , gives the chain complex $C_{*}$ with $C_{p}=Z$ for all $p\in Z$ , and
the boundary operator $\partial_{p}$ : $C_{p}arrow C_{p-1}$ is multiplication by $1+(-1)^{p}$ . It
is easy to check that the homology of this chain complex is the same as
the homology of the pro-spectruni $\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}}$ for any coefficient group. So the
Floer groups do compute the homology of $\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}}$ .
Example 6.2–Complex projective space. Now consider the complex
analogue of the previous example. Let $W$ be the complex vector space
of sequences $z=\{z_{n}\}_{n\epsilon z}$ with only a finite number of non-zero terms,
equipped with the direct limit topology, and Hilbert norm $||-||$ . This time
the function $S(W)arrow \mathbb{R}$ defined.by

$z rightarrow\sum_{n=-\infty}^{\infty}n|z_{n}|^{2}$

descends to a function $f$ : $\mathbb{P}(W)arrow \mathbb{R}$ , and the flow of this function is
exactly the flow $\Phi^{(0)}$ on the projective space $\mathbb{P}(W)$ which arose in \S 4. The
construction used in the case of the real projective space $P(V)$ shows that
the Floer homotopy type associated to this function is the pro-spectrum
$\mathbb{C}\mathbb{P}_{-}^{\infty_{\infty}}$ defined by the sequence of Thom spectra

$\mathbb{C}\mathbb{P}^{\infty}arrow(\mathbb{C}\mathbb{P}^{\infty})^{-\zeta}arrow(\mathbb{C}\mathbb{P}^{\infty})^{-2\zeta}arrow\cdots$

where $\zeta$ is the complex Hopf line bundle. Once more we find by direct
computation that the Floer chain complex of $f$ does indeed compute the
cohomology of this pro-spectrum.

Example 6.3 –The area function on $\mathcal{L}\mathbb{O}^{n}$ . To associate a Floer
homotopy type to the area functional $A$ on $\mathcal{L}\mathbb{C}\mathbb{P}^{n}$ we first compactify the
flow category $C_{A}$ to give the flow category of the flow $\Phi^{(n)}$ on the projective
space $\mathbb{P}(\mathbb{C}^{+1}\otimes \mathbb{C}[z, z^{-1}])$ , as in \S 4. Now the method of (6.1) and (6.2)
gives the pro-spectrum defined by the sequence of Thom spectra

$\mathbb{C}\mathbb{P}^{\infty}arrow(\mathbb{C}\mathbb{P}^{\infty})^{-(n+1)\zeta}arrow(\mathbb{C}\mathbb{P}^{\infty})^{-2(n+1)\zeta}arrow\cdots$
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where $\zeta$ is the complex Hopf line bundle. This pro-spectrum is $\mathbb{C}\mathbb{P}_{-}^{\infty_{\infty}}$ .
The reason why $(n+1)\zeta$ appear$s$ in this construction is that the cate-

gory $C_{a}^{b}$ which occurs in this example is the flow category of a Morse-Bott-
Smale function on $\mathbb{O}P^{(n+1)(b-a)}$ , and the normal bundle to the embedding
of $\mathbb{C}\mathbb{P}^{(n+1)(b-a)}$ in $\mathbb{C}\mathbb{P}^{(n+1)(b-(a-1))}$ is $(n+1)\zeta$ .

As explained in the Appendix, the cohomology of $\mathbb{C}\mathbb{P}_{-}^{\infty_{\infty}}$ with integral
coefficients is $Z[u, u^{-1}]$ , the ring of Laurent polynomials in $u$ where $u$ has
degree 2. Thus, as a group, this is one copy of $Z$ in every even dimension.
Computing the first Chern clas$s$ of $\mathbb{C}\mathbb{P}^{n}$ shows that the Floer homolo$gy$

$HF_{*}(\mathcal{L}W^{n})$ is $Z/(2n+2)$ graded and Floer [12] show$s$ that these groups
are one copy of $Z$ in even degrees and $0$ in odd degrees.

The relation between these groups is as follows. Let $e((n+1)\zeta)$ be
the Euler class of the bundle $(n+1)\zeta$ , which is the bundle which naturally
occurs in the above sequence of Thom spectra; of course $e((n+1)\zeta)=u^{n+1}$ .
If we now set $e((n+1)\zeta)$ to be 1, we get Floer’s groups with their $Z/(2n+2)$
grading:

HF, $( \mathcal{L}\mathbb{C}\mathbb{P}^{n})=\frac{Z[u,u^{-1}]}{(u^{n+1}-1)}=\frac{H^{*}(\mathbb{C}\mathbb{P}_{-}^{\infty_{\infty}})}{(e((n+1)\zeta)-1)}$.

The Floer cohomology of $\mathcal{L}\mathbb{O}P$“ has a ring structure using the ‘pair of pants’
product and what is more the above isomorphisms are isomorphisms of
rings.

We close this section with some final comments.
(i) It seems very likely that the same method will work for the area

functional on $\mathcal{L}Gr_{k}(\alpha)$ where $Gr_{k}(\mathbb{C}^{n})$ is the Grassmannian of complex
$k$ planes in $\mathbb{C}^{n}$ . In this case the ring strucuture of Floer cohomology ring
has been computed, by Witten; it is the ‘deformed cohomology ring’ of the
Grassmannian. Once more, we expect the Floer homotopy type to come
from an inverse system of Thom spectra, and to find the Floer cohomology
$\mathbb{C}\mathbb{P}ring_{n}.is$

given by a formula similar to the one which arises in the case of

(ii) In the projective space examples the pro-spectra $\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}}$ and $\mathbb{C}\mathbb{P}_{-}^{\infty_{\infty}}$

are indeed the natural candidates for the semi-infinite homotopy type of the
polarized manifolds $P(V)$ and $\mathbb{P}(T\phi^{\gamma})$ . The polarization of these projective
spaces is defined by the natural polarization of $V$ and $\ddagger i^{r}$ . For example
the construction of $\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}}$ can be phrased so that it only depends on the
polarization $V=V^{-}\oplus V^{0}\oplus V^{+}$ where $V^{-}$ has basis $\{\delta_{i}\}_{i<0},$ $V^{+}$ has basis
$\{\delta_{i}\}_{i>0}$ and $V^{0}$ , the ‘finite dimensional ambiguity’, is the one dimensional
space spanned by $\delta_{0}$ .

Let $W$ be a finite dimensional subspace of $V$ such that $W=T\psi-\oplus T\phi^{r0}\oplus$

$W^{+}$ where $W^{\pm}=W\cap V^{\pm}$ and $Ti^{\gamma 0}=W\cap V^{0}$ . We refer to $W^{0}\oplus W^{+}$ as the
positive part of $W$ and $W^{-}$ as the negative part. To $W$ we associate the
Thom space $\mathbb{P}(TW)^{-\zeta}$ of the virtual $butldle-\xi$ where $\xi$ is the vector bundle
over $P(W)$ defined by $W^{-}$ . If we choose bases then we get an isomorphism
$\xi\cong(\dim W^{-})\eta$ where $\eta$ is the Hopf line bundle. In the stable category
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$\mathbb{P}(W)^{-\zeta}$ has one i-cell for each $i$ with-dim $W_{-}\leq i\leq\dim W-\dim W^{-}$ .
Now suppose we have an inclusion $T\psi_{1}arrow W_{2}$ which preserves the

decompositions. If it is an isomorphism on the negative part, i.e. increases
the positive part, then we get an obvious map

$\mathbb{P}(W_{1})^{-\zeta_{1}}arrow \mathbb{P}(W_{2})^{-\xi_{2}}$ .

On the other hand, if it is an isomorphism on the positive part, i.e. increases
the negative part, then we get a map

$\mathbb{P}(W_{1})^{-\zeta_{1}}arrow \mathbb{P}(W_{2})^{-\zeta_{2}}$ .

This map is constructed as follows. The bundle $\xi_{1}$ is a sub-bundle of
$\xi_{2}$ restricted to $\mathbb{P}(W_{1})$ and therefore the virtual bundle $-\xi_{2}$ restricted to
$\mathbb{P}(W_{1})$ is a sub-virtual-bundle $of-\xi_{1}$ . This gives a map (in the stable
category) of Thom spaces $\mathbb{P}(W_{1})^{-\zeta_{1}}arrow \mathbb{P}(W_{3})^{-\zeta_{2}}$ .

Thus we get a system of Thom spectra indexed by subspaces $W$ of $V$ .
An inclusion which is an isomorphism on the negative part (i.e increases
the positive part) gives a map in the same direction whereas an inclusion
which is an isomorphism on the positive part (i.e. increases the negative
part) gives a map in the other direction. Using the basis for $V$ we can use
the subspaces $V_{a}^{b}$ to reduce this system to one indexed by pairs of integers
integers and this gives the pro-spectrum $\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}}$ . This construction fits in
rather well with the coordinate free theory of spectra described in [19],
where the spaces defining the spectrum are indexed by finite dimensional
subspaces of an infinite dimensional real vector space, rather than the in-
tegers. Here we have spaces indexed by the finite dimensional subspaces of
a polarized vector space.

Therefore, we are able to associate a ‘semi-infinite homotopy type to
$\mathbb{P}(V)$ which depends only on the polarization of $V$ , and the Floer function
$f$ : $\mathbb{P}(V)arrow \mathbb{R}$ does indeed compute the ‘seIni-infinite’ cohomology of $\mathbb{P}(V)$ .
However the construction depends very heavily on special features of $\mathbb{P}(V)$ .

APPENDIX –SPECTRA AND PRO-SPECTRA

In stable homotopy theory it is convenient, and it greatly simplifies
many arguments, to be able to work in a suitable stable category of spaces.
The stable category $\dot{S}$ of finite CW complexes is defined, essentially, by
inverting the suspension functor on the category of finite CW complexes.
The objects of $S$ are defined to be $S^{n}X$ where $X$ is a finite CW complex,
and $n\in Z$ . If $n$ is positive then $S^{n}X$ is just the n-th suspension of $X$ , but
by allowing $n$ to be negative we have introduced formal desuspensions of
X. More precisely, the objects of $S$ are pairs (X, $n$), where $X$ is a finite
CW complex and $n\in Z$ , modulo the equivalence relation generated by
identifying (X, $n$) with $(S^{n}X, 0)$ if $n$ is positive, and $S^{n}X$ is the equivalence
class of (X, $n$ ). A map from $S^{n}Xarrow S^{m}Y$ is defined by giving a map
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$S^{n+k}Xarrow S^{m+k}Y$ where $k$ is chosen large enough so that both $S^{n+k}X$

and $S^{m+k}Y$ are genuine CW complexes. Two maps are identified if they
are equal after a suitably large number of suspensions. Thus,

Map$s(S^{n}X, S^{m}Y)= \lim_{karrow\infty}Map(S^{n+k}X, S^{m+k}Y)$

where the maps in the direct system are given by suspension.
The main difficulty with this stable category is $t1_{1}at$ it is not closed

under direct and inverse limits. The category of spectra $SP$ is defined,
essentially, to be the category one obtains by formally adjoining direct
limits of sequences in the stable category. Thus a spectrum $K$ is given by
a sequence of CW complexes $\{K_{p}\}$ and maps $SK_{p}arrow K_{p+1}$ . One thinks of
the spectrum $K$ as the direct limit of the sequence

$K_{0}arrow S^{-1}K_{1}arrow\cdotsarrow S^{-p}K_{p}arrow S^{-p+1}K_{p+1}arrow\cdots$

in $S$ . Note that it is only necessary to define the spaces $K_{Pn}$ and the map$s$

$S^{p_{\mathfrak{n}}+1^{-p,}}\cdot If_{P\mathfrak{n}}arrow K_{p_{\mathfrak{n}+1}}$ for $a\cdot strictly$ increasing sequence of integers $p_{n}$ ; for
if $p_{n}<m<p_{n+1}$ we can define $K_{m}=S^{m-p_{\mathfrak{n}}}K_{p_{n}}$ and use the identity
map $SK_{m}arrow K_{m+1}$ if $m+1\neq p_{n+1}$ .

It takes some work to define maps between spectra and set up a good
category of spectra. The essential difficulty is the usual one when dealing
with maps from a direct limit $K$ to a direct limit $L$ ; it.is certainly the case
that a map of direct systems defines such a map but there are many different
direct systems with limits $K$ and L. However the technicalities involved
in the definition of a suitable category of spectra are well-understood; see
[1] and [19]. In particular [19] gives the definition $from\cdot the$ (coordinate-

free’ point of view which leads to a category of spectra with all the good
properties one could expect.

Spectra define generalised cohomology theories: if $X$ is a finite CW
complex

$h^{p}(X; K)=\lim_{karrow\infty}[S^{k-p}X;K_{k}]$ .

The maps in the direct system are defined by

$[S^{k-p}X,$ $K_{k}]arrow[S$
ん一 $p+1X,$ $SK_{k}]arrow[S^{k-p+1}X,$ $K_{k+1}]$ ,

where the first map is given by suspension, and the second by the structure
maps of the spectrum K. In the literature this group $h^{p}(X;K)$ is often de-
noted by $K^{p}(X)$ . Furthermore every generalised cohomology theory arises
in this way. This is one of the main justifications for introducing spectra.

For some purposes the category of spectra is still not big enough. In
the study of the Segal conjecture it becomes clear that one also needs
pro-spectra, inverse systems of spectra. The most convincing argument
for the necessity of pro-spectra is given in [2, pages 5-6]. By definition,
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a pro-spectrum is a doubly indexed family of finite CW complexes $\{X_{p,q}\}$

equipped with maps

$SX_{p,q}arrow X_{p,q+1}$ , $X_{p)q}arrow X_{p)q-1}$ .

Thus if we fix $p$ the sequence of spaces $X_{p,q}$ with structure maps $SX_{p,q}arrow$

$X_{p,q+1}$ form a spectrum $X_{p}$ and the maps $X_{p,q}arrow X_{p-1,q}$ give a map of
spectra $X_{p}arrow X_{p-1}$ ; so we have an inverse system of spectra

. . . $arrow X_{p-1}arrow^{-}X_{p}arrow.$ . . .
It is only necessary to define these spaces and maps for a strictly increasing
sequences of integers $p_{n}$ and $q_{n}$ . Furthermore, to define a pro-spectrum it
is sufficient to give the structure maps in the stable category $S$ .

The first example of a pro-spectrum which arises in the main text
occurs in \S 5, where for any pair of integers $a$ and $b$ with $a<b$ , we have
spaces $|Z|_{a}^{b}$ , and for $a’\leq a<b\leq b’$ we have maps

$S^{b’-b}|Z|_{a}^{b}arrow|Z|_{a’}^{b}$ , $|Z|_{a}^{b},$ $arrow S^{a-a’}|Z|_{a}^{b}$ .

The corresponding pro-spectrum is defined by $X_{a,b}=S^{a}|Z|_{a}^{b}$ and the nat-
ural structure maps. Note that since $a$ can be negative, these spaces and
maps really do lie in the stable category; as noted above, they nonetheless
define a pro-spectrum.

A good example which illustrates these ideas and is of considerable
importance in our approach to Floer homotopy type arises from the theory
of Thom spaces. $Re’,all$ that the Thom space $X^{E}$ of a vector bundle $E$

over a compact space $X$ is defined to be the one-point compactification $E^{+}$

of the total space of $E$ . Now consider the problem of defining the Thom
space of a virtual vector bundle $\xi$ over $X$ . A virtual vector bundle is an
element $\xi\in KO(X)$ and its dimension, which is an integer, is defined by
the homomorphism $KO(X)arrow KO(pt)=Z$ given by the inclusion of a
point in $X$ . We are assuming, of course, that $X$ is connected. By standard
properties of K-theory we can find a genuine vector bundle $E$ over $X$ such
that

$\xi=E-k\in KO(X)$

where $k$ is a trivial bundle of dimension $k$ . Now $X^{\zeta}$ is defined to be the
object $S^{-k}X^{E}$ in the stable category $S$ . It is not difficult to check that in
$S$ the homotopy type of $X^{\zeta}$ does not depend on the choice of $E$ and $k$ .

Now suppose that $X$ is CW complex of finite type (this means that
the n-skeleton $X^{(n)}$ of $X$ is a finite CW complex for each n) and $\xi$ is a
virtual vector bundle on $X$ . In this case we cannot necessarily choose a
vector bundle $E$ such that $\xi=E-k$ , but we can choose vector bundles
$E^{(n)}$ over $X(n)$ such that

$\xi^{(n)}=E^{(n)}-k_{n}\in KO(X^{(n)})$ ,
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where $\xi^{(n)}$ is the restriction of $\xi$ to $X^{(n)}$ . Furthermore these bundles can
be chosen so that there is a bundle map $E^{(n)}+k_{m}-k_{n}arrow E^{(m)}$ , covering
the inclusion of $X^{(n)}arrow X^{(m)}$ , which is an isomorphism on fibres. Thus we
get maps

$S^{k_{\mathfrak{n}+1}-k_{n}}(X^{(n)})^{E^{(n)}}arrow(X^{(n+1)})^{E^{(\mathfrak{n}+1)}}$ .
.

and the spaces $\{(X^{(n)})^{E^{(n)}}\}$ with these maps define a spectrum. This is
the Thom spectrum of $\xi$ , denoted by $X^{\zeta}$ . Once more the homotopy type
of $X^{\zeta}$ does not depend on the choices made in its definition. For example
the MU-spectrum used in \S 5 is the Thom spectrum of the universal bundle
over $BU$ .

On a compact space $X$ , if $E$ is a sub-vector-bundle of $F$ we get a map
of Thom complexes $X^{E}arrow X^{F}$ . Similarily if $X$ has finite type and $\xi$ is a
sub-virtual-vector-bundle of $\eta$ , which means that there is a genuine vector
bundle $E$ such that $\xi+E=\eta$ , then we get a map of Thom spectra

$X^{\zeta}arrow X^{\eta}$ .

In particular, suppose that $X$ has finite type, and $E$ is a vector bundle over
X. $Then-E$ is a virtual vector bundle over $X$ , and if $k\geq 0then-kE$ is a
sub-virtual-vector-bundle of $(-k+1)E$. So we get maps $X^{-kB}arrow X^{(-k+1)E}$

and we can form the inverse system of Thom spectra

$Xarrow X^{-E}arrow X^{-2E}arrow\cdots$

with k-th term $X^{-kE}$ where $k\geq 0$ . This inverse system of Thom spectra
is a pro-spectrum which we will denote by $X^{-\infty E}$ . The examples which
occur in the main text are the cases where $X=\mathbb{R}\mathbb{P}^{\infty}$ and $E$ is the $re$al
Hopf line bundle; $X=\mathbb{C}\mathbb{P}^{\infty}$ and $E$ is the complex Hopf line bundle. These
pro-spectra are denoted by $\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}}$ and $\mathbb{C}\mathbb{P}_{-}^{\infty_{\infty}}$ respectively.

The cohomology of a pro-spectrum X is defined as follows. The pro-
spectrum is an inverse system of spectra

. $..arrow X_{p-1^{-}}arrow X_{p}arrow\cdots$

and then
$H(X)=_{parrow}m_{\text{科}}H^{*}(X_{p})$ .

In good cases, that is where there is no $\lim^{1}$ -term, we get

$H^{*}( X)=\lim_{parrow\infty}\lim_{\inftyarrow q}H^{*}(X_{p,q})$

where the spaces $\{X_{p,q}\}$ , with the appropriate structure maps, define the
pro-spectrum X.
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In the case of the pro-spectrum $X^{-\infty E}$ defined by a vector bundle over
a CW complex of finite type, it is straightforward to compute cohomology.
If $E$ is orientable it has an Euler clas$se(E)\in H^{\dim(E)}(X;Z)$ , and

$H^{*}(X^{-\infty E} ; Z)=H^{*}(X;Z)[e(E)^{-1}]$ .

If $E$ is not orientable then it has an Euler clas$s$ in $mod 2$ cohomology, and
the $mod 2$ cohomology of $X^{-\infty E}$ is given by the same formula. For $\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}}$

and $\mathbb{C}\mathbb{P}_{-}^{\infty_{\infty}}$ this shows that

$H^{*}(\mathbb{R}\mathbb{P}_{-}^{\infty_{\infty}};Z/2)=Z/2[x, x^{-1}]$

$H(\mathbb{C}\mathbb{P}_{-}^{\infty_{\infty}};Z)=Z[u, u^{-1}]$ .

Here $x$ has degree 1 and corresponds to the Euler clas$s$ of the real Hopf
line bundle in $H^{1}(\mathbb{R}\mathbb{P}^{\infty};Z/2);u$ has degree 2 and corresponds to the Euler
class of the complex Hopf line bundle in $H^{2}$ ( $\mathbb{C}\mathbb{P}^{\infty}$ ; Z).
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