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On p-adic Hodge theory for semi-stable families
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Let K be a complete discrete valutation ring of characteristic 0 with perfect residue
field k of characteristic p and let Ok be its ring of integers. Let X be a proper semi-
stable scheme over Og. Under the restriction dim Xx < (p—1)/2, K. Kato has proved
in [Ka3] a conjecture of Fontaine-Jannsen (Conjecture 1.3 below) which compares the
p-adic etale cohomology HZ (X%, Q,) with the log. crystalline cohomology HZ (X).
Here we remove the restriction on the dimension when p > 3. In his proof, the
restriction on the dimension arose from the fact that he proved the isomorphism
between p-adic etale cohomology and syntomic cohomology (with log. poles) only
when the degree of the cohomologies is smaller than p — 1. Hence, in order to remove
the restriction, we only have to prove this isomorphism without the restriction on the
degree. (See Theorem 1.1.) '

In this note, we first state the results in §1, and then, in §2-84, give a sketch of
the proof of the main theorem (Theorem 1.1) in the case where X is a usual proper
smooth scheme over O. See [Tsu] for details.

1. RESULT

Let K, k and Ok be as above, and let X be a semi-stable scheme over Og. Here
semi-stable means that Xg is smooth over K, X is regular, and the special fiber
Y := X ® k is a reduced divisor with normal crossings in X.

Let (S, N) be the scheme Spec O with the log. str. defined by its closed point,
and let M be the log. str. on X defined by its special fiber Y. (In this note, the
log. str. always means the one defined by Fontaine-Illusie. See [Ka2|.) Then the
canonical morphism (X, M) — (S, N) is smooth.

We define the syntomic cohomology (with log. poles) H™(X, Sg,(r)5x) as follows.
First assume that we are given globally a closed immersion z: (X, M) — (Z,Mz)
with (Z, Mz) log. smooth over W and a compatible system of liftings of frobenius
{Fz,: (Z,,M3z,) — (Z,,Mz,)}. Here W is a ring of Witt vectors with coefficients
in k, and the subscript n denotes the mod p" reduction. Describe by (D, Mp,_) the
PD-envelope of i ® Z/p"Z and by Jp, the PD-ideal of Op,. Define the complex

87(r)x.z on Yo to be the mapping fiber of the morphism of complexes

P —¢: I5. ® Qg w, (log Mz,) — Op, ® O,y (log M3,),

where ¢ denotes the morphism induced by Fz,. Up to canonical quasi-isomorphisms,
this complex is independent of the choice of i and {Fz_}.
For a general X, we define

Sy (r)x € D¥ (Yo, Z/p"Z)
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by “gluing” S (r)x z, and
S;(T)Y S D+(?et; Z/an)
by taking “inductive limit” of S;'(r) for (X, M) x(s,n) (Spec Ok, N'), where K’ runs

through all finite sub-extensions of K in an algebraic closure K of K and N’ is the
log. str. defined by the closed point.

Finally we define the cohomology H™(X, Sg,(r)x) with canonical action of the
Galois group Gk = Gal (K /K) by

(im 7 (Y, 87 (r)x) ® Qp.
In the following, we assume that X is proper over Ok.

Theorem 1.1. If p > 3, we have a canonical Galois equivariant isomorphism
H™(X, Sg,(r)x) & Hi (Xx, Qy(r))
forr>m >0.

Remark 1.2. This has been already proved by K. Kato in [Ka3]if r<p—1.

Let H(X) be the Hyodo-Kato cohomology of (X, M), which is a Kp-vector space
([H2], [HK]). Here Kj is a field of fractions of W. As additional structures, it has
a semi-linear automorphism ¢ called “frobenius” and a nilpotent endomorphism N
called “monodromy operator” which satisfy the relation;

ppN = No.

O. Hyodo and K. Kato proved that H7(X) ®k, K is isomorphic to Hik(Xx/K),
and hence it admits a Hodge filtration. Let B, be the ring defined by J.-M. Fontaine
[Fo3], with the action of the Galois group G, the frobenius ¢, the monodromy
operator N and the filtration Fil after @, K.

Conjecture 1.3 (Fontaine-Jannsen). There is a canonical isomorphism
By, ®k, Hyg (X) = By QQ, HE (X%, Qp)
compatible with the actions of Galois group G, v, N, and the filtrations after Qg K.

Remark 1.4. By this isomorphism, these two cohomologies with their additional
structures can be recovered from each other in the following manner;

H (X7, Qp) = Fil’(By ®k, Hyg (X))V=041
HE(X) = (B <08 H3 (X%, Qp))GK°
By the argument of K. Kato, we obtain the following theorem from Theorem 1.1.

Theorem 1.5. The conjecture of Fontaine-Jannsen is true if p > 3.

Remark 1.6. This has been proved by K. Kato in [Ka3] if dim Xx < (p —1)/2.
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Next we consider the open case. Let X be as above and let D be a reduced divisor
with normal crossings on X which satisfies the following two conditions:

(1) If D =%; D; with D; a prime divisor for each ¢, the scheme D, with the inverse
image log. str. of M is log. smooth over (S, N) for each .

(2) Etale locally on X, there is an etale morphism

X — Spec Ok[Th,- -+, TryS1,- -+, Ss)/(Ty- -+ T, — )

such that D = {S;--- S, = 0}.
Then we can define syntomic cohomology

H™(X, Sq,(r)(log D)x) (resp. H™(X,Sg,(r)(—log D)x)

by adding “log. poles along D” to S;’(r)x (resp. by tensoring “the ideal defining D”
to S;’(r)(log D)%). Let U be the complement of D in X.

Theorem 1.7. If p > 3, there are canonical Galois equivariant isomorphisms

H™(X, Sg,(r)(log D)x) = HZ (Ug, Q(r))
H™(X, So,(r)(—log D)x) = HZ (Uz, Qy(r))
forr>m > 0.

2. PRELIMINARIES ON A.,ys

In this section, we review the definition of the ring Ay and prove some properties
(Corollary 2.3 and 2.5) which we need in the next section. See [Fol], [Fo2], [Fo3].

Let K, k, Ok, K, and Gg be as in the previous section. Let O3 be the ring of
integers of K, and define the ring R to be the projective limit of

Og/pOg ¥ Og/pOg ¥ Og/pOg £ -,
where frob. denotes the absolute frobenius of Oz/pOz. Consider the ring of Witt-
vectors W(R) with coefficients in R. Define the ring homomorphism 6: W(R) — O¢
by

m-—1

O(u) = lim (dom?” +putm1  +-:+ P o)
U = (UO,Ul,Uz., o ) € W(R)7 Up = (un,Oaun,l o ) € R’ Un,m € OT\'_/pOT\—

Here C is the completion of K, O is its ring of integers, and ~ denotes a lifting of
an element of Ox/pOx to Ox. The homomorphism 6 is surjective.

Put J = Ker 6. Let Dj(W(R)) be the PD-envelope of J compatible with the
unique PD-structure on pZ,, and let J be its PD-ideal. Define the ring Acyys to be
the p-adic completion of Dy(W(R)). The homomorphism 6, the frobenius of W(R),
and the action of the Galois group G extend to Dj(W(R)) and Agpys.

Choose elements v, € O (n > 0) such that vy = —p and v}, = v, (n >0) and
define the elements —p € R and { € W(R) by —p = (v» mod p)n>0 and { = p+[—p)].

Here [ | : R — W(R) denotes the Teichmiiller character. Then J is generated by ¢&.
The sequences (p, £) and (¢, p) form regular sequences in W(R), from which it follows
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that D;(W(R)) is isomorphic to the W(R)-sub-algebra of W(R)[1/p] generated by
¢™/m! (m > 1) and the r-th divided-power J' is the ideal generated by €™ /m! (m >
r).

Define the descending filtration Fil” (r € Z) of W(R) and D;(W(R)) by
Fi'W(R)=J" (ifr >0), W(R) (if r <0)
and ’

Fil Dy(W(R)) = 77 (it r > 0), D;(W(R)) (if r < 0).

Then we have the following isomorphisms.
(2.1) gi® W(R) = gi" W(R); aa-& (r>0)
(2.2) grl® W(R) = gr" Dyj(W(R)); a v~ a- €M (r >0)

By the isomorphism (2.2), gr” D;(W (R)) is flat over Z,. Hence we can define the
filtration of A.ys by the p-adic completion of that of D;(W(R)). We have an iso-
morphism ‘

(2.3) g’ W(R) 5 gr" Aays; a > a- €1 (r>0).

The canonical morphism W(R) — Agys is injective. We regard the ring W(R) as a
subring of A.ys. The ring W(R) is closed in A.ys with respect to the p-adic topology
of Acrys and we have Fil' W(R) = Fil" Aqys N W(R) (r > 0).

Choose elements ¢, (n > 0) of O such that eg =1, el = ¢, and &; # 1. Put
e = (¢, mod p)u>0 € R and 7w, = [e] — 1 € Fil' W(R).
Define the filtration ITTW (R) of W(R) by

I"W(R) = {a € W(R)| ¢"(a) € Fil'W(R) for all n > 0}
Proposition 2.1 ([Fo3] 5.1.4). The ideal I"NW (R) is generated by ..

We define the filtration 1 [T]Am,s in the same way. Then I[T]Acrys (r>1)is a
PD-ideal of A.y,. Let ¢ be the element of Fil' Ay, defined by

t = log([e]) = Z (=)™ Ym — 1)!7r£7n]

m>1

We have o(t) = x(o)t (0 € Gk), ¢(t) =p-t, and t*7' € pAays. Here x : Gx — Z
is the cyclotomic character. For n > 0, we define "} € Ay, by

i = gr()(p=1 ) p)la()]
where n = (p—1)g(n) +r(n), 0 <r(n) <p-—1.
Proposition 2.2 ([Fo3] 5.3.1). We have

I[T]Acrys - {Z ast{s}

s>T

as € W(R), a, p-adically converges to 0}

forr >0.



Corollary 2.3. We have the following isomorphism for r > 0.
W(R)/TMW(R) = IMAqye/ " A yg; a s a - ¢,

Proof. The surjectivity follows from the proposition and the injectivity follows from
the facts that at{™} is contained in Fil"*' A, if and only if a is contained in Fil* Ay,
for a € Auys and Fil'Agys N W(R) = Fill' W(R). O

As 7, is contained in Fil'W(R),
[e]* =) ala—1)---(a—m+ D)7l™ (a€Z,)
m>0

converges p-adically in Aerys and contained in W(R). Define the element ¢ and ¢’ of
W(R) by q = Z(ep,,_lu{o}czp[e]c and ¢’ = p~!(g). The ideal Fil'W(R) is generated
by ¢'.

Define the descending filtration F'ilJ Acrys of Acrys by

Fill Acys = {a € Fil" Acrys| p(a) € P Acrys}-

Theorem 2.4 ([Fo3] 5.3.6). We have an ezact sequence

A
0 — Zt"™ — Fill Aryy —5 Acrys — 0

forr > 0.

Corollary 2.5. Let r, s be non-negative integers. Under the same assumption as
Theorem 2.4, we have an isomorphism

W(R) -, IB1A N Fill Acrys 0 an o
e (MW (R)) — I+UAGy N Fill Acrys’ ’
if s <r, and an isomorphism
W(R) 10 Filhy _ PAe
IMW(R) I+ Agys N Fill Acrys LV W

ifs>r.

Proof. The latter follows from Proposition 2.2 and Corollary 2.3. We will prove the
former. If (1—¢/p")(a) is contained in I[s]Acrys for 0 < s < rand a € Fil} Ayys, then
e™(a) — o™ Y a)/p" € Fil*Auys and a € Fil*Agys. By induction on m, ¢™(a) €
Fil’Aeys for all m > 0, that is, a € 1 [S]Acrys. Hence by the theorem, we obtain the
following exact sequence.

1-%
0 — Ztt — