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The 5-cycle relation for iterated integrals

Monodromy of iterated integrals

Zdzislaw Wojtkowiak

§0. Introduction.

0.1. In this lecture we give a proof that the element, whch describes the monodromy of
iterated integrals ( and also non-abelian unipotent periods ) on P!(C) \ {0,1, oo} satisfies
the Drinfeld- Thara 5-cycle relation. This is in fact the same element that one finds in
the paper of Drinfeld (see [Dr]). The proof presented here is different from the Drinfeld
proof. The proof given here imitates Deligne‘s proof of 2 and 3-cycle relations and it
should be analogous to Ihara‘s proof of 5-cycle relation. We point out that the main point
in our proof is the functoriality of the universal unipotent connection. This property can
be shorﬂy written as f.w = f*w and it is also fundamental m our results on functional
equations of polylogarithms and iterated integrals (see [W]).

Below we shall give a brief description of the paper. In Section 1 are established some
general properties of the canonical unipotent connection. In Sections 2 and 3 we present
a “naive” approach to the Deligne tangential base point (see [D2]),which is sufficient for

~ our applications. In Sections 4 and 5 we describe the monodromy of iterated integrals on
PY(C)\ {a1,-...,8n+1} and in more details on P! (C)\ {0,1, 00}. In Sections 6 and 7 we

study monodromy of iterated integrals on configuration spaces.
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§1. Canonical connection with logarithmic singularities.

Let X be a smooth, projective scheme of finite type over a field k of characteristic zero.

Let D be a divisor with normal crossings in X and let V =X \ D. Let
- AY(V) :=T(X, Q% (logD))

be a differential algebra of global sections of the algebraic De Rham complex on X with

logarithmic singularities along D.

1.1. It follows from [D1] Corollaire 3.2.14 that each element of A*(V) is closed and the
natural map A*(V) — Hpp(V) is injective.

We shall denote by A?(A'(V')) the exterior product of the vector space A'(V) with
itself and by A'(V) A A1(V) the image of A2(A1(V)) in A%2(V).

Let H(V) := (AY(V))* and R(V) := (A} (V) A A1(V))* be dual vector spaces. The
map A2(AY(V)) — AY(V) A AY(V) induces 2 map R(V) — A2(H(V)). |
~ Let Lie(H(V)) be a free Lie algebra over k on H (V). Observe that R(V) is contained
in degree 2 terms of Lie (H(V)). Let (R(V)) be a Lie ideal generated by R(V). We set

Lie (V) := Lie (H(V))/(R(V))

and

L(V) := lim (Lie (V)fLie (V) -

The Lie algebra L(V) we equip with the multiplication given by the Baker-Campbell-
Hausdorff formula and the obtained group we:shall denote by m(V). Its Lie algebra can be
identified with L(V). We define a one form wy on V with values in the Lie algebra L(V)
in the following way. The form wv corresponds to the identity homomorphism id 41(v)

under the natural isomorphism

AY(V)® H(V) = AY(V) ® (4'(V))* ~ Hom (A'(V), A'(V))).
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Lemma 1.2. The one-form wy is integrable.

Proof. It is sufficient to show that dwy + %[wv,wv] = (. It follows from 1.1 that dwy = 0.

We have exact sequences
0— K — A2(AY(V)) - A (V) AAY(V) =0

and

0 — K* — N2(H(V)) « R(V) «0.

The two-form [wy,wy] € AY(V) A AY(V) @ N°H V)/r(v) ~ (/\2(A1(V))/K) ® K* is
represented by a map K — A2(A1(V)) — AY(V) A A(V), hence it is zero.

Let T[H(V)] be a tensor algebra over k on H(V) and let (R(V)) be an ideal of
T[H (V)] generated by R(V). Let Q(V) := T[H (V)]/R(V) be the quotient algebra and let
@(V) be its completion with repect to the augmentation ideal I := ker (Q(V) — k), i.e.
@(V) = l£n (Q(V)/I"). Let P(V) be the group of invertible elements in Q(V), whose
constant tez-ms are equal 1.

The elements of L(V) we identify with Lie elements (can be of infinite length) in

P(V). The exponential series defines an injective homomorphism
exp: m(V) — P(V).

The inverse of exp is defined on the subgroup exp(w(V)) of P(V) and it is given by the
formula

logz =(2—1)— Ya(z —1)2+ 1a(z — 1)3 — Yg(z — 1)* +....

Let us assume that k is the field of complex numbers C. Then V is a complex variety
with the standard complex topology.

Let z,z € V be two points in V and let v be a smooth path in V from z to z.

Let Av(z;z,v) (resp. Ly(z;z,7)) be a horizontal section along < of the principal
P(V) (tesp. 7(V))-bundle ‘

VxP(V)—V (resp. Vxn(V)—V)
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equipped with the connection given by wy and such that Ay (z;z,v) = 1 (resp. Lv(z;z,7) =
0).

Definition 1.3. Let z € V and let o € m1(V, z) be a loop. We shall define a homomor-
phism |
bz,v : m(V,z) = P(V) (resp. bz,v : m(V,z) — n(V))

by the formula
0z,v(a) :=Av(a(l);z,a) (resp. Ozv(e) := Lyv(a(l);z,a))

and we call it the monodromy homomorphism of the form wy (at the point z).

Proposition 1.4. Let ;1,22 € V. Then the monodromy homomorphisms 0:,,v and 0z, v

of the form wy are conjugated.‘
Proof. 1t is a property of a connection on a principal fiber bundle.

Proposition 1.5. Assume that
ANV) - Hpp(V)

is an isomorphism. Then the Lie algebra Lie (V') is isomorphic to the Lie algebra of the
fundamental group of V.

Proof. Let Q*(V) be a differential algebra of complex valued, global, smooth, differential
forms on V. The inclusion A*(V) — Q*(V) induces an isomorphism of the “stage one”
minimal models. Moreover the “stage one” minimal model of A*(V) is formal as d; =

ds = 0. This implies the statement of the proposition.

Proposition 1.6. If AY(V) — HL (V) is an isomorphism then the monodromy homo-
morphism 8, v : m1(V,z) — n(V) induces an isomorphism of the Malcev C-completion of
m1(V, z) into w(V).

