The 5-cycle relation for iterated integrals Monodromy of iterated integrals

Zdzisław Wojtkowiak

§0. Introduction.

0.1. In this lecture we give a proof that the element, which describes the monodromy of iterated integrals (and also non-abelian unipotent periods) on $P^1(C) \setminus \{0, 1, \infty\}$ satisfies the Drinfeld- Ihara 5-cycle relation. This is in fact the same element that one finds in the paper of Drinfeld (see [Dr]). The proof presented here is different from the Drinfeld proof. The proof given here imitates Deligne's proof of 2 and 3-cycle relations and it should be analogous to Ihara's proof of 5-cycle relation. We point out that the main point in our proof is the functoriality of the universal unipotent connection. This property can be shortly written as $f_*\omega = f^*\omega$ and it is also fundamental in our results on functional equations of polylogarithms and iterated integrals (see [W]).

Below we shall give a brief description of the paper. In Section 1 are established some general properties of the canonical unipotent connection. In Sections 2 and 3 we present a "naive" approach to the Deligne tangential base point (see [D2]), which is sufficient for our applications. In Sections 4 and 5 we describe the monodromy of iterated integrals on $P^1(C) \setminus \{a_1, \ldots, a_{n+1}\}$ and in more details on $P^1(C) \setminus \{0, 1, \infty\}$. In Sections 6 and 7 we study monodromy of iterated integrals on configuration spaces.

§1. Canonical connection with logarithmic singularities.

Let X be a smooth, projective scheme of finite type over a field k of characteristic zero. Let D be a divisor with normal crossings in X and let $V = X \setminus D$. Let

$$A^*(V) := \Gamma(X, \Omega_X^* \langle \log D \rangle)$$

be a differential algebra of global sections of the algebraic De Rham complex on X with logarithmic singularities along D.

1.1. It follows from [D1] Corollaire 3.2.14 that each element of $A^*(V)$ is closed and the natural map $A^*(V) \to H^*_{DR}(V)$ is injective.

We shall denote by $\wedge^2(A^1(V))$ the exterior product of the vector space $A^1(V)$ with itself and by $A^1(V) \wedge A^1(V)$ the image of $\wedge^2(A^1(V))$ in $A^2(V)$.

Let $H(V):=(A^1(V))^*$ and $R(V):=(A^1(V)\wedge A^1(V))^*$ be dual vector spaces. The map $\wedge^2(A^1(V))\to A^1(V)\wedge A^1(V)$ induces a map $R(V)\to \wedge^2(H(V))$.

Let Lie (H(V)) be a free Lie algebra over k on H(V). Observe that R(V) is contained in degree 2 terms of Lie (H(V)). Let (R(V)) be a Lie ideal generated by R(V). We set

$$\operatorname{Lie}(V) := \operatorname{Lie}(H(V))/(R(V))$$

and

$$L(V) := \lim_{r \to \infty} \left(\operatorname{Lie}(V) / \Gamma^n \operatorname{Lie}(V) \right).$$

The Lie algebra L(V) we equip with the multiplication given by the Baker-Campbell-Hausdorff formula and the obtained group we shall denote by $\pi(V)$. Its Lie algebra can be identified with L(V). We define a one form ω_V on V with values in the Lie algebra L(V) in the following way. The form ω_V corresponds to the identity homomorphism $\mathrm{id}_{A^1(V)}$ under the natural isomorphism

$$A^{1}(V) \otimes H(V) = A^{1}(V) \otimes (A^{1}(V))^{*} \approx \text{Hom}(A^{1}(V), A^{1}(V)).$$

Lemma 1.2. The one-form ω_V is integrable.

Proof. It is sufficient to show that $d\omega_V + \frac{1}{2}[\omega_V, \omega_V] = 0$. It follows from 1.1 that $d\omega_V = 0$. We have exact sequences

$$0 \to K \to \wedge^2(A^1(V)) \to A^1(V) \wedge A^1(V) \to 0$$

and

$$0 \leftarrow K^* \leftarrow \wedge^2(H(V)) \leftarrow R(V) \leftarrow 0.$$

The two-form $[\omega_V, \omega_V] \in A^1(V) \wedge A^1(V) \otimes \wedge^2 H(V)/R(V) \approx (\wedge^2 (A^1(V))/K) \otimes K^*$ is represented by a map $K \to \wedge^2 (A^1(V)) \to A^1(V) \wedge A^1(V)$, hence it is zero.

Let T[H(V)] be a tensor algebra over k on H(V) and let (R(V)) be an ideal of T[H(V)] generated by R(V). Let Q(V) := T[H(V)]/R(V) be the quotient algebra and let $\widehat{Q}(V)$ be its completion with repect to the augmentation ideal $I := \ker(Q(V) \to k)$, i.e. $\widehat{Q}(V) := \varprojlim_n \left(Q(V)/I^n\right)$. Let P(V) be the group of invertible elements in $\widehat{Q}(V)$, whose constant terms are equal 1.

The elements of L(V) we identify with Lie elements (can be of infinite length) in P(V). The exponential series defines an injective homomorphism

$$\exp: \pi(V) \to P(V).$$

The inverse of exp is defined on the subgroup $\exp(\pi(V))$ of P(V) and it is given by the formula

$$\log z = (z-1) - \frac{1}{2}(z-1)^2 + \frac{1}{3}(z-1)^3 - \frac{1}{4}(z-1)^4 + \dots$$

Let us assume that k is the field of complex numbers C. Then V is a complex variety with the standard complex topology.

Let $x, z \in V$ be two points in V and let γ be a smooth path in V from x to z.

Let $\Lambda_V(z;x,\gamma)$ (resp. $L_V(z;x,\gamma)$) be a horizontal section along γ of the principal P(V) (resp. $\pi(V)$)-bundle

$$V \times P(V) \to V \quad (\text{resp. } V \times \pi(V) \to V)$$

equipped with the connection given by ω_V and such that $\Lambda_V(x; x, \gamma) = 1$ (resp. $L_V(x; x, \gamma) = 0$).

Definition 1.3. Let $x \in V$ and let $\alpha \in \pi_1(V, x)$ be a loop. We shall define a homomorphism

$$\theta_{x,V}: \pi_1(V,x) \to P(V) \quad (\text{resp. } \theta_{x,V}: \pi_1(V,x) \to \pi(V))$$

by the formula

$$\theta_{x,V}(\alpha) := \Lambda_V(\alpha(1); x, \alpha) \quad (\text{resp. } \theta_{x,V}(\alpha) := L_V(\alpha(1); x, \alpha))$$

and we call it the monodromy homomorphism of the form ω_V (at the point x).

Proposition 1.4. Let $x_1, x_2 \in V$. Then the monodromy homomorphisms $\theta_{x_1,V}$ and $\theta_{x_2,V}$ of the form ω_V are conjugated.

Proof. It is a property of a connection on a principal fiber bundle.

Proposition 1.5. Assume that

$$A^1(V) \to H^1_{DR}(V)$$

is an isomorphism. Then the Lie algebra Lie(V) is isomorphic to the Lie algebra of the fundamental group of V.

Proof. Let $\Omega^*(V)$ be a differential algebra of complex valued, global, smooth, differential forms on V. The inclusion $A^*(V) \to \Omega^*(V)$ induces an isomorphism of the "stage one" minimal models. Moreover the "stage one" minimal model of $A^*(V)$ is formal as $d_1 = d_2 = 0$. This implies the statement of the proposition.

Proposition 1.6. If $A^1(V) \to H^1_{DR}(V)$ is an isomorphism then the monodromy homomorphism $\theta_{x,V} : \pi_1(V,x) \to \pi(V)$ induces an isomorphism of the Malcev C-completion of $\pi_1(V,x)$ into $\pi(V)$.

Proof. The Sullivan theory of minimal models recovers the Malcev Q-completion $\pi_1(V,x)_0(Q)$ of $\pi_1(V,x)$. The formality of the "state one" minimal model of V implies that the Malcev C-completion of $\pi_1(V,x)$ is (isomorphic to) $\pi(V)$. Hence the groups $\pi_1(V,x)_0(C)$ and

 $\pi(V)$ are isomorphic. By the universal property of the Malcev C-completion there is an isomorphism $\bar{\theta}_{x,V}: \pi_1(V,x)_0(C) \xrightarrow{\approx} \pi(V)$ of affine, pro-nilpotent groups such that the diagram

commutes.

Let X_i (for i = 1, 2) be smooth, projective schemes of finite type over k. Let D_i be divisors with normal crossings in X_i (for i = 1, 2). Let $V_i = X_i \setminus D_i$ (for i = 1, 2) and let $f: X_1 \to X_2$ be a morphism such that $f^{-1}(D_2) = D_1$. Then f induces $f^*: A^1(V_2) \to A^1(V_1)$.

Let $f_*: H(V_1) \to H(V_2)$ be the dual map. This map induces group homomorphisms

$$f_*: P(V_1) \rightarrow P(V_2)$$

and

$$f_*:\pi(V_1)\to\pi(V_2)$$

Lemma 1.7. We have

$$f_*(\omega_{V_1})=f^*(\omega_{V_2}).$$

Corollary 1.8. We have

$$f_*(\Lambda_{V_1}(z;x,\gamma)) = \Lambda_{V_2}(f(z);f(x),f(\gamma)).$$

and

$$f_*(L_{V_1}(z;x,\gamma)) = L_{V_2}(f(z);f(x),f(\gamma)).$$

The lemma follows from the definition of ω_{V_i} as id $A^1(V_i)$.

Let $\omega_1, \ldots, \omega_n$ be a base of $A^1(V)$. Let X_1, \ldots, X_n be a dual base of H(V). Then P(V) is a multiplicative group of the algebra of formal power series in non-commuting variables X_1, \ldots, X_n divided by the ideal generated by R(V).

If $\alpha(X_1, \ldots, X_n)$ is a formal power series in non-commuting variables X_1, \ldots, X_n we shall denote by $\alpha(X_1, \ldots, X_n)$ its image in P(V).

Proposition 1.9. We have

$$\mathrm{i)}\quad (z,\Lambda_V(z;x,\gamma))=(z,{}'1+\sum((-1)^k\int_{x,\gamma}^z\omega_{i_1},\ldots,\omega_{i_k})X_{i_k}\cdot\ldots\cdot X_{i_1})\in V\times P(V);$$

(the summation is over all non-commutative monomials in variables X_1, \ldots, X_n , the interacted integrals are calculated along the path γ)

ii)
$$L_V(z; x, \gamma) = \log(\Lambda_V(z; x, \gamma))$$

Proof. The principal bundle $V \times C\{\{X_1, \ldots, X_n\}\}^* \to V$ equipped with the connection given by $\sum_{i=1}^n \omega_i \otimes X_i$ has horizontal sections given by

$$z \to (z, 1 + \sum ((-1)^k \int_{x,\gamma}^z \omega_{i_1}, \ldots, \omega_{i_k}) X_{i_k} \cdot \ldots \cdot X_{i_1}).$$

Hence the point i) follows. Observe that $\exp: \pi(V) \to P(V)$ identifies $\omega_V \in A^1(V) \otimes \text{Lie}(\pi(V))$ with $\omega_V \in A^1(V) \otimes \text{Lie}(P(V))$. Hence the point ii) follows.

- §2. Homotopy relative tangential base points on $P^1(C)\setminus\{a_1,\cdots,a_{n+1}\}$.
- **2.1.** Let $X = P^1(C) \setminus \{a_1, \dots, a_{n+1}\}$. Let $T_x(P^1(C))$ be the tangent space to $P^1(C)$ in x. Let us set $\hat{X} = X \cup \bigcup_{i=1}^{n+1} (T_{a_i}(P^1(C)) \setminus \{0\})$.

Let $J'(\hat{X})$ be the set of all continous maps from the closed unit interval [0;1] to $P^1(C)$ such that

- i) $\varphi((0,1)) \subset X$;
- ii) if $\varphi(0) = a_i$ then φ is smooth near a_i and $\dot{\varphi}(0) \neq 0$, and if $\varphi(1) = a_k$ then φ is smooth near a_k and $\dot{\varphi}(1) \neq 0$.

In the sequel we shall identify $\dot{\varphi}(0)$ (resp. $\dot{\varphi}(1)$) with a tangent vector to φ in $T_{a_i}(P^1(C))$ (resp. $T_{a_k}(P^1(C))$. This tangent vector we shall denote also by $\dot{\varphi}(0) \in T_{a_i}(P^1(C))$ (resp. $\dot{\varphi}(1) \in T_{a_k}(P^1(C))$.

If $\varphi(0) = x \in X$ and $\varphi(1) = y \in X$ then we say that φ is a path from x to y.

If $\varphi(0) = a_i$ (resp. $\varphi(1) = a_k$) then we say that φ is a path from $\dot{\varphi}(0) \in T_{a_i}(P^1(C))$ (resp. to $-\dot{\varphi}(1) \in T_{a_k}(P^1(C))$ and we shall write $\varphi(0) = \dot{\varphi}(0)$ (resp. $\varphi(1) = -\dot{\varphi}(1)$).

To $J'(\hat{X})$ we joint all constant maps from [0,1] to \hat{X} and the resulting set we denote by $J(\hat{X})$.

We shall define a relation of homotopy in the set $J(\hat{X})$. Let $\varphi, \psi \in J(\hat{X})$. If $\varphi(0) = \psi(0) = x \in X$ and $\varphi(1) = \psi(1) = y \in X$ then we say that φ and ψ are homotopic if they are homotopic maps in the space map([0, 1], 0, 1; X, x, y).

If $\varphi(0) = \psi(0) = v \in T_{a_i}(P^1(C))$ and $\varphi(1) = \psi(1) = y \in X$ then we say that φ and ψ are homotopic if there is a homotopy

 $H_s \in \text{map}([0,1], 0, 1; X \cup \{a_i\}, a_i, y) \text{ such that}$

- i) $H_s \in J(\hat{X})$ and $H_s(0) = v$ for all $s \in [0, 1]$;
- ii) $H_s((0,1)) \subset X$ for all $s \in [0,1]$;
- iii) $H_0 = \varphi$ and $H_1 = \psi$.

We left to the reader the cases when $\varphi(0) = \psi(0) = x \in X, \varphi(1) = \psi(1) = w \in T_{a_k}(P^1(C))$ and $\varphi(0) = \psi(0) = v \in T_{a_i}(P^1(C)), \varphi(1) = \psi(1) = w \in T_{a_k}(P^1(C)).$

Let $\varphi \in J(\hat{X})$ be such that $\varphi(0) = \varphi(1) = v \in T_{a_i}(P^1(C))$ and let $\psi \in J(\hat{X})$ be a constant map equal to v. We say that φ and ψ are homotopic if there is a homotopy

$$H_s \in \mathrm{map}([0,1],0,1; X \cup \{a_i\}, a_i, a_i)$$

such that

- i) $H_s \in J(\hat{X})$ and $H_s(0) = H_s(1) = v$ for all $s \in [0, 1]$;
- ii) $H_s((0,1)) \subset X$ for all $s \in [0,1]$;
- iii) $H_0 = \varphi$ and $H_1(t) = a_i$ for $t \in [0, 1]$.

Observe that $G_t := H_{1-t}$ defines a homotopy between ψ and φ .

With the definition given above paths $\alpha, \beta \in J(\widehat{C\setminus\{0\}})$ are not homotopic.

We shall write $\varphi \sim \psi$ if φ and ψ are homotopic. The relation \sim is an equivalence

relation on the set $J(\hat{X})$. Let $\iota(\hat{X}) := J(\hat{X})/\sim$ be the set of equivalence classes.

We define a partial composition in $\iota(\hat{X})$ in the following way. Let $\phi, \Psi \in \iota(\hat{X})$ and let $\varphi, \psi \in J(\hat{X})$ be its representatives.

If $\varphi(1) = \psi(0) = y \in X$ then we set $\Psi \circ \phi := [\psi \circ \varphi]$, the class of $\psi \circ \varphi$ in $\pi(\hat{X})$.

If $\varphi(1) = \psi(0) = v \in T_{a_i}P^1(C)$ then we can assume that φ and ψ coinside near a_i and we define $\Psi \circ \varphi := [\psi^{\varepsilon} \cdot \varphi_{\eta}]$, where $\varphi_{1-\varepsilon} := \varphi_{|[0,1-\varepsilon]}, \psi_{\eta} := \psi_{|[\eta,1]}$ and $\varphi(1-\varepsilon) = \psi(\eta)$.

The map $\operatorname{pr}:J(\hat{X})\to \hat{X}\times \hat{X}/\operatorname{pr}(\varphi)=(\varphi(0),\varphi(1))$ which associates to a path its beginning $(\varphi(0))$ and its end $(\varphi(1))$ agrees with the relation \sim and it defines $p:\iota(\hat{X})\to \hat{X}\times \hat{X}$. The partial composition o makes $p:\iota(\hat{X})\to \hat{X}\times \hat{X}$ into a groupoid over $\hat{X}\times \hat{X}$.

Let $x \in \hat{X}$. We set $\pi_1(X, x) := p^{-1}(x, x)$. This is a fundamental group with a base point in $x \in \hat{X}$.

2.2. We shall construct a family of horizontal sections of ω_x , where a base point x is replace by a tangent vector.

Let us set $V = C \setminus \{a_1, \dots, a_n\}$. Let $x_0 \in C$ and let $\delta : [0, 1] \ni t \to a_i + t \cdot (x_0 - a_i)$ be an interval joining a_i and x_0 . Let γ be a path from a_i to $z \in V$ (not passing through any $a_k, k = 1, \dots, n$) tangent to δ in a_i . We assume that in a small neighbourhood of a_i the path γ coincides with δ .

Observe that $v = x_0 - a_i$ can be canonically identified with a tangent vector to C in a_i . Let $\omega_1 = \frac{dz}{z-a_1}, \dots, \omega_n = \frac{dz}{z-a_n}$. We set

$$\Lambda_{a_i,v}(\alpha_1,\cdots,\alpha_k)(z):=\int_{a_i,\gamma}^z\omega_{\alpha_1},\cdots,\omega_{\alpha_k}\quad \text{if}\quad \alpha_1\neq i.$$

Let $\varepsilon \in im(\delta)$ be near a_i . Let γ_{ε} be a part of γ from ε to z, and let δ_{ε} be a part of δ from ε to x_0 . We set

$$\begin{split} &\Lambda_{a_i,v}(i,\cdots,i,\alpha_{k+1}\cdots,\alpha_l)(z) := \\ &\lim_{\varepsilon \to a_i} \int_{\varepsilon,\gamma_\varepsilon}^z \left(\int_{x_0,\gamma_\varepsilon + (\delta_\varepsilon)^{-1}}^z \frac{dz}{x - a_i}, \cdots, \frac{dz}{z - a_i} \right) \omega_{\alpha_{k+1}}, \cdots, \omega_{\alpha_l} \end{split}$$

if $\alpha_{k+1} \neq i$,

and

$$\Lambda_{a_i,v}(i,\cdots,i)(z) = \int_{x_0,\gamma_e+\delta_e^{-1}}^z \frac{dz}{z-a_i},\cdots,\frac{dz}{z-a_i}.$$

Lemma 2.2.1. The integrals $\Lambda_{a_i,v}(\alpha_1,\dots,\alpha_k)(z)$ exist and they are analytic, multivalued functions on V.

Proof. Assume that $\alpha_t \neq i$ for $t \leq l$ and $\alpha_{l+1} = i$. The function $g(z) := \int_{a_i}^z \omega_{\alpha_1}, \cdots, \omega_{\alpha_l}$ is analytic, multivalued on $V \cup \{a_i\}$ and vanishes in a_i . Hence the integral $g_1(z) := \int_{a_i}^z g(z) \frac{dz}{z-a_i}$ exists, the function $g_1(z)$ is analytic, multivalued on $V \cup \{a_i\}$ and vanishes in a_i . Hence by induction we get that $\Lambda_{a_i,v}(\alpha_1,\cdots,\alpha_n)(z)$ exists, and it is analytic, multivalued on $V \cup \{a_i\}$.

Assume now that $\alpha_t = i$ for $t \leq l$ and $\alpha_{l+1} \neq i$. Without loss of generality we can assume that $a_i = 0$ and $x_0 = 1$.

Observe that $\lim_{\epsilon \to 0} \int_{x_0, \gamma_{\epsilon} \circ (\delta_{\epsilon})^{-1}}^{z} z^n (\log z)^m dz = z^{n+1} (\sum_{i=0}^{m} \beta_i (\log z)^{m-i})$ where β_i are rational numbers. The function $z^g (\log z)^p$ for g and p positive integers, is analytic, multivalued on V, continous on any small cone with a vertex in a_i (0 in this case) and it vanishes in a_i . The function $\frac{1}{z-a_j}$ for $j \neq i$ is bounded on any sufficiently small neighbourhood of a_i . Hence the integral

$$\lim_{\varepsilon \to a_i} \int_{\varepsilon, \gamma_{\varepsilon}}^{z} \left(\int_{x_0, \gamma_{\varepsilon} \circ (\delta_{\varepsilon})^{-1}} \frac{dz}{z - a_i}, \cdots, \frac{dz}{z - a_i} \right) \frac{dz}{z - a_j}, \cdots, \frac{dz}{z - a_{i_k}}$$

is an analytic, multivalued function on V, continous, univalued on any small cone with a vertex in a_i and it vanishes in a_i .

Let us set

$$\Lambda_V(z;v,\gamma)=1+\sum_{i=1}^k(-1)^k\Lambda_{\alpha_i,v}(\alpha_1,\cdots,\alpha_k)(z)X_{\alpha_k}\cdots X_{\alpha_1}.$$

We recall that X_1, \dots, X_n are duals of $\frac{dz}{z-a_1}, \dots, \frac{dz}{z-a_n}$.

Lemma 2.2.2. The map

$$V \ni z \to (z, \Lambda_V(z; v, \gamma)) \in V \times P(V)$$

is horizontal with respect to ω_V .

It rests to define functions $\Lambda_X(z; v, \gamma)$ if $a_i = \infty$ or all a_i are different from ∞ .

Let $f: Y = C \setminus \{b_1, \dots, b_n\} \to X = P^1(C) \setminus \{a_1, \dots, a_{n+1}\}$ be a regular map of the form $\frac{az+b}{cz+d}$ with $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$. It follows from corollary 3.8 that $f_*(\Lambda_Y(z; y, \gamma)) = \Lambda_X(f(x); f(y), f(\gamma))$ if $y \in Y$. We shall use this fact to define $\Lambda_X(z; v, \gamma)$ where v is a tangent vector to $P^1(C)$ in a_i and γ is a path from a_i to z, which is tangent to v and $f^{-1}(\gamma)$ coincides with $f^{-1}(v)$ near $f^{-1}(a_i)$.

We set

$$\Lambda_X(z;v,\gamma) := f_*(\Lambda_Y(f^{-1}(z);f_*^{-1}(v),f^{-1}(\gamma))).$$

It is clear that $\Lambda_X(z; v, \gamma)$ does not depend on the choice of f.

Lemma 2.2.3. The map

$$X \ni z \to (z, \Lambda_X(z; v, \gamma)) \in X \times P(X)$$

is horizontal with respect to ω_X .

We set $L_X(z; v, \gamma) := \log \Lambda_X(z; v, \gamma)$. If we are dealing with only one space X we shall usually omit subscript X and we shall write $\Lambda(z; v, \gamma)$ and $L(z; v, \gamma)$, or even $\Lambda_v(z; \gamma)$ and $L_v(z; \gamma)$, or $\Lambda_v(z)$ and $L_v(z)$.

We summarize the constructions from 2.1 and 2.2 in the following proposition.

Proposition 2.2.4. The functions $\Lambda_X(z; v, \gamma)$ and $L_X(z; v, \gamma)$ depend only on the homotopy class of γ in $\iota(\hat{X}) = J(\hat{X}) / \sim$.

§3. Generators of $\pi_1(P^1(C)\setminus\{a_1,\ldots,a_{n+1}\},x)$.

Let $X = P^1(C) \setminus \{a_1, \ldots, a_{n+1}\}$ and let $x \in \hat{X}$. We shall describe how to choose generators of $\pi_1(X, x)$. Let v_i be a tangent vector in a_i . Then the loop around a_i at the base point v_i is the following element S_{v_i} of $\pi_1(X, v_i)$ (see picture).

For each i let us choose a tangent vector $v_i \in T_{a_i}(P^1(C))$. Let us choose a family of paths $\Gamma = \{\gamma_i\}_{i=1}^{n+1}$ in $J(\hat{X})$ from x to each v_i such that any two paths do not intersect and no path self intersects. The indices are chosen in such a way that when we make a small circle around x (around a_k if x is a tangent vector at a_k) in the opposite clokwise direction, starting from γ_1 we meet $\gamma_2, \gamma_3, \ldots, \gamma_{n+1}$. If γ_1 is a constant path equal v_1 we meet $\gamma_2, \ldots, \gamma_{n+1}$. To the path γ_i we associate the following element S_i in $\pi_1(X, x)$. We move along γ_i , we make the loop S_{v_i} around a_i and we veturn along γ_i^{-1} to x. If γ_1 is a constant path equal v_1 then S_1 is S_{v_1} .

The following lemma is obvious.

Lemma 3.1. The elements $S_1, S_2, \ldots, S_{n+1}$ are generators of $\pi_1(X, x)$. We have $S_{n+1} \cdot \ldots \cdot S_2 \cdot S_1 = 1$.

Definition 3.2. The ordered sequence (S_1, \ldots, S_{n+1}) of elements of $\pi_1(X, x)$ obtained from the family of paths $\Gamma = \{\gamma_i\}_{i=1}^{n+1}$ we shall call a sequence of geometric generators of $\pi_1(X, x)$ associated to $\Gamma = \{\gamma_i\}_{i=1}^{n+1}$.

§4. Monodromy of iterated integrals on $P^1(C)\setminus\{a_1,\dots,a_{n+1}\}$.

Let $X = P^1(C) \setminus \{a_1, \dots, a_{n+1}\}$. Let $x_1, x_2, x_3 \in \hat{X}$ and let $z_0 \in X$. Let γ_i for i = 1, 2, 3 be a path belonging to $J(\hat{X})$ from x_i to z_0 . Let us set $\gamma_{ij} := \gamma_j^{-1} \circ \gamma_i$.

Proposition 4.1. Let us prolongate each function $\Lambda_{x_i}(z)$ along γ_i to the point z_0 . There exist elements $a_{x_j}^{x_i}(\gamma_{ij}) \in P(X)$ such that

$$\Lambda_{x_i}(z) \cdot a_{x_j}^{x_i}(\gamma_{ij}) = \Lambda_{x_j}(z)$$

for all z in a small neibourhood of z_0 . The elements $a_{x_j}^{x_i}(\gamma_{ij})$ satisfy the following relations

$$\begin{split} &a_{x_i}^{x_i}(\gamma_{ii}) = 1, \\ &a_{x_j}^{x_i}(\gamma_{ij}) \cdot a_{x_i}^{x_j}(\gamma_{ji}) = 1, \\ &a_{x_i}^{x_i}(\gamma_{ij}) \cdot a_{x_k}^{x_j}(\gamma_{jk}) = a_{x_k}^{x_i}(\gamma_{ik}). \end{split}$$

Proof. The existence of $a_{x_j}^{x_i}(\gamma_{ij})$ follows from the fact that $\Lambda_{x_i}(z)'s$ are horizontal sections. The first two relations are obvious. The last relation follows from equalities $\Lambda_{x_i}(z) \cdot a_{x_j}^{x_i}(\gamma_{ij}) = \Lambda_{x_j}(z)$, $\Lambda_{x_j}(z) \cdot a_{x_k}^{x_j}(\gamma_{jk}) = \Lambda_{x_k}(z)$ and $\Lambda_{x_i}(z) \cdot a_{x_k}^{x_i}(\gamma_{ik}) = \Lambda_{x_k}(z)$.

Proposition 4.2. Let $v_k \in T_{a_k}P^1(C)\setminus\{0\}$. Let S_k be a loop around a_k based at $v_k \in T_{a_k}(P^1(C))\setminus\{0\}$, (see picture)

The monodromy of Λ_{v_k} along S_k is given by

$$S_k: \Lambda_{v_k}(z) \to \Lambda_{v_k}(z) \cdot e^{-2\pi i X_k}$$

Proof. The monodromy of $\Lambda_{v_k}(k^m)(z) := \Lambda_{a_k,v_k}(k,k,\cdots,k)(z)$ along S_k is given by $S_k : \Lambda_{v_k}(k^m)(z) \to \Lambda_{v_k}(k^m)(z) + \sum_{l=1}^m \Lambda_{v_k}(k^{m-l})(z) \frac{(-2\pi i)^l}{l!}$. This implies that the monodromy of $\Lambda_{v_k}(\alpha_1,\cdots,\alpha_p,k^m)(z)$ along S_k is given by $S_k : \Lambda_{v_k}(\alpha_1,\cdots,\alpha_p,k^m)(z) \to \Lambda_{v_k}(\alpha_1,\cdots,\alpha_p,k^m)(z) + \sum_{l=1}^m \Lambda_{v_k}(a_1,\cdots,a_p,k^{m-l})(z) \frac{(-2\pi i)^l}{l!}$. Hence it follows the formula for the monodromy of $\Lambda_{v_k}(z)$ along S_k .

Let $x \in \hat{X}$. Let us choose $v_i \in T_{a_i}P^1(C)\setminus\{0\}$ for $i=1,2,\cdots,n+1$. Let (S_1,\cdots,S_{n+1}) be a sequence of geometric generators of $\pi_1(X,x)$ associated to $\Gamma=\{\gamma_1\}_{i=1}^{n+1}$ where Γ is a family of paths in $J'(\hat{X})$ from x to v_i for $i=1,2,\cdots,n+1$.

Theorem 4.3. The monodromy of the function $\Lambda_x(z)$ along the loop S_k is given by

$$S_k: \Lambda_x(z) \to \Lambda_x(z) \cdot a_{v_k}^x(\gamma_k) \cdot e^{-2\pi i X_k} \cdot (a_{v_k}^x(\gamma_k))^{-1}$$

Proof. It follows from Proposition 4.1 that

$$(*_1) \qquad \qquad \Lambda_x(z) \cdot a_{v_k}^x(\gamma_k) = \Lambda_{v_k}(z)$$

for z in the small neibourhood of some $\gamma(z_0)$. This equality is preserved after the monodromy transformation along S_k , hence we have

$$(\mathbf{A}_x(z))^{S_k} \cdot a_{v_k}^x(\gamma_k) = (\mathbf{A}_{v_k}(z))^{S_k},$$

where $()^{S_k}$ denotes the function () after the monodromy transformation along S_k . If follows from Proposition 4.2 that

$$(\Lambda_{v_k}(z))^{S_k} = \Lambda_{v_k}(z) \cdot e^{-2\pi i X_k}.$$

If we substitute $(*_3)$ in $(*_2)$ and then substitute $(*_1)$ for $\Lambda_{v_k}(z)$ we get the formula for $(\Lambda_x(z))^{S_k}$.

Corollary 4.4. The monodromy of the function $L_x(z)$ along the loop S_k is given by

$$S_k: L_x(z) \to L_{v_k}(z) \cdot \alpha_{v_x}^x(\gamma_k) \cdot (-2\pi i X_k) \cdot \alpha_{v_k}^x(\gamma_k)^{-1}$$

where $\alpha_{v_k}^x(\gamma_k) = \log(\alpha_{v_k}^x(\gamma_k))$.

Proof. The corollary follows immediately from Proposition 1.9. ii).

4.5 It follows from above, that the definition of the monodromy homomorphism (Definition 1.3) extends to any $x \in \hat{X}$. Hence for any $v \in \hat{X}$ we have a monodromy homomorphism

$$\theta_{v,X}:\pi_1(X,v)\to P(X)$$

and if $v, v' \in \hat{X}$, then the homomorphisms $\theta_{v,X}$ and $\theta_{v',X}$ are conjugated.

Proposition 4.6. Let $f: X = P^1(C) \setminus \{a_1, \ldots, a_{n+1}\} \to Y = P^1(C) \setminus \{b_1, \ldots, b_{m+1}\}$ be a regular map. Then for any $v, w \in \hat{X}$, a path γ from v to z and a path δ from v to w we have

$$f_*(\Lambda_X(z;v,\gamma)) = \Lambda_Y(f(z);f(v),f(\gamma))$$

and

$$f_*(a_w^v(\delta)) = a_{f(w)}^{f(v)}(f(\delta)).$$

(notation: $f(v) := f_*(v)$ if v is a tangent vector).

Proof. The proposition follows from the definition of $\Lambda_X(z; v, \gamma)$ and a_w^v for tangent vectors and from Corollary 1.8.

§5. Calculations

Let $X = P^1(C) \setminus \{0, 1, \infty\}$. The forms $\frac{dz}{z}$ and $\frac{dz}{z-1}$ form a base of $A^1(X)$. Let $X := (\frac{dz}{z})^*$ and $Y := (\frac{dz}{z-1})^*$ be the dual base of $(A^1(X))^*$. Let us set Z := -X - Y. The group P(X) is the group of invertible power series with a constant term equal 1 in non-commuting variables X and Y.

Let us fix a path $\gamma_1=$ interval [0,1] from $\overrightarrow{01}$ to $\overrightarrow{10}$. It follows from Proposition 4.1 that

(1)
$$\Lambda_{\overrightarrow{10}}(z) \cdot a_{\overrightarrow{01}}^{\overrightarrow{10}}(X,Y) = \Lambda_{\overrightarrow{01}}(z).$$

Let f(z) = 1 - z. It follows from Proposition 4.6 that

$$f_*(a_{01}^{10}(X,Y)) = a_{10}^{01}(X,Y).$$

(We omit arrows over 10 and 01.) Proposition 4.1 implies

$$a_{10}^{01}(X,Y) = (a_{01}^{10}(X,Y))^{-1}.$$

Observe that $f_*(X) = Y$ and $f_*(Y) = X$. Hence we get the Deligne formula

(2)
$$a_{01}^{10}(X,Y) = (a_{01}^{10}(Y,X))^{-1}.$$

(The proof of (2) given here repeats essentially the Deligne proof.)

Let us fix a path $\gamma_{\infty} = \text{interval } [\infty, -\varepsilon] + \text{arc from } -\varepsilon \text{ to } \varepsilon \text{ passing by } (-i) \cdot \varepsilon \ (\varepsilon > 0) + \text{interval from } \varepsilon \text{ to } 0) \text{ from } \overrightarrow{\infty 0} \text{ to } \overrightarrow{01}.$ Let S_0 (around 0), S_1 (around 1) and S_{∞} (around ∞) be geometric generators of $\pi_1(X, \overrightarrow{01})$ associated to the family $\{\gamma_0, \gamma_1, \gamma_\infty\}$, where γ_0 is the constant path equal $\overrightarrow{01}$. Then we have $S_0 \circ S_1 \circ S_{\infty} = 1$. The monodromy of $\Lambda_{\overrightarrow{01}}(z)$ is given by the following formulas (see Theorem 4.3)

$$S_{0}: \Lambda_{\overrightarrow{01}}(z) \to \Lambda_{\overrightarrow{01}}(z) \cdot e^{(-2\pi i)X},$$

$$(3) \qquad S_{1}: \Lambda_{\overrightarrow{01}}(z) \to \Lambda_{\overrightarrow{01}}(z) \cdot (a_{10}^{01}(X,Y))^{-1} \cdot e^{(-2\pi i)Y} \cdot a_{10}^{01}(X,Y),$$

$$S_{\infty}: \Lambda_{\overrightarrow{01}}(z) \to \Lambda_{\overrightarrow{01}}(z) \cdot e^{-\pi i X} \cdot (a_{10}^{01}(Z,X))^{-1} \cdot e^{(-2\pi i)Z} \cdot (a_{10}^{01}(Z,X)) \cdot e^{\pi i X}.$$

The monodromy along S_{∞} needs some explanations. By Theorem 4.3 it is given by the formula $S_{\infty}: \Lambda_{\overrightarrow{01}}(z) \to \Lambda_{\overrightarrow{01}}(z) \cdot (a_{01}^{\infty 0}(X,Y))^{-1} \cdot e^{(-2\pi i)Z} \cdot a_{01}^{\infty 0}(X,Y)$. By Proposition 4.1 $a_{01}^{\infty 0}(X,Y) = a_{0\infty}^{\infty 0}(X,Y) \cdot a_{01}^{0\infty}(X,Y)$. One calculates that $a_{01}^{0\infty}(X,Y) = e^{\pi i \cdot X}$. Let $f(z) = \frac{z-1}{z}$. Then it follows from Proposition 4.6 that $a_{10}^{01}(Z,X) = a_{0\infty}^{\infty 0}(X,Y)$. Hence we get the formula describing the monodromy along S_{∞} .

The Lie algebra L(X) is the completion of the free Lie algebra on two generators X and Y. Let us set $\alpha(X,Y) := \alpha_{10}^{01}(X,Y) := \log a_{10}^{01}(X,Y)$. The monodromy of $L_{\overrightarrow{01}}(z)$ is given by the following formulas (see Corollary 4.4).

$$S_0: L_{\overrightarrow{01}}(z) \to L_{\overrightarrow{01}}(z) \cdot (-2\pi i)X,$$

$$(4) \qquad S_1: L_{\overrightarrow{01}}(z) \to L_{\overrightarrow{01}}(z) \cdot \alpha(X,Y)^{-1} \cdot (-2\pi i)Y \cdot \alpha(X,Y),$$

$$S_{\infty}: L_{\overrightarrow{01}}(z) \to L_{\overrightarrow{01}}(z) \cdot (-\pi i)X \cdot \alpha(Z,X)^{-1} \cdot (-2\pi i)Z \cdot \alpha(Z,X) \cdot (\pi i) \cdot X.$$

We shall calcualte coefficients of $a_{10}^{01}(X,Y)$ and $\alpha(X,Y)$. If ω is a monomial in X and $Y, a(\omega)$ is the coefficient at ω of $a_{10}^{01}(X,Y)$. Let X be the first basic Lie element and let Y be the second basic Lie element. We shall choose a base of a free Lie algebra on X and Y as in [MKS] pages 324-325. If ω is an element of this base, let $\alpha(\omega)$ be the coefficient at ω of $\alpha(X,Y)$. It follows from the formula (1) that

(5)
$$a(X^nY) = (-1)^n \zeta(n+1), \ a(Y^nX) = (-1)^{n+1} \zeta(n+1),$$

(6)
$$a(X^{i}Y^{j}) = \int_{0}^{1} (-\frac{dz}{z-1})^{j}, (\frac{-dz}{z})^{i}, a(Y^{j}X^{i}) = \int_{0}^{1} (-\frac{dz}{z})^{i}, (-\frac{dz}{z-1})^{j}.$$

(If ω is a one-form then $\omega^i := \omega, \omega, \dots, \omega$ *i*-times.) It follows from (2) that $a(X^iY^j) + a(Y^iX^j) = 0$. It follows from [Ch] that $a(X^iY^j) + (-1)^{i+j}a(Y^jX^i) = 0$. Hence we get

$$\alpha_{i,j} := \alpha((YX)X^{i-1}Y^{j-1}) = (-1)^i a(X^iY^j) = (-1)^{j-1} a(Y^jX^i)$$

and

$$\alpha((YX)X^{j-1}Y^{i-1}) = \alpha((YX)X^{i-1}Y^{j-1}).$$

Let us set $\pi' := [\pi(X), \pi(X)]$ and $\pi'' := [\pi', \pi']$. It follows from (3) that the monodromy homomorphism

$$\theta_{\overrightarrow{01}}:\pi_1(X,\overrightarrow{01})\to\pi_2(X):=\pi(X)/\pi''$$

is given by

(7)
$$S_{1} \to (-2\pi i)X,$$

$$= (-2\pi i)Y + [-2\pi iY, \alpha(X, Y)]$$

$$= (-2\pi i)Y + \sum_{i=0, j=0}^{\infty} (2\pi i)\alpha_{i+1, j+1}((YX)X^{i}Y^{j+1}).$$

The formula

$$\int_0^z F(z) \frac{dz}{z}, (\frac{dz}{z})^n = \sum_{i=0}^n \frac{(-1)^{n-i}}{(n-i)!i!} (\int_0^z F(z) (\log z)^{n-i} \frac{dz}{z}) (\log z)^i$$

implies

(8)
$$\alpha_{n+1,m} = \frac{(-1)^n (-1)^m}{n! m!} \int_0^1 (\log(1-z))^m (\log z)^n \frac{dz}{z}.$$

§6. The configuration spaces

Let $X = P^1(C) \setminus \{a_1, \dots, a_{n+1}\}$ and $X' = P^1(C) \setminus \{a'_1, \dots, a'_{n+1}\}$. If the sequences $(a, x) := (a_1, \dots, a_{n+1}, x)$ and $(a', x') := (a'_1, \dots, a'_{n+1}, x')$ are close then the groups $\pi_1(X, x)$ and $\pi_1(X', x')$ are canonically isomorphic. We shall study how the monodromy homomorphisms $\theta_{x,a} := \theta_{x,X}$ and $\theta_{x',a'} := \theta_{x',X'}$ from sections 1 and 4

$$egin{array}{lll} heta_{x,a}: & \pi_1(X,x) &
ightarrow & \pi(X) \ & & & \parallel \ heta_{x',a'}: & \pi_1(X',x') &
ightarrow & \pi(X') \end{array}$$

depend on a and a'.

Let $X_n = \{(z_1, \dots, z_n) \in C^n | z_i \neq z_j \text{ if } i \neq j\}$. The space of global one-forms on X_n with logarithmic singularities, $A^1(X_n)$ is spanned by $\frac{dz_i - dz_j}{z_i - z_j}$ for $i, j \in \{1, 2, \dots, n\}$ and i < j. Let $X_{ij} = (\frac{dz_i - dz_j}{z_i - z_j})^*$ be their formal duals. We set $X_{ji} = X_{ij} = 0$. Dualizing the map

$$\bigwedge^{2}(A^{1}(X_{n})) \to A^{1}(X_{n}) \wedge A^{1}(X_{n})$$

we get that $R(X_n)$ is generated by

$$[X_{ij}, X_{ik} + X_{jk}]$$
 with i, j, k different

and

$$[X_{ij}, X_{kl}]$$
 with i, j, k, l different.

Let $x=(x_1,\cdots,x_n,x_{n+1})\in X_{n+1}$ be a base point. Let $p_i:X_{n+1}\to X_n$ $(i=1,\cdots,n+1)$ be a projection $p_i(z_1,\cdots,z_{n+1})=(z_1,\cdots,\hat{z}_i,\cdots,z_{n+1}),$ let $x(i):=(x_1,\cdots,x_{i-1},x_{i+1},\cdots,x_{n+1})$ and let $X(i,x):=p_i^{-1}\big(x(i)\big)=C\backslash\{x_1,\cdots,\hat{x}_i,\cdots,x_{n+1}\}.$ $(\hat{z} \text{ means } z \text{ is omitted}).$ Let $k_i:X(i,x)\to X_{n+1}$ be given by $k_i(z)=(x_1,\cdots,x_{i-1},z,x_{i+1},\cdots,x_{n+1}).$ The inclusion k_i induces

$$(k_i)_*: P(X(i,x)) \to P(X_{n+1})$$

and

$$(k_i)_*:\pi(X(i,x))\to\pi(X_{n+1})$$

where $(k_i)_*(X_j) = X_{ij}$ and X_j is the formal dual of $\frac{dz}{z-a_j}$ on X(i,x). The map $(k_i)_*$ is injective and its image, $(k_i)_*(\pi(X(i,x)))$ is a normal subgroup of $\pi(X_{n+1})$.

Let $x=(x_1,\cdots,x_n,x_{n+1})\in X_{n+1}$ and $x'=(x'_1,\cdots,x'_n,x'_{n+1})\in X_{n+1}$. Let us set X:=X(n+1,x) and X'=X(n+1,x'). We choose a family of non-intersecting paths $\gamma_1,\cdots,\gamma_n,\gamma_{n+1}$ in C from x_1 to x'_1,\cdots,x_n to x'_n and x_{n+1} to x'_{n+1} . We shall identify $\pi_1(X,x_{n+1})$ and $\pi_1(X',x'_{n+1})$ in the following way. Observe that $\gamma=(\gamma_1,\cdots,\gamma_n,\gamma_{n+1})$ is a path in X_{n+1} from x to x'. The identification isomorphism γ . : $\pi_1(X,x_{n+1})\to\pi_1(X',x'_{n+1})$ is the unique isomorphism making the following diagram commutative

$$\begin{array}{ccc}
\pi_1(X, x_{n+1}) & \xrightarrow{(k_{n+1})_*} & \pi_1(X_{n+1}, x) \\
\vdots & & \downarrow \gamma_{\#} \\
\pi_1(X', x'_{n+1}) & \xrightarrow{(k_{n+1})_*} & \pi_1(X_{n+1}, x').
\end{array}$$

($\gamma_{\#}$ is induced by the path γ is a standard way).

Proposition 6.1. After the identification of the fundamental groups of $X = C \setminus \{x_1, \dots, x_n\}$ and $X' = C \setminus \{x'_1, \dots, x'_n\}$ by γ , the monodromy homomorphisms

$$\theta_{x_{n+1},X}:\pi_1(X,x_{n+1})\to\pi(X) \ and \ \theta_{x'_{n+1},X'}:\pi_1(X',x'_{n+1})\to\pi(X')$$

 $(\pi(X) = \pi(X'))$ are conjugated by an element of the group $\pi(X_{n+1})$. (The group $(k_{n+1})_*\pi(X)$ is a normal subgroup of $\pi(X_{n+1})$ so $\pi(X_{n+1})$ acts on $\pi(X)$ by conjugations.)

The corollary follows from the commutative diagram

of. The corollary follows from the commutative diagram
$$\pi_1(X, x_{n+1}) \qquad \frac{\theta_{x_{n+1}, X}}{(3)} \qquad \pi(X) \\
\downarrow \gamma. \qquad (4) \qquad \qquad \frac{\pi_1(X_{n+1}, x)}{(1)} \qquad \frac{\theta_{x, X_{n+1}}}{(1)} \qquad \pi(X_{n+1}) \\
\downarrow \gamma_{\#} \qquad (1) \qquad \qquad \downarrow c_{L_{X_{n+1}}(x'; x, \gamma)} \\
\begin{matrix} \pi_1(X_{n+1}, x') & \frac{\theta_{x', X_{n+1}}}{(1)} & \pi(X_{n+1}) \\
\downarrow c_{L_{X_{n+1}}(x'; x, \gamma)} \\
\downarrow c_{L_{X_{$$

where $c_{L_{X_{n+1}}(x';x,\gamma)}$ is a conjugation by the element $L_{X_{n+1}}(x';x,\gamma)$. It follows from Proposition 1.4 that the square (1) commutes. Corollary 1.8 implies that (2) and (3) commutes. The square (4) commutes by the construction.

Corollary 6.2. Let $x = (x_1, \dots, x_{n+1}) \in X_{n+1}$. Let us set X(i) := X(i, x). Let a_{ij} be the following element of $\pi_1(X(i), x_i)$ - a geometric generator of $\pi_1(X(i), x_i)$, which is a loop around the point x_j . Let A_{ij} be its image in $\pi_1(X_{n+1},x)$. Then $\theta_{x,X_{n+1}}(A_{ij})$ is conjugated to $(-2\pi i)X_{ij}$ in the group $\pi(X_{n+1})$.

It follows from Proposition 4.2 that $\theta_{x_i,X(i)}(a_{ij})$ is conjugated to $(-2\pi i)X_{ij}$ in the group $\pi(X(i))$. Hence the statement follows from Corollary 1.8.

Now we shall study the relation between the monodromy representation for the configuration spaces $(C\setminus\{0,1\})^n_*$ and $(C\setminus\{0,1\})^m_*$. We shall use the Ihara result (see [I1] The Injectivity Theorem (i)). Let $Y_n := (P^1(C))^n_*$. The group $PGL_2(C)$ acts diagonally on Y_n and let $\mathcal{Y}_n:=Y_n/PGL_2(C)$. Let $\psi_k:X_{n-1} o\mathcal{Y}_n$ be the composition of the map $(x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n) \to (x_1,\cdots,x_{k-1},\infty,x_k,\cdots,x_n)$ and the projection $Y_n \to \mathcal{Y}_n$. The map ψ_k induces $(\psi_k)_*: H(X_{n-1}) \to H(\mathcal{Y}_n)$. Let us set $X_{ij} = (\psi_k)_*(X_{ij})$ where $X_{ij} = (\frac{dx_i - dx_j}{x_i - x_j})^* \in H(X_{n-1})$. (We use the same notation for $X_{ij} \in H(X_{n-1})$ and its image in $H(\mathcal{Y}_n)$. Notice also that X_{ij} in $H(\mathcal{Y}_n)$ does not depend on the choice of ψ_k .)

Let $A_{ij} \in \pi_1(X_{n-1},x)$ be such as in Corollary 6.2. The image of A_{ij} in \mathcal{Y}_n we shall also denote by A_{ij} .

Corollary 6.3. The element $\theta_{y,\mathcal{Y}_n}(A_{ij})$ is conjugated to $(-2\pi i)X_{ij}$ in $\pi(\mathcal{Y}_n)$.

Proof. It follows from Corollary 6.2 and the commutative diagram

$$,\theta_{x,X_{n-1}}:\pi_1(X_{n-1},x)\to\pi(X_{n-1})\downarrow(\psi_k)_*\downarrow(\psi_k)_*\theta_{y,\mathcal{Y}_n}:\pi_1(\mathcal{Y}_n,y=\psi_k(x))\to\pi(\mathcal{Y}_n).$$

Let $\operatorname{Aut}^*(\pi(\mathcal{Y}_n))$ be a subgroup of $\operatorname{Aut}_C(\pi(\mathcal{Y}_n))$ defined in the following way:

$$\operatorname{Aut}^*(\pi(\mathcal{Y}_n)) = \{ f \in \operatorname{Aut}_C(\pi(\mathcal{Y}_n)) | \exists \alpha_f \in C^*, f(X_{ij}) \sim \alpha_f \cdot X_{ij} \}.$$

(Aut_C()) dentoes C-linear automorphisms and \sim means conjugated.) Let us set

$$T^n(C) = \{ \varphi \in \operatorname{Hom}(\pi_1(\mathcal{Y}_{n,y}); \pi(\mathcal{Y}_n)) | \exists \alpha \in C^*, \forall A_{ij}, \varphi(A_{ij}) \sim \alpha X_{ij} \}$$

 $(A_{ij} \in \pi_1(\mathcal{Y}_n, y) \text{ are as in Corollary 6.3.}).$ Observe that $T^n(C)$ is an $\operatorname{Aut}^*(\pi(\mathcal{Y}_n))$ -torsor. The subgroup of inner automorphisms $\operatorname{Inn}(\pi(\mathcal{Y}_n))$ is a normal subgroup of $\operatorname{Aut}^*(\pi(\mathcal{Y}_n))$. Hence $t^n(C) := T^n(C)/\operatorname{Inn}(\pi(\mathcal{Y}_n))$ is a $\operatorname{Out}^*(\pi(\mathcal{Y}_n)) := \operatorname{Aut}^*(\pi(\mathcal{Y}_n))/\operatorname{Inn}(\pi(\mathcal{Y}_n))$ -torsor.

The following result is an analog of the Ihara Injectivity Theorem (see [I1] page 4).

Proposition 6.4. The canonical map $\operatorname{Out}^*(\pi(\mathcal{Y}_n)) \to \operatorname{Out}^*(\pi(\mathcal{Y}_{n-1}))$ is injective for $n \geq 5$.

Proof. Let $\operatorname{Out}_1^*(\pi(\mathcal{Y}_n)) := \ker(\operatorname{Out}^*(\pi(\mathcal{Y}_n)) \xrightarrow{N} C^*)$, where $N(f) = \alpha_f$. The Lie algebra of $\operatorname{Out}^*(\pi(\mathcal{Y}_n))$ is the Lie algebra of special derivations of $L(\pi(\mathcal{Y}_n))$ modullo inner derivations. The Lie version is proved in [I1] page 12. Because $\operatorname{Out}_1^*(\pi(\mathcal{Y}_n))$ is pro-nilpotent, the Lie version implies the result for $\operatorname{Out}_1^*(\pi(\mathcal{Y}_n))$, and then also for $\operatorname{Out}_1^*(\pi(\mathcal{Y}_n))$.

The surjective homomorphisms $(p_{n+1})_*$: $\pi_1(\mathcal{Y}_{n+1},y) \to \pi_1(\mathcal{Y}_n,y')$ and $(p_{n+1})_*$: $\pi(\mathcal{Y}_{n+1}) \to \pi(\mathcal{Y}_n)$ induce the morphism of torsors

$$t^{n+1}(C) \to t^n(C)$$

compatible with $\operatorname{Out}^*(\pi(\mathcal{Y}_{n+1})) \to \operatorname{Out}^*(\pi(\mathcal{Y}_n))$.

Lemma 6.5. The canonical morphism of torsors $t^{n+1}(C) \to t^n(C)$ is injective for $n \ge 4$.

This follows immediately from Proposition 6.4.

Corollary 6.6. The monodromy homomorphism $\theta_{y,\mathcal{Y}_n}: \pi_1(\mathcal{Y}_n,y) \to \pi(\mathcal{Y}_n)$ is determined (up to conjugacy by an element of $\pi(\mathcal{Y}_n)$) by the homomorphism $\theta_{y',\mathcal{Y}_4}: \pi_1(\mathcal{Y}_4,y') \to \pi(\mathcal{Y}_4)$.

Proof. Observe that $\theta_{y,\mathcal{Y}_n} \in t^n(C)$ and $\theta_{y',\mathcal{Y}_4}$ is the image of θ_{y,\mathcal{Y}_n} under the canonical morphism $t^n(C) \to t^4(C)$.

Let $a:=(a_1,\cdots,a_n,a_{n+1})$ be a sequence of n+1 different points in $P^1(C)$ and let $X_a:=P^1(C)\setminus\{a_1,\cdots,a_n,a_{n+1}\}$. The vector space $H(X_a)$ is spanned by $X_i:=(\frac{dz}{z-a_i}-\frac{dz}{z-a_{n+1}})^*$ $i=1,\cdots,n$. Let us set $X_{n+1}:=-\sum_{i=1}^n X_i$. Let A_k denotes a geometric generator of X_a , which is a loop around a_k . Let us set

$$T_a(C) := \{ f \in \operatorname{Hom}(\pi_1(X_a, x) \to \pi(X_a)) | \exists \alpha_f \in C^*, \forall A_k \ f(A_k) \sim \alpha_f X_k \}.$$

Assume that $a=(a_i)_{i=1}^{n+1}$ is such that $a_1=0, a_2=1, a_3=\infty$. The fibration

$$X_a \xrightarrow{k_{n+2}} \mathcal{Y}_{n+2} \xrightarrow{p_{n+2}} \mathcal{Y}_{n+1} \qquad (X_a = (p_{n+2})^{-1}(a_1, \dots, a_{n+1}))$$

realizes $\pi(X_a)$ as a normal subgroup of $\pi(\mathcal{Y}_{n+2})$ $((k_{n+2})_*(X_i) = X_{i,n+2})$. Hence the group $\pi(\mathcal{Y}_{n+2})$ acts on $T_a(C)$ and let

$$t_a(C) := T_a(C)/\pi(\mathcal{Y}_{n+2}).$$

Observe that any $\pi(\mathcal{Y}_{n+2})$ -conjugate of $X_{i,n+2}$ is in the image of $\pi(X_a)$. Hence the restriction map

$$(k_{n+2})^*: t^{n+2}(C) \to t_a(C)$$

given by $f \to f_{|\pi_1(X_a,x)}$ is defined. We set

$$\tau_{\mathbf{a}}(C) := \operatorname{im} (t^{n+2}(C) \to t_{\mathbf{a}}(C)).$$

Observe that the diagram

$$t^{n+2}(C) \xrightarrow{(k_{n+2})^*} \tau_a(C)$$

$$\downarrow pr \qquad \qquad \downarrow pr_1$$

$$t^4(C) \xrightarrow{\approx} \tau_{0,1,\infty}(C)$$

commutes where the map pr_1 is induced by the inclusion $X_a \hookrightarrow P^1(C)\setminus\{0,1,\infty\}$. The map $(k_4)_*$ is bijective because $\mathcal{Y}_4 = P^1(C)\setminus\{0,1,\infty\}$. Lemma 6.5 implies that the map pr is injective. Hence both maps, $(k_{n+2})^*$ and pr_1 are injective. Hence we have proved the following result.

Proposition 6.7. i) The $\pi(\mathcal{Y}_{n+2})$ -conjugacy class of the monodromy homomorphism $\theta_{x,\mathcal{Y}_{n+2}}:\pi_1(\mathcal{Y}_{n+2},x)\to\pi(\mathcal{Y}_{n+2})$ is determined by its restriction to $\pi_1(X_a,x')$.

ii) The $\pi(\mathcal{Y}_{n+2})$ -conjugacy class of the monodromy homomorphism $\theta_{x,X_a}:\pi_1(X_a,x)\to \pi(X_a)$ is determined by the monodromy homomorphism

$$\theta_{x',P^1(C)\setminus\{0,1,\infty\}}:\pi_1(P^1(C)\setminus\{0,1,\infty\},x')\to\pi(P^1(C)\setminus\{0,1,\infty\}).$$

§7. The Drinfeld-Ihara Z/5-cycle relation

In this section we show that the element which describes the monodromy of all iterated integrals on $P^1(C) \setminus \{0, 1, \infty\}$ satisfies the Drinfeld-Ihara relation.

7.1. Configuration spaces

If T is a topological space we set $T^n_* = \{(t_1, \dots, t_n) \in T^n \mid t_i \neq t_j \text{ if } i \neq j\}$. The group Σ^n acts on T^n_* by permutations.

Let us set $Y_n = (P^1(C))_*^n$ and $\mathcal{Y}_n = (P^1(C)\setminus\{0,1,\infty\})_*^{n-3}$. Let $a,b,c \in P^1(C)$ be three different points and let $\varphi_{a,b,c}(z) = \frac{b-c}{b-a} \cdot \frac{z-a}{z-c}$. The map $\Phi_{4,5}: Y_5 \to \mathcal{Y}_5$ given by $\Phi_{4,5}(x_1,x_2,x_3,x_4,x_5) = (\varphi_{x_1,x_2,x_3}(x_4),\varphi_{x_1,x_2,x_3}(x_5))$ induces a bijection

$$\varphi_{4,5}: Y_5/\mathrm{PGL}_2(C) \to \mathcal{Y}_5.$$

The action of Σ_5 on Y_5 induces an action of Σ_5 on \mathcal{Y}_5 . The map $\sigma: \mathcal{Y}_5 \to \mathcal{Y}_5$, $\sigma(s,t) = \left(\frac{t-1}{t-s}, \frac{1}{s}\right)$ corresponds to the permutation $\tilde{\sigma}$ of Y_s given by

$$\tilde{\sigma}(x_1, x_2, x_3, x_4, x_5) = (x_2, x_3, x_4, x_5, x_1).$$

Observe that the points $A = \left(\frac{\sqrt{5}-1}{2}, \frac{\sqrt{5}+1}{2}\right) \in \mathcal{Y}_5$ and $B = \left(\frac{-\sqrt{5}-1}{2}, \frac{-\sqrt{5}+1}{2}\right) \in \mathcal{Y}_5$ are fixed by σ .

The one-forms $\frac{ds}{s}$, $\frac{ds}{s-1}$, $\frac{dt}{t}$, $\frac{dt}{t-1}$, $\frac{ds-dt}{s-t}$ generate $A^1(\mathcal{Y}_5)$ and $H^1_{\mathrm{DR}}(\mathcal{Y}_5)$. Let S_0, S_1, T_0, T_1 and N be their formal duals. The subspace $R(\mathcal{Y}_5)$ of $H(\mathcal{Y}_5)^{\otimes 2}$ is generated by

$$[S_i, N] + [T_i, N]$$
 $i = 0, 1;$
 $[S_i, T_i] + [S_i, N]$ $i = 0, 1;$
 $[T_i, S_i] + [T_i, N]$ $i = 0, 1;$
 $[S_0, T_1]$ and $[S_1, T_0]$

where $[A, B] = A \otimes B - B \otimes A$.

Let $G := P(\mathcal{Y}_5)$ i.e. G is a multiplicative group of the algebra of formal power series in non-commuting variables S_0, S_1, T_0, T_1 and N divided by the ideal generated by $R(\mathcal{Y}_5)$.

The principal fibration

$$\mathcal{Y}_5 \times G \to \mathcal{Y}_5$$

we equipped with the integrable connection given by the one form

$$\omega_{\mathcal{Y}_{5}} = \left(\frac{dt}{t-1} - \frac{dt}{t}\right) \otimes T_{1} + \left(-\frac{dt}{t}\right) \otimes T_{\infty} + \left(\frac{ds - dt}{s - t} - \frac{dt}{t}\right) \otimes N + \frac{ds}{s} \otimes S_{0} + \frac{ds}{s - 1} \otimes S_{1}$$

where $T_{\infty} = -T_0 - T_1 - N$. We shall write shortly ω instead of ω_{y_5} .

7.2. Integration of w

We recall that on $P^1(C)\setminus\{0,1,\infty\}$ we have

7.2.0
$$\Lambda_{\overrightarrow{\infty}1}(z) \cdot a_{\overrightarrow{1}\overrightarrow{\infty}} = \Lambda_{\overrightarrow{1}\overrightarrow{\infty}}(z)$$
 (see Proposition 4.1).

The monodromy of $\Lambda_{\xrightarrow{}}(z)$ is given by:

$$\begin{array}{l} (\text{around } \infty): \Lambda_{\overrightarrow{\infty 1}}(z) \to \Lambda_{\overrightarrow{\infty 1}}(z) \cdot e^{-2\pi i T_{\infty}}; \\ (\text{around } 1): \Lambda_{\overrightarrow{\infty 1}}(z) \to \Lambda_{\overrightarrow{\infty 1}}(z) \cdot a_{1\infty}^{\infty 1} \cdot e^{-2\pi i T_{1}} \cdot (a_{1\infty}^{\infty 1})^{-1}, \end{array}$$

(see Theorem 4.3). We have $f_*(a_{10}^{01}(T_0, T_1)) = a_{1\infty}^{\infty 1}(T_\infty, T_1)$ where $f_*(T_0) = T_\infty$, $f_*(T_1) = T_1$ and f(z) = 1/z.

We have assymptotically at ∞

7.2.1
$$\Lambda_{\overrightarrow{\infty}1}(z) \underset{z = \infty}{\sim} e^{\left(\int_{1}^{z} \frac{dt}{t}\right)T_{\infty}}$$
i.e.
$$\lim_{\substack{z \to \infty \\ z > 1}} \left(\Lambda_{\overrightarrow{\infty}1}(z) \cdot e^{-\left(\int_{1}^{z} \frac{dt}{t}\right)T_{\infty}}\right) = 1.$$

Let $P_{\varepsilon} = (\varepsilon, 1 + \varepsilon) \in \mathcal{Y}_5$ where $\varepsilon > 0$ and small. Let $\Lambda_{P_{\varepsilon}}(z; \text{ path})$ be a horizontal section of ω such that $\Lambda_{P_{\varepsilon}}(P_{\varepsilon}) = 1$. Let γ be a path in \mathcal{Y}_5 from P_{ε} to $\sigma(P_{\varepsilon}) = (\varepsilon, 1/\varepsilon)$ which is constant $(=\varepsilon)$ on the first coordinate.

Assuming $s = \text{constant} (= \varepsilon)$ we have

$$\Lambda_{P_{\varepsilon}}(z) \cdot a_{\overrightarrow{1\infty}}^{1+\varepsilon} = \Lambda_{\overrightarrow{1\infty}}(z).$$

Hence we have assymptotically for positive, small ε

7.2.2
$$a_{1\infty}^{1+\varepsilon} \underset{\varepsilon=0}{\sim} e^{\left(-\int_{\infty}^{1+\varepsilon} \left(\frac{dt}{t-1} - \frac{dt}{t}\right)T_1\right)}.$$

It follows from 7.2.0, 7.2.1 and 7.2.2 and Proposition 4.1 that for ε positive, near 0

7.2.3
$$\Lambda_{P_{\varepsilon}}(\sigma(P_{\varepsilon});\gamma) \underset{\varepsilon=0}{\sim} e^{\left(\int_{1}^{1_{\varepsilon}} \frac{dz}{z}\right)T_{\infty}} \cdot a_{1\infty}^{\infty 1}(T_{\infty},T_{1}) \cdot e^{\left(\int_{\infty}^{1+\varepsilon} \frac{dt}{t-1} - \frac{dt}{t}\right)T_{1}}.$$

Let $p = \gamma + \sigma(\gamma) + \sigma^2(\gamma) + \sigma^3(\gamma) + \sigma^4(\gamma)$. Then $\Lambda_{P_{\epsilon}}(P_{\epsilon}; p) = 1$ because the path p is contractible in \mathcal{Y}_5 . On the other hand

$$\begin{split} 1 &= \Lambda_{P_{\varepsilon}}(P_{\varepsilon}, p) = \Lambda_{\sigma^{4}(P_{\varepsilon})} \big(P_{\varepsilon}; \sigma^{4}(\gamma)\big) \cdot \Lambda_{\sigma^{3}(P_{\varepsilon})} \big(\sigma^{4}(P_{\varepsilon}); \sigma^{3}(\gamma)\big) \\ &\cdot \Lambda_{\sigma^{2}(P_{\varepsilon})} \big(\sigma^{3}(P_{\varepsilon}); \sigma^{2}(\gamma)\big) \cdot \Lambda_{\sigma(P_{\varepsilon})} \big(\sigma^{2}(P_{\varepsilon}); \sigma(\gamma)\big) \cdot \Lambda_{P_{\varepsilon}} \big(\sigma(P_{\varepsilon}); \gamma\big). \end{split}$$

The formula

$$(\sigma^{i})_{*}(\Lambda_{P_{\epsilon}}(\sigma(P_{\epsilon}),\gamma)) = \Lambda_{\sigma^{i}(P_{\epsilon})}(\sigma^{i+1}(P_{\epsilon}),\sigma^{i}(\gamma))$$

(see Corollary 1.8) implies that

$$1 = \sigma_*^4(L) \cdot \sigma_*^3(L) \cdot \sigma_*^2(L) \cdot \sigma_*(L) \cdot L$$

where $L = \Lambda_{P_{\varepsilon}}(\sigma(P_{\varepsilon}), \gamma)$. Let

$$\mathbf{L} = e^{\left(\int_{1}^{1/\epsilon} \frac{dz}{z}\right)T_{\infty}} \cdot a_{1\infty}^{\infty 1}(T_{\infty}, T_{1}) \cdot e^{\left(\int_{\infty}^{1+\epsilon} \frac{dt}{t-1} - \frac{dt}{t}\right)T_{1}}$$

It follows from 7.2.3 that

$$1 \mathop{\sim}_{\varepsilon=0} \sigma_*^4(\mathtt{L}) \cdot \sigma_*^3(\mathtt{L}) \cdot \sigma_*^2(\mathtt{L}) \cdot \sigma_*(\mathtt{L}) \cdot \mathtt{L}.$$

The factors $e^{\int_{\infty}^{1+\epsilon} \left(\frac{dt}{t-1} - \frac{dt}{t}\right) T_{\infty}\left(=\sigma_{*}^{2}(T_{1})\right)}$ and $e^{\left(\int_{1}^{1/\epsilon} \frac{dz}{z}\right) T_{\infty}}$ can be placed together in the product $\sigma_{*}^{4}(\mathbf{L}) \cdot \ldots \cdot \mathbf{L}$ because $T_{\infty} = \sigma_{*}^{2}(T_{1})$ commutes with $\sigma_{*}(T_{1}) = S_{0}$ and $\sigma_{*}(T_{\infty}) = S_{1}$. After the calculations we get

$$\int_{-\infty}^{1+\varepsilon} \left(\frac{dt}{t-1} - \frac{dt}{t} \right) - \int_{1}^{1/\varepsilon} \frac{dt}{t} = -\log(1+\varepsilon).$$

Repeating the same argument for S_1 , $S_1 + T_1 + N$, T_1 and S_0 and passing to the limit with ε we get

$$\sigma_{\star}^{4}(a) \cdot \sigma_{\star}^{3}(a) \cdot \sigma_{\star}^{2}(a) \cdot \sigma_{\star}(a) \cdot a = 1$$

where $a = a_{1\infty}^{\infty 1}(T_{\infty}, T_1)$. The last formula we can write in the form

$$\mathsf{a}(S_0, S_1 + T_1 + N) \cdot \mathsf{a}(T_1, S_1) \cdot \mathsf{a}(S_1 + T_1 + N, T_\infty) \cdot \mathsf{a}(S_1, S_0) \cdot \mathsf{a}(T_\infty, T_1) = 1$$

because $\sigma_*(S_0) = T_{\infty}$, $\sigma_*(S_1) = S_1 + T_1 + N$, $\sigma_*(T_0) = N$, $\sigma_*(T_1) = S_0$ and $\sigma_*(N) = -S_0 - S_1 - N$.

Let $\psi_5: C_*^4 \to \mathcal{Y}_5$ be given by $\psi_5(z_1, z_2, z_3, z_4) = \Phi_{4,5}(z_1, z_2, z_3, z_4, \infty)$. Let $(A_{ij})_{i,j}$ be formal duals of $\left(\frac{dz_i - dz_j}{z_i - z_j}\right)_{i,j}$. Then we have

$$\psi_{5*}(A_{12}) = -S_0 - S_1 - T_0 - T_1 - N,$$
 $\psi_{5*}(A_{13}) = S_1 + T_1 + N,$
 $\psi_{5*}(A_{14}) = S_0,$
 $\psi_{5*}(A_{23}) = S_0 + T_0 + N,$
 $\psi_{5*}(A_{24}) = S_1,$

$$\psi_{5*}(A_{34}) = -S_0 - S_1 - N.$$

Using $\psi_1:C^4_* o \mathcal{Y}_5$ given by $\psi_1(z_2,z_3,z_4,z_5)=\Phi_{4,5}(\infty,z_2,z_3,z_4,z_5)$ we get

$$\psi_{1*}(A_{23}) = S_0 + T_0 + N,$$
 $\psi_{1*}(A_{24}) = S_1,$
 $\psi_{1*}(A_{25}) = T_1,$
 $\psi_{1*}(A_{34}) = -S_0 - S_1 - N,$
 $\psi_{1*}(A_{35}) = -T_0 - T_1 - N,$
 $\psi_{1*}(A_{45}) = N.$

We set $X_{ij} := \psi_{\varepsilon*}(A_{ij})$ $\varepsilon = 1, 5$. Then $X_{15} = T_0$. Hence finally we get a formula

7.2.4
$$\mathsf{a}(X_{14},X_{13}) \cdot \mathsf{a}(X_{25},X_{24}) \cdot \mathsf{a}(X_{13},X_{35}) \cdot \mathsf{a}(X_{24},X_{14}) \cdot \mathsf{a}(X_{35},X_{25}) = 1.$$

If we use $\Phi_{2,4}: X_*^5 \to \mathcal{Y}_5$ given by $\Phi_{2,4}(0,s,1,t,\infty) = (s,t)$ and repeat the calculations in \mathcal{Y}_5 we get the same formula as before, but the X_{ij} 's names of S_0, S_1, \ldots are now different and the resulting formula is:

7.2.5
$$a(X_{12}, X_{15}) \cdot a(X_{34}, X_{23}) \cdot a(X_{15}, X_{45}) \cdot a(X_{23}, X_{12}) \cdot a(X_{45}, X_{34}) = 1.$$

This is exactly the formula which appears in [I2] page 106 if we replace a() by a() $^{-1}$.

Proposition 7.3. For any permutation σ of five letters we have

$$\text{i)} \qquad \text{a}(X_{\sigma(14)},X_{\sigma(13)}) \cdot \text{a}(X_{\sigma(25)},X_{\sigma(24)}) \cdot \text{a}(X_{\sigma(13)},X_{\sigma(35)}) \\ \cdot \text{a}(X_{\sigma(24)},X_{\sigma(14)}) \cdot \text{a}(X_{\sigma(35)},X_{\sigma(25)}) = 1,$$

$$\text{ii)} \qquad \text{a}(X_{\sigma(12)},X_{\sigma(15)}) \cdot \text{a}(X_{\sigma(34)},X_{\sigma(23)}) \cdot \text{a}(X_{\sigma(15)},X_{\sigma(45)}) \\ \cdot \text{a}(X_{\sigma(23)},X_{\sigma(12)}) \cdot \text{a}(X_{\sigma(45)},X_{\sigma(34)}) = 1,$$

where $\sigma(ij) = \sigma(i)\sigma(j)$.

Proof. It follows from 7.2.4, 7.2.5 and Corollary 1.8.

Remark. The formulas of Proposition 7.3 are in the group $P(\mathcal{Y}_5)$. If we apply log we get formulas in the group $\pi(\mathcal{Y}_5)$.

In the sequel we shall work in the group $\pi(\mathcal{Y}_5)$.

We finish this section with a formula from which the Deligne $\mathbb{Z}/3$ -cycle relation can be obtained. The proof is an imitation of the Deligne proof.

Proposition 7.4. Let $\alpha := \log a$. In the group $\pi(\mathcal{Y}_5)$ we have

i)
$$\alpha(X_{25},X_{23})(-\pi i X_{23})\alpha(X_{23},X_{35})(-\pi i X_{35})\alpha(X_{35},X_{25})(-\pi i X_{25}) = -\pi i X_{14}$$
 and

ii)
$$\alpha(X_{25}, X_{23})(\pi i X_{23})\alpha(X_{23}, X_{35})(\pi i X_{35})\alpha(X_{35}, X_{25})(\pi i X_{25}) = \pi i X_{14}$$

Proof. Let $\tilde{\sigma}(x_1, x_2, x_3, x_4, x_5) = (x_1, x_5, x_2, x_4, x_3)$. Then the induced map $\sigma: \mathcal{Y}_5 \to \mathcal{Y}_5$ is given by $\sigma(s,t) = \left(\frac{t-1}{t}: \frac{s}{s-1}, \frac{t-1}{t}\right)$ and $\sigma^2(s,t) = \left(\frac{s}{s-t}, \frac{1}{1-t}\right)$. Let $P_- = (r, 1-r)$ and $P_+ = (r, 1+r)$ where r is positive and small. Let $Q_- = (-r, 1-r)$ and $Q_+ = (-r, 1+r)$. Let γ be a path from $P_+ = (r, 1+r)$ to $\sigma^2(Q_-) = (r, 1/r)$, which is constant on the first coordinate. Let γ' be a path from Q_+ to $\sigma^2(P_-)$ passing through the point $\left(\frac{r}{2r-1}, 1+r\right)$ which is piecewise constant, first on the second coordinate, next on the first coordinate.

Let S be a path $[0,\pi] \ni \varphi \to (r,1+re^{i(\varphi+\pi)})$ and let S' be a path $[0,\pi] \ni \varphi \to (-r,1+re^{i(\varphi+\pi)})$. Let us consider the composition $p=\sigma(\gamma')\circ\sigma(S')\circ\sigma^2(\gamma)\circ\sigma^2(S)\circ\gamma'\circ S'\circ\sigma(\gamma)\circ\sigma(S)\circ\sigma^2(\gamma')\circ\sigma^2(S')\circ\gamma\circ S$. If we integrate the form ω along this path and pass to the limit if $r\to 0$ we get the square of the left hand side of the expression i).

Let α be a loop in the opposite clockwise direction around (0,0) in the plane $P = \{(s,t) \in C^2 \mid \alpha s + \beta t = 0\}$. The integration of the form ω along α gives $(-2\pi i)(S_0 + N + T_0) = (-2\pi i)X_{23}$. In the model of $Y_*^5/PGL_2(C)$ in which the subspace $\{(x_1, x_2, x_3, x_4, x_5) \mid x_1 = x_4\}$ of $(P^1(C))^5$ degenerates to a point (for example for $\Phi_{2,5}(0, s, 1, \infty, t) = (s, t)$), the path p is homotopic to a loop around one of the points (0,0), (1,1) or (∞,∞) in the plane passing through the corresponding point (0,0), (1,1) or (∞,∞) (the point (1,1) in the case of the model $\Phi_{2,5}$). Hence the left hand side of the expression i) is also $(-2\pi i) \cdot X_{14}$. The proof of the second equality is similar.

Corollary 7.5. For any permutation σ of five letters 1, 2, 3, 4, 5 we have formulas i') and ii'), which are obtained from formulas i) and ii) by replacing indices 1, 2, 3, 4, 5 by $\sigma(1)$, $\sigma(2)$, $\sigma(3)$, $\sigma(4)$, $\sigma(5)$.

Proof. One consider the map of Y_5 given by $(x_i)_{i=1,...,5} \to (x_{\sigma(i)})_{i=1,...,5}$. The induced map $\sigma: \mathcal{Y}_5 \to \mathcal{Y}_5$ satisfies $\sigma^*\omega = \sigma_*\omega$. This implies formulas i') and ii').

Remark. We have $X_{23} + X_{25} + X_{35} = X_{14}$ in the Lie algebra Lie(\mathcal{Y}_5). If we set $X_{14} = 0$ then the formulas i) and ii) reduce to the Deligne formula.

References

[Ch] K. T. Chen, Algebra of iterated path integrals and fundamental groups, Transactions of the American Mathematical Society, 156, May (1971), 359 – 739.

- [D1] P. Deligne, Théorie de Hodge II, Publ. Math. IHES, 40, (1971), 5 58.
- [D2] P. Deligne, Le Groupe Fondamental de la Droite Projective Moins Trois Points, in
 Galois Groups over Q, Math. Sc. Res. Ins. Publ. 16, 1989, 79 297.
- [Dr] W. G. Drinfeld, On quasitriangular quasi-Hopf algebras and a group closely connected with $Gal(\bar{Q}/Q)$, Leningrad Math. J. 2 (4), (1991), 829 –860.
- [I1] Y. Ihara, Automorphisms of pure sphere braid groups and Galois representations, in The Grothendieck Festschrift, Volume II, Birkhäuser, 353 – 373.
- [I2] Y. Ihara, Braids, Galois groups, and some arithmetic functions, Proc. of the ICM 90(I), (1991), 99 120.
- [MKS] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Pure and Applied Mathematics, XIII, Interscience Publ. 1966.
 - [W] Z. Wojtkowiak, Functional Equations of Iterated integrals with Regular Singularities, RIMS-967 preprint.

Université de Nice-Sophia Antipolis Department de Mathématiques Laboratoire Jean Alexandre Dieudonné U.R.A. au C.N.R.S., No 168 Parc Valrose - B.P.N° 71 06108 Nice Cedex 2, France

Research Institute for Mathematical Sciences Kyoto University Kitashirakawa, Sakyo-ku, Kyoto 606, Japan