Proof. The Sullivan theory of minimal models recovers the Malcev Q-completion 71 (V, z)o(Q)
of 71(V,z). The formality of the “state one” minimal model of V' implies that the Mal-
cev C-completion of m; (V, z) is (isomorphic to) (V). Hence the groups 71(V, z)o(C) and
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(V) are isomorphic. By the universal property of the Malcev Cécompletion there is an
isomorphism 8, v : 71 (V,z)o(C)=> (V) of affine, pro-nilpotent groups such that the

diagram
m(V, z)

rce / \, 0z, v
m(V,z)o(C) — (V)

oz, A\
commutes.

Let X; (for i = 1,2) be smooth, projective schemes of finite type over k. Let D; be
divisors with normal crossings in X; (for i = 1,2). Let V; = X; \ D; (for i = 1,2) and let
f : X; — X, be a morphism such that f~1(D;) = D;. .Then f induces f* : A}(Vp) —
A(V). | |

Let f. : H(V1) — H(V3) be the dual map. This map induces group homomorphisms

fo: P(V1) — P(V2)

and

feo 17 (V1) = w(V2)
Lemma 1.7. We have

fulwny) = f*(ww)-

Corollary 1.8. We have

Fo(Avi(252,7)) = A (f(2); £(2), F(7))-
.and
FuLvi (2;2,7)) = Ly, (f(2); f(x), £(7))-
The lemma follows from the definition of wy; as id 41(v;).
Let wy,...,w, be a base of A}(V). Let Xj,...,X, be a dual base of H(V). Then
P(V) is a multiplicative group of the algebra of formal power series in non-commuting
variables X}, ..., X, divided by the ideal generated by R(V).

If a(X,,...,Xy) is a formal power series in non-commuting variables X3, ..., X, we
shall denote by ‘a(Xji,...,X,) its image in P(V).
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. Proposition 1.9. We have

i) (Z,Av(Z;IB, 'Y)) = (Z’ ,1 + Z((-l)k /z Wigy.oo ’wik)Xik BRI Xh) eV x P(V)$

Y

(the summation is over all non-commutative monomials in variables X1, ..., Xn, the inter-

ated integrals are calculated along the path «)
ii) Lv(zz,7) =log(Av(z;2,7))

Proof. The principal bundle V x C{{Xj,..., Xa}}* =V eqmpped with the connection

given by E w; ® X; has horizontal sections given by
=1

2 (21 +,§_:((—1)'=/ Wiy ) X e Xiy).

Y

Hence the point i) follows. Observe that exp : (V) — P(V) identifies wy € AY(V) ®
Lie (n(V)) with wy € A}(V) ® Lie (P(V)). Hence the point ii) follows.

§2. Homotopy relative tangential base points on P!(C)\{ay,-- -A,a,,_H}.

2.1. Let X = PI(C)\{al, -+, an41}. Let Ty (PI(C)) be the tangent space to P!(C) in z.
Let us set X = X U U (To, (P (C))\{O}).
Let J’(X) be the set of all continous maps from the closed unit interval [0; 1] to P}(C)
such that '
i) ((0,1)) C X;
ii) if p(0) = a; then ¢ is smooth near a; and $(0) # 0, and if (1) = ax then ¢ is smooth
near ax and ¢(1) # 0. |
In the sequel we shall identify ¢(0) (resp. (1)) with a tangent vector to ¢ in
T..(P(C)) (resp. Ta (P'(C)). This tangent vector we shall denote also by ¢(0) €
T..(PY(0)) (resp. (1) € Tu, (P'(C)).
If ¢(0) =z € X and ¢(1) = y € X then we say that ¢ is a path from z to y.
If p(0) = a; (resp. (1) = ax) then we say that ¢ is a path from ¢(0) € T, (PY(C))
(resp. to —p(1) € T,, (P'(C)) and we shall write ©(0) = ¢(0) (resp. (1) = —¢(1)).
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To J'(X) we joint all constant maps from [0,1] to X and the resulting set we denote
by J(X).

We shall define a relation of homotopy in the set J(X). Let ¢, € J(X). If ¢(0) =
Y0)=z€ X and p(1)=9¢Y(1)=ye X )then we say that ¢ and 1 are homotopic if they
are homotopic maps in the space map([0,1],0,1; X, z,y).

If o(0) = ¥(0) = v € T,,(PY(C)) and (1) = (1) = y € X then we say that ¢ and
1 are homotopic if there is a homotopy

H, € map([0,1],0,1; X U {a;}, a;,y) such that

i) H, € J(X) and H,(0) = v for all s € [0,1];
i) H,((0,1)) C X for all s € [0, 1];
iii) Hg = ¢ and Hy = 9.

We left to the reader the cases when p(0) = ¥(0) = z € X,p(1) = ¥(1) = w €
T.,.(P*(C)) and ¢(0) = ¥(0) = v € To,(P'(C)), (1) = ¥(1) = w € Tu, (P}(C)).

Let ¢ € J(X) be such that ¢(0) = (1) = v € T,,(P(C)) and let ¥ € J(X) be a

constant map equal to v. We say that ¢ and 1y are homotopic if there is a homotopy
H, € map([0,1],0,1; X U {a;}, a;, a;)

such that
iy H, € J(X) and H,(0) = H,(1) = v for all s € [0,1];
ii) H,((0,1)) C X for all s € [0, 1];
iii) Ho = ¢ and Hy(t) = a; for t € [0, 1].
Observe that G; := H;_; defines a homotopy between v and .
With the definition given above paths o, 8 € J (CY{\O}) are not homotopic.

We shall write ¢ ~ 9 if ¢ and 9 are homotopic. The relation ~ is an equivalence
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relation on the set J(X). Let t(X) := J(X)/ ~ be the set of equivalence classes.

We define a partial composition in ¢(X) in the following way. Let ¢, ¥ € +(X) and let
¢, ¥ € J(X) be its representatives.

If (1) = 9(0) = y € X then we set ¥ o ¢ := [1 0 ¢], the class of 1 0 ¢ in 7(X). |

If (1) = 9(0) = v € T, P! (C) then we can assume that ¢ and 9 coinside near a;
and we define ¥ 0 ¢ := [§* - p,], where @1 := @jo,1—e]> ¥n = Pjpn,1; 3nd p(1 &) = (7).

The map pr:J(X) — X x X/pr(¢) = (¢(0), (1)) which associates to a path its
beginning (¢(0)) and its end (p(1)) agrees with the relation ~ and it defines p : L()? ) —
X x X. The partial composition o makes p : «(X) = X x X into a groupoid over XxX.

Let z € X. We set m1(X,z) := p~1(z,z). This is a fundamental group with a base
point in z € X. ’

2.2. We shall construct a family of horizontal sections of w., where a base point z is
replace by a tangent vector.

Let us set V ='C\{a1,--'-,a,,}. Let zpe C and let 6:[0,1] 2t — ai + t.(xo — a;) be
an interval joining a; and zo. Let v be a path from a; to 2 € V (not passing through any
ak,k = 1,---n) tangent to § in a;. We assume that in a small neighbourhood of a; the
path v coincides with 4.

Observe that v = ¢ — a; can be canonically identified with a tangent vector to C in a;.
Let wy = -& e Wy = -4z We set

z—a1’? Z=~Qn

Z

Aai,v(ala'“aak)(z) :=/ Wayy*** yWay if a; #7'

@i,y
Let € € im(6) be near a;. Let v, be a part of v from € to 2, and let 6. be a part of §
from € to £o. We set

Aa;,v(ia e 7i, Q41" ,O![)(Z) =

) £ # dz dz
el—l-gr.l LR RV Wagyy1r® "t Way
tJeve 1'0:'7:'}’(6:)_1 TG Z—=a;

if Q41 7é i,

~and

. . ¥ dz dz
Rl 1)) = [

3 .
-"—'0,‘7:+6:1 Z— Q4 Z—a;
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Lemma 2.2.1. Theintegrals A,, (01, -+, ak)(2) exist and they are analytic, multivalued

functions on V.

Proof. Assume that o; # i for t <[ and o141 = i. The function g(z) := f:t Ways** s Way
is analytic, multivalued on V U {a;} and vanishes in a;. Hence the integral g;(z) :=
fa‘: 9(2)
in a;. Hence by induction we get that A, (a1, -,an)(2) exists, and it is analytic,

multivalued on V U {a;}.

zd_" exists, the function g;(2) is analytic, multivalued on V U {a:i} and vanishes

ag

‘Assume now that oy = i for t <[ and o441 # 1. Without loss of generality we can
assume that a; =0 and 7o = 1.
m .
Observe that lim [* _1 2*(logz)™dz = 2"*(Y Bi(logz)™ %) where ; are ra-
e—0 xOr'Yto(&‘) i=0
tional numbers. The function 29(logz)P? for g and p positive integers, is analytic, multvalued
on V, continous on any small cone with a vertex in a; (0 in this case) and it vanishes in

a;. The function z—_l;; for j # 1 is bounded on any sufficiently small neighbourhood of a;.
Hence the integral

. y dz dz dz dz
hm_ »° "y y* "
E—a; € 7e Zo,7e0(6e) 1 zZ— Qg Z— Qa4 z—a; Z— Q4

is an analytic, multivalued function on V, continous, univalued on any small cone with a

vertex in a; and it vanishes in a;.

Let us set

Av(zv,7v) =1+ Z(_l)kAai,v(al’ o0y 0k)(2) Xoy, + - Xay -

We recall that X3, -+, X, are duals of -2 ... 4= |

z—ay? ! z—ap°

Lemma 2.2.2. The map
V3z—(z2,Av(z;v,7)) € V x P(V)

is horizontal with respect to wy.

It rests to define functions Ax (z;v,%) if a; = 0o or all a; are different from oo.
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Let f:Y = C\{b1,---,bn} = X = PY(C)\{a1,--,an+1} be a regular map of the
form 27’;_%’ with det (Z 3) # 0. It follows from corollary 3.8 that f.(Ay(z;¥,7)) =
Ax(f(@); f(y),f(v)) if y € Y. We shall use this fact to define Ax(2;v,~) where v is a
tangent vector to P(C) in a; and v is a path from a; to 2, which is tangent to v and
F1(7) coincides with f~!(v) near f~1(a;).

We set

Ax(z;v,7) = fu(Ay (F~H(2); £ (), £ ()))-

It is clear that Ax(2;v,~) does not depend on the choice of f.

Lemma 2.2.3. The map
X 5 z—(2,Ax(2;v,9)) € X x P(X)

is horizontal with respect to wx.

We set Lx(z;v,7v) := logAx(2;v,7). If we are dealing with only one space X we shall
usually omit subscript X and we shall write A(z;v,7) and L(z; v,7), or even A,(z;7) and
L,(z;7), or Ay(2) and L,(2). ‘

We summarize the constractions from 2.1 and 2.2 in the following proposition.

Proposition 2.2.4. The functions Ax(z;v,~) and Lx(z;v,~) depend only on the homo-
topy class of v in 1(X) = J(X)/ ~.
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§3. Generators of m;(P!(C)\{a1,.-.,an+1},%).

Let X = P1(C)\{a1,...,ans+1} and let z € X. We shall describe how to choose generators
of 71(X,z). Let v; be a tangent vector in a;. Then the loop around a; at the base point

v; is the following element S,, of (X, v;) (see picture).

vy

For each i let us choose a tangent vector v; GA T,.(P'(C)). Let us choose a family of
paths T = {y%}} in J (X) from z to each v; such that any two paths do not intersect
and no path self intersects. The indices are chosen in such a way that when we make a
small circle around z (around ax if z is a tangent vector at ax) in the opposite clokwise
direction, starting from vy; we meet v2,7s,. .., ¥n+1. If 71 is a constant path equal v; we
meet 7y, ...,Ynt+1. To the path v; we associate the following element S; in m1(X, ). We
move along v;, we make the loop S,, around a; and we veturn along ;" lioz. Ifyisa
constant path equal v; then S; is S,,.

The following lemma is obvious.

Lemma 3.1. The elements S1,S5,...,Sn+1 are generators of m1(X,z). We have Sny1 -

oSy 851 =1

Definition 3.2. The ordered sequence (Si,...,Sn+1) of elements of m1(X,z) obtained
from the family of paths I' = {'y,-}?__'_"l1 we shall call a sequence of geometric generators of
m1(X, z) associated to T = {v}13]. |
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§4. Monodromy of iterated integrals on P(C)\{a1,"--,an+1}

Let X = PY(C)\{a1,,8n41}. Let z1,Z2,23 € X and let zp € X. Let ~; fori1=1,2,3
" be a path belonging to J(X) from z; to 2. Let us set Yij = 'yj_l ° ;.

Proposition 4.1. Let us prolongate each function Az,(z) along ~y; to the point zp. There
exist elements aZ (vi;) € P(X) such that

Az, (2) - a3 (vi5) = Az;(2)
for all z in a small neibourhood of zp. The elements aZ} (7;) satisfy the following relations

a’i: (7ii) =1,
az; (vij) - agi(vs) =1,
azi (Vi ) - a%3 (vjk) = aZi (Yik)-

Proof. The existence of aZ: (7i;) follows from the fact that A, (2)’s are horizontal sections.

The first two relations are obvious. The last relation follows from equalities Az, (2) -

aZ (Vi) = Az;(2), Az, (2) - 6zl (Vik) = Aay(2) and Az, (2) - aZi (vik) = Az, (2).

Proposition 4.2. Let vy € T,, P}(C)\{0}. Let Sk be a loop around aj, based at v €
T..(PY(C)\{0}, (see picture)

The monodromy of A, along S, is given by

Sk : Ay, (2) — Ay, (2) - 72Xk
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Proof. The monodromy of A, (k™)(2) := Aq, w(kk,---,k)(2) along Sk is given by
Sk Ay (K™)(2) — Ay (K™)(2) + f: Auk(km—l)(z)s%x. This implies that the mon-
odromy of A, (ai, - -,ap,k™)(2) all::xg Sk is given by Sk :’ Ay (or, -+, 0p,k™)(2) —
Ay (a1, 0p,k™)(2) + i Ay (a1, a5, k™) (2) _2fi -. Hence it follows the formula
for the monodromy of A,,:?;lz) along Sk.

Let £ € X. Let us choose v; € T,, P*(C)\{0} fori =1,2,---,n+1. Let (S1,-- -, Sn+1)

be a sequence of geometric generators of 71 (X, ) associated to ' = {1} where I' is a

family of paths in J'(X) from z to v; fori =1,2,---,n+ 1.

Theorem 4.3. The monodromy of the function A;(z) along the loop Sk is given by
Sk : As(2) = Aa(2) - a5, (vk) - €77 - (af, (me)) .

Proof. It follows from Proposition 4.1 that

(*1) Az(2) - a3, (k) = Aw,(2)

for z in the small neibourhood of some v(2p). This equality is preserved after the mon-

odromy transformation along Si, hence we have

(*2) (As(2))%* - a3, () = (Au, (2))%,

where ( )S* denotes the function ( ) after the monodromy transformation along Sk. If

'follows from Proposition 4.2 that
(*3) (Ao (2))%% = Ay (2) - €727 %x,

If we substitute (*3) in (*2) and then substitute (*1) for A, (z) we get the formula for
(Az(2))%.
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Corollary 4.4. The monodromy of the function L.(z) along the loop Sk is given by
Sk : La(2) = L, (2) - of, (1) - (—27iXk) - of, (v6) ™

where o (k) = log(og, (1))

Proof. The corollary follows immediately from Proposition 1.9. ii).
4.5 It follows from above, that the definition of the monodromy homomorphism (Definition

1.3) extends to any = € X. Hence for any v € X we have a monodromy homomorphism
Ou,x : m(X,v) = P(X)

and if v,v' € X , then the homomorphisms 8, x and 6,/ x are conjugated.

Proposition 4.6. Let f: X = P1(C)\{a1,...,ant1} = Y = PL{C)\{b1,...,bm+1} be a
regular map. Then for any v,w € X, a path v from v to z and a path 6 from v to w we

have

Fe(Ax (20,7)) = Ay (f(2); F(v), F(7))

and
£.(a%,(6)) = a§{ (£(6)).
(notation: f(v) := f.(v) if v is a tangent vector).

Proof. The proposition follows from the definition of A x(z;v,v) and a2, for tangent vec-

tors and from Corollary 1.8.
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§5. Calculations

Let X = PY(C)\{0,1,00}. The forms % and 2% form a base of A'(X). Let X := (%)
and Y := (z—d_‘—l)* be the dual base of (AI(X))*. Let us set Z := —X —Y. The group P(X)
is the group of invertible power series with a constant term equal 1 in non-commuting

variables X and Y.

Let us fix a path v; = interval [0,1] from 01 to 10. It follows from Proposition 4.1
that

(1) A () ag(X, Y)=A_(2)
Let f(z) =1- z. It follows from Proposition 4.6 that
f,.(a}) (X,Y)) =adj(X,Y).
(We omit arrows over 10 and 01.) Proposition 4.1 implies
af0(X,Y) = (ag) (X, ¥))™".
Observe that f.(X) =Y and f.(Y) = X. Hence we get the Deligne formula
(2) a5 (X,Y) = (ag1 (¥, X)) ™.

(The proof of (2) given here repeats essentially the Deligne proof.)

Let us fix a path v, = interval [0o, —¢]+ arc from —¢ to € passing by (—1)-€ (¢ > 0) +
interval from ¢ to 0) from 000 to 01. Let So (around 0), Sy (around 1) and S, (around
o0) be geometric generators of (X, ﬁ) associated to the family {70, 1, 7Yoo}, Where 7o is
the constant path equal 01. Then we have S0 Si 0 Seo = 1. The monodromy of A_O_l,(z)

is given by the following formulas (see Theorem 4.3)

S0 Ay (2) = Ay (2) - 72X,
3 =(2) = A (2) - (afp(X, Y) ™ TPV - afy(X, Y),
Soo A_>(z)—»A_‘<z) e X - (a5(Z, X)) 71 - 7P (a3(2, X)) - emX
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The monodromy along S, needs some explanations. By Theorem 4.3 it is given by the
formula S : _+(z) - A__.,(z) (ag0(X,Y))™L - e(=2™)Z . q220(X|Y). By Proposition
4.1 a°(X,Y) = a§ °(X Y) ad$ (X, Y) One calculates that ad{°(X,Y) = e™X. Let
f(z) = &=L = aRd(X,Y). Hence we
get the formula describing the monodromy along Se.. '

The Lie algebra L(X) is the completion of the free Lie algebra on two generators X
and Y. Let us set a(X,Y) := aQ}(X,Y) := loga%3(X,Y). The monodromy of La,(z) is
given by the following formulas (see Corollary 4.4).

So : La?(z) — La_l,(z)‘- (—2m) X,
@ Si:Lo(2x) — Lo(2) X, Y) 1. (—2mi)Y - a(X,Y),

Soo Lo_f(z) — La,(z);- (-7 X -a(Z, X))t (-270)Z - a(Z, X) - (m1) - X.
We shall calcualte coefficients of a93(X,Y) and a(X,Y). If w is a monomial in X and
Y, a(w) is the coefficient at w of ad3(X,Y). Let X be the first basic Lie element and let Y
be the second basic Lie element. We shall choose a base of a free Lie algebraon X and Y

as in [MKS] pages 324-325. If w is an element of this base, let a(w) be the coefficient at w
of a(X,Y). It follows from the formula (1) that

©) O™Y) = e D), 607X = (Kl D)
1
© v =[5, awixh = [ Ly,

(If w is a one-form then w* := w,w,---,w i-times.) It follows from (2) that a(X*Y7) +
a(Y*X7) = 0. It follows from [Ch] that a(X*Y7) + (—1)7a(Y7 X*) = 0. Hence we get

@i ;= a((YX)XYI71) = (—1)'a(XYY) = (-1)la(YI X¥)

and

a(YX) X7y Y = o((Y X) X 1Y7 7D,

Let us set 7/ := [r(X),n(X)] and " := [#',7n']. It follows from (3) that the mon-

odromy homomorphism

05? : m (X, 01) = my(X) :=w(X)/n"
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is given by
So -—*(—-27( i)X ’ ‘
(7) 81 —»(=2m)Y + [-2miY, a(X,Y))
=(=2m)Y + ) (@mi)aisr+11(YX)X'YIHY).
1=0,7=0
The formula .
| FoZ Z - 1’")',;. ([ Fla)toga)™Z) 1082
implies
® antim = TLC [ og(1 - ymroge &

§6. The configuration spaces

Let X = PY(C)\{a1,"**,Gn+1} and X’ = PY(C)\{a}, - -, al,}. If the sequences (a,z) :=
(a1, ,8n+1,) and (a’ ,:L") := (a},"*,05,41,") are close then the groups 7 (X,z) and
m1(X’,z’) are canonically isomorphic. We shall study how the monodromy homomor-
phisms 0; o;= 0, x and 0,/ o := 0, x+ from sections 1 and 4

O:o: m(X,z) — =(X)

2 I
Or o : m(X',z') — =w(X)

depend on a and a’.

Let Xn = {(21, -, 2n) € C™|2; # z; if i # j}. The space of global one-forms on X,
with logarithmic singularities, A1(X,,) is spanned by d—:’_%’- for i,5 € {1,2,---,n} and
i< j. Let Xi; = (d—:::—f:’-)* be their formal duals. We set X;; = X;; = 0. Dualizing the
map

A (A1(Xa) - AL (Xa) A AL(X,)

we get that R(X,,) is generated by

[X:j, Xik + Xjx) with 1, 7, k different
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and
[Xij, Xr] with 4, 4, k, 1 different.

Let £ = (Z1, -, Zn,Tnt+1) € Xn+1 be a base point. Let p; : Xp41 — Xy
(#=1,---,n+1) be a projection p.-(‘_zl,- ey Znt1) = (21,00, Ziy 0y Zny1), let 2(3) =
(1, yTic1,Tit1,**y Tnt1) and let X(3,z) := p,-_1 (x(z)) =C\{z1, ", &, ", Tn+1}-

(2 means z is omitted). Let k; : X (i,z) — X,41 be given by k;(2) = (x4, -+, Ti-1, 2, Tit1,

+++ZTpt1). The inclusion k; induces
(ki) P(X(Z, .’17)) - P(X"H'l)

and

(ki)s : w(X (3, x)) — m(Xnt1)

where (k;).«(X;) = X;; and X; is the formal dual of —#2- on X (i,z). The map (k;), is

z—aj

injective and its image, (k;)«(w(X(3,z)) is a normal subgroup of 7(X,,+1).

Let z = (z1,"**,Tn, Tny1) € Xn41 and z’ = (2}, 1 Th, Thiq) € Xnt1. Let us set
X :=X(n+1,z) and X' = X(n+ 1,2'). We choose a family of non-intersecting paths
Y1y "t Yy Y1 in C from Ty to x4, ,Zn to zj, and Ty to z,,,,. We shall identify
71(X, Tn+1) and m1(X’,25,41) in the following way. Observe that v = (71, *,Yn, Yn+1)
is a path in X,,+1 from z to z’. The identification isomorphism ~. : 7 (X, ZTpt+1) —

#1(X’,z},41) is the unique isomorphism making the following diagram commutative

(kﬂ+1)t

71X, Tns1) 71 (Xn+1,2)

VY- "
o (knt1)e ’
m(X,zpy) —— m(Xnt+1,7').

(v# is induced by the path v is a standard way).
Proposition 6.1. After the identification of the fundamental groups of X = C\{z1,---,Zn}

and X' = C\{z},---,z.} by . the monodromy homomorphisms

Ozns1,x 2 11X, Tnt1) = 7(X) and O, x/ 2 m(X', 20 44) — 7(X')
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(7(X) = 7(X")) are conjugated by an element of the group n(Xp+1). (The group (kn+1).7(X)
is a normal subgroup of 7(X,+1) so 7(Xn,+1) acts on w(X) by conjugations.)

Proof. The corollary follows from the commutative diagram

0

: Znaq.X
71(X, Znt1) — m(X)
(knt1)e N 3) N\, (knt1)
0"Xn+1
71(Xn+1,T) E— T(Xn+1)
l - (4) l Y# (1) l chn-H (z';z,7)
02/, X p 41
T1(Xnt1,2’) — T(Xn+1)
(knt1)« / (2) / (kn+1)»
o’:. X!
71 (X', i) T a(X') =n(X)

where ¢, Xngr (&32,7) is a conjugation by the element Lx,, ., (z’;z,7). It follows from Propo-
sition 1.4 that the square (1) commutes. Corollary 1.8 implies that (2) and (3) commutes.

The square (4) commutes by the construction.

Corollary 6.2. Let £ = (1, **,Zn+1) € Xn+1. Let us set X (i) := X(i,z). Let a;; be
the following element of m1(X (i), z;)- a geometric generator of w1 (X (i), z;), which is a loop
around the point ;. Let A;; be its image in m1(Xn+1,z). Then 0, x. ., (Aij;) is conjugated
to (—2mi)X;; in the group m(Xn+1).

Proof. It follows from Proposition 4.2 that 8, x(i)(ai;) is conjugated to (—2mi)X;; in the
group 7(X (7)). Hence the statement follows from Corollary 1.8.

Now we shall study the relation between the monodromy representation for the con-
figuration spaces (C\{0,1})7 and (C\{0,1})7*. We shall use the Ihara result (see [I1] The
Injectivity Theorem (i)). Let Y, := (P!(C))*. The group PGLQ (C) acts diagonally on
Y, and let Y, := Y,/PGLy(C). Let ¥ : Xn—1 — Yn be the composition of the map
(1, s Th=1,Th+1," "+ ,ZTn) — (Z1,°**,Thk—1,00,ZTk," -, Zn) and the projection Y, — V.
The map 9 induces (Yr)« : H(Xn-1) — H(Yn). Let us set Xi; = (¥r)«(X;;) where
Xi; = (%:—x;i)* € H(Xn-1). (We use the same notation for X;; € H(X,—1) and its
image in H(),). Notice also that X;; in H()),) does not depend on the choice of 1x.)

Let A;; € m(Xn-1,) be such as in Corollary 6.2. The image of A;; in Y, we shall
also denote by A;;.
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Corollary 6.3. The element 0,,y, (Ai;) is conjugated to (—2mi)X;; in w(Yn).

Proof. 1t follows from Corollary 6.2 and the commutative diagram
02Xy T (Xno1,2) = T(Xn=1) L (Wk)s L (Wk)+By,3n : 11 (Vs = Yk(2)) — 7(F0)-
Let Aut*(7())y)) be a subgroup of Aute(n()y,)) defined in the following way:
Aut*(7(In)) = {f € Autc(n(In)) |3y € C*, f(Xi5) ~ ay - Xij}.

(Autc() dentoes C-linear automorphisms and ~ means conjugated.)

Let us set

T(C) = {p € Hom(m1(Vn,y); m(Vn))|3a € C*,VA;j, p(Aij) ~ aX;}

(Aij € 71(Vn,y) are as in Corollary 6.3.). Observe that T"(C) is an Aut*(m(),))-torsor.

The subgrbup of inner automorphisms Inn(7()%,)) is a normal subgroup of Aut*(mw(Y,)).

Hence t"(C) := T™(C)/Inn(n(Yy)) is a Out*(w(Y,)) = Aut*(7(Y,))/Inn(x(Y,,))-torsor.
The following result is an analog of the Thara Injectivity Theorem (see [I1] page 4).

Proposition 6.4. The canonical map Out*(m(Yn)) — Out*(w(Yn-1)) is injective for
n > 5.

Proof. Let Out}(n(Y,)) := ker(Out*(W(yn)) bl C*), where N(f) = ay. The Lie algebra
of Out*(w(}y)) is the Lie algebra of special derivations of L(w(),)) modullo inner deriva- -
tions. The Lie version is proved in [I1] page 12. Because Out}(#w(Y,)) is pro-nilpotent, the
Lie version implies the result for Out](m()y)), and then also for Out* (7 (J),.)).

The surjective homomorphisms (Pnt+1)x @ T1(Vnt1,y) — 71(Vn,¥’) and (Prti1)s :

T(Yn+1) — 7(Yn) induce the morphism of torsors
gt (C) — tn(C) 7

compatible with Out*(w(Vp+1)) — Out*(w(Vn)).
Lemma 6.5. The canonical morphism of torsors t"t1(C) — t*(C) is injective for n > 4.

This follows immediately from Proposition 6.4.
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Corollary 6.6. The monodromy homomorphism 8yy, : ©1(Vn,y) — 7(Jn) is determined
(up to conjugacy by an element of w(),)) by the homomorphism 6, y, : ©1(Vs,y') —
7r(y4). ‘

Proof. Observe that 8,,y, € t"(C) and 6,,y, is the image of 6,,y, under the canonical
morphism t*(C) — t*(C). '

Let a := (a1, - ,@n,8n41) be a sequence of n + 1 different points in P!(C) and let
X, := PYC)\{a1, - ,an,an+1}. The vector space H(X,) is spanned by X; := (-

z—aq

dz__y* 4§ =1,...,n. Let us set Xpq41 := —Y i, Xi. Let Ag denotes a geometric

Z2—an41

generator of X, which is a loop around ai. Let us set

T,(C) := {f € Hom(m1(X,,z) = 7(X,))| 3y € C*,VAr f(Ak) ~ apXi}.
Assume that a = (a.,-)?:ll is such that a1 = 0,a3 = 1, a3 = 0o. The fibration
knta2 Prt2

Xo — yn+2 _— yn+1 (Xa = (pn+2)-1(a11 Tty aﬂ+1))

realizes 7(X,) as a normal subgroup of #(Vn+2) ((kn+2)«(Xi) = Xin+2). Hence the group
m(Vn+2) acts on T,(C) and let

ta(C) :=To(C) /7 (Vn+2)-

Observe that any m(Yn+2)-conjugate of X; n42 is in the image of m(X,). Hence the re-

striction map
(knt2)* : t"12(C) = t.(C) -
given by f — fir,(x,,z) is defined. We set

’Ta(C) :=im (t"+2(C’) — t,(C)).

Observe that the diagram
kni2)*
r20) = )
lpr 1 pr1
(kd).

t4(C) — 70,1,00(C)
commutes where the map pr; is induced by the inclusion X, — P1(C)\{0,1,00}. The
map (k4). is bijective because Vs = P(C)\{0, 1, 00}. Lemma 6.5 implies that the map pr
is injective. Hence both maps, (kn+2)* and pr; are injective. Hence we have proved the

following result.
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Proposition 6.7. i) The n(Yn+2)-conjugacy class of the monodromy homomorphism
0z, Ynr2 : T1(Vnt2,T) = T(Vny2) is determined by its restriction to m1(Xa,z’).
ii) The w(Yn+2)-conjugacy class of the monodromy homomorphism 8, x, : 71(Xa,z) —

7(X,) is determined by the monodromy homomorphism

02, Pr(C)\{0,1,00} : T1(PT(C)\{0,1,00},2") — m(P(C)\{0,1,00}).

§7. The Drinfeld-Thara Z/5-cycle relation

In this section we show that the element which describes the monodromy of all iterated

integrals on P1(C) \ {0,1, 00} satisfies the Drinfeld-Ihara relation.

7.1. Configuration spaces

If T is a topological space we set T = {(t1,--,tn) € T™ | t; # t; if i # j}. The
group X" acts on 7' by permutations.

Let us set Y, = (P1(C))" and Y, = (PY(C)\{0,1,00})"">. Let a,b,c € P}(C) be

three different points and let @qpc(2) = H -+ £=C. The map ®45 : Y5 — Vs given by

®4,5(T1,22,73,%4,%5) = (Py,22,25(T4)s Pa1,23,25(T5)) induces a bijection
@451 Y5/PGLy(C) — V5.

The action of T5 on Y; induces an action of X5 on V5. The map o : Vs — Vs, o(s,t) =

’(%:—i, %) corresponds to the permutation & of Y; given by

6(x1,x2,13,T4,%5) = (T2,T3,%4,T5,Z1).
Observe that the points A = (‘/52_ 1, ‘/52"' 1) € Ys and B = (—\/2" 1’ —\/g+ 1) c

Vs are fixed by o. }
The one-forms %‘2, E—d_s—r, %t, i—d—tl-, d_g_}%i_t generate A'(Ys) and HAp (s). Let

So0,51,To, T1 and N be their formal duals. The subspace R()s) of H(Ys)®? is generated
by '

[S;, N]+ [T, N] i=0,1;
[Si, Ti] + [Si,N] i=0,1;
[T:, Si] + [Ty, N] i=0,1;
[So,T1] and [S;,To]
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where [A,B]=A®B-B®A.
Let G := P()s) i.e. G is a multiplicative group of the algebra of formal power series
in non-commuting variables Sg, S1,To, T and N divided by the ideal generated by R()s).
The principal fibration

Vs xG — s

we equipped with the integrable connection given by the one form

Wy = (i“ﬁ)®T1+ (_§)®Too

t—1 t t
ds—dt dt ds ds
+( s—t _?)®N+_ -1

where T, = —Tp — T1 — N. We shall write shortly w instead of wy.

7.2. Integration of w
We recall that on P1(C)\{0, 1,00} we have

ool

—_
7.2.0 A_,(2)-a®! =A_,(2) (see Proposition 4.1).
1o loo
The monodromy of A_i(z) is given by:
oo

(around 00) : A_y () — A_y(2) - €T

(around 1) : A_,(z)——>A_.+(z) a{Sl . e=2mTh . (ggol)~t

k]

(see Theorem 4.3). We have £, (a35(To, T1)) = aloo(Too,Tl) where f.(To) = Too, f+(T1) =
T and f(2) = 1/z.
We have assymptotically at oo

~ T H)r=
7.2.1 _i(z) e
ie. lim (A (2)-e (f; %t)T‘”) = 1.
";;? ool |
Let P. = (¢,1+€) € Y5 where € > 0 and small. Let Ap,(z; path) be a horizontal

section of w such that Ap, (P.) = 1. Let v be a path in Y5 from P, to o(P.) = (e, 1/5)

which is constant (= €) on the first coordinate.
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Assuming s = constant (= €) we have
Ar(2) ¥ = A (2).
loo oo

Hence we have assymptotically for positive, small €

7.22 atte ~ IS (74y-4)r)

It follows from 7.2.0, 7.2.1 and 7.2.2 and Proposition 4.1 that for € positive, near 0
| o rle 1+e _

7.2.3 Ap’ (U(Pe);’)’) Noe(fl %)Tw . aioog(Too,Tl) . e(f“’ T‘ELI ‘#)Tx.
e=

Let p= v+ 0(y) +0%(7) + 63(7) + 0*(7). Then Ap, (Pe;p) = 1 because the path p is
contractible in V5. On the other hand

1=Ap,(P.,p) = Apap) (Pe;0*()) - Aos(p.y (0*(Pe); 0% (7))
- Ao2(p) (03 (P); 02 (7)) - Aopy (6% (Pe); (7)) - Ap. (0(Pe); 7).

The formula
(@)x (AP (0(Fe)y 7)) = Aos(p.y (0°F! (Pe), 0* (7))
(see Corollary 1.8) implies that
1=03(L)-03(L)-02(L) - 0u(L)- L
where L = Ap, (q(Pe),'y). Let
L= e(f1l/€ )T a2 (Too, T}) - LU {@T'%)T‘_
It follows from 7.2.3 that

1 o ot(L)-o2(L) - o2(L) - 0u(L) - L.
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14e€ | _ 1 . ‘
The factors ef"" (l - I_%t)Tw (=etm) and e(fl 4. can be placed together

in the product o%(L) - ... - L because Too = 02(T1) commutes with o.(T1) = So and
0+(Teo) = Sy. After the calculations we get

Lt /gt dt Y gt .
Lo (E5-%)- [ F-mese
Repeating the same argument for Si, S;1+T1+ N, T1 and Sp and passing to the limit with
€ we get
04(a)-03(a) - 03(a) - 0u(a) a=1
where a = a2} (T, T1). The last formula we can write in the form
a(So,S1+Th + N) - a(Th,51) - a(S1+ T1 + N, T) - a(S1,50) - a(Teo, T1) = 1

because 0.(S0) = Teo, 04(S1) = S1 + Th + N, 0.(To) = N, 0.(T1) = So and o.(N) =
—So — 51— N.
Let 95 : C2 — Vs be given by ¥s(21, 22, 23, 24) = ®a,5(21, 22, 23, 24,00). Let (Aij)i,;
be formal duals of (22——:-%-21)1,] Then we have
-- ¥s4(A12) = —So—S1—To—T1 — N,
¥si(A13) = S1+T1 + N,
V5.4(A14) = So,
V54(A23) = So+ To + N,
V54(A24) = 51,
¥se(As4) = —So— 51 — N.
Using 91 : C# — Vs given by 91 (22, 23, 24, 25) = $4,5(00, 22, 23, 24, 25) We get
| Y1+(A23) = So+To + N,
V14 (A24) = 51,
Y1.(A2s) = T,
Y14(A34) = —So — 51 — N,
Y14(Ass) = —To —T1 — N,
Y1.(Ags) = N.
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We set Xij := ¥es(Aij) € = 1,5. Then Xy5 = Tp. Hence finally we get a formula
7.24 a(X14, X13) - a(Xas, Xo4) - a(X13, X35) - a(Xo4, X14) - a(X35, X25) = 1.

If we use @2 4 : X2 — Vs given by ®3 4(0, s,1,¢,00) = (s,t) and repeat the calculations
in Y5 we get the same formula as before, but the X;;’s names of Sp, S1, . . . are now different

and the resulting formula is:
7.25 a(X12, X15) - a(X34, X23) - a(X15, X45) - a(X23, X12) - a(X4s5, X34) = 1.

This is exactly the formula which appears in [I2] page 106 if we replace a( ) by a( )~!.

Proposition 7.3. For any permutation o of five letters we have

o a(X,(14), Xo(13)) - a(Xo(25)) Xo(24)) - a(Xo(13)s Xo(35))
- a(Xo(24)s Xo(14)) - &(Xo(35), Xo(25)) = 1,

ll) a(Xa(12)aXa(15)) ) a(Xa(34)1 Xa(23)) : a(Xa'(IS)aXd(45))
| - a(Xo(23)s Xo(12)) * &(Xos)s Xo(3e)) = 1,

where o(ij) = o(i)o ().

Proof. 1t follows from 7.2.4, 7.2.5 and Corollary 1.8.

Remark. The formulas of Proposition 7.3 are in the group P(Ys). If we apply log we get
formulas in the group 7(Ys).
In the sequel we shall work in the group #n(Ys).

We finish this section with a formula from which the Deligne 2 /3-cycle relation can

be obtained. The proof is an imitation of the Deligne proof.
Proposition 7.4. Let a :=loga. In the group n()s) we have
i) (X5, Xo3) (—miXo3)a(Xo3, X35) (—~7iX3s5) 0 X35, Xo5) (—miXa5) = —miX14

and

ii) a(Xzs, X23)(7riX23)a(X23, X35)(7riX35)a(X35, X25)(7riX25) = 7riX14.
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Proof. Let 6(x1,z2,%3,%4,%5) = (Z1,Z5,%2,Z4,Z3). Then the induced map o : V5 — Vs
is given by o(s,t) = (41 : %3,52) and 0%(s,t) = (%, 7). Let P- = (r,1—r) and
P, = (r,14r) where r is positive and small. Let Q_ = (-r,1—r) and Q4 = (-7, 1+ 7).
Let v be a path from P, = (r,1+r) to 6%(Q_) = (r,1/r), which is constant on the first
coordinate. Let 7' be a path from Q4 to o?(P_-) passing through the point (525,14 r)
which is piecewise constant, first on the second coordinate, next on the first coordinate.

Let S be a path [0,7] 3 ¢ — (r,1+ re¥**™) and let S’ be a path [0,7] > ¢ —
(=7,1 4 re*(#*+7). Let us consider the composition p = a(¥') 0 6(S’) 0 6%(7) 0 62(S) 04’ 0
S’ o o(y) 0 a(S) 0 0?(7’) 0 62(S") oy 0 S. If we integrate the form w along this path and
pass to the limit if r — 0 we get the square of the left hand side of the expression i).

Let a be a loop in the opposite clockwise direction around (0,0) in the plane P =
{(s,t) € C? | as + Bt = 0}. The integration of the form w along a gives (—27i)(So + N +
Tp) = (—2mi)Xa3. Inthe model def/PGLz (C) in which the subspace {(z1, 532, z3,T4,Z5) |
z1 = x4} of (P1(C))% degenerates to a point (for example for ®35(0, s, 1,00,t) = (s,t)),
the path p is homotopic to a loop around one of the points (0,0), (1,1) or (co,00) in the
plane passing through the corresponding point (0, 0), (1,1) or (00, 00) (the point (1,1) in
the case of the model ®, 5). Hence the left hand side of the expression i) is also (—2mi)- X4.

The proof of the second equality is similar.

Corollary 7.5. For any permutation o of five letters 1,2,3,4,5 we have formulas i’) and
ii’), which are obtained from formulas i) and ii) by replacing indices 1,2,3,4,5 by o(1),
0(2), 0(3), 0(4), o(5).

Proof. One consider the map of Y5 given by (:)i=1,...5 — (Zo(i))i=1,..,5- The induced

map o : Vs — Vs satisfies 0*w = o,w. This implies formulas i) and ii’).

Remark. We have X3 + Xo5 + X35 = X14 in the Lie algebra Lie(}s). If we set X4 =0
then the formulas i) and ii) reduce to the Deligne formula.
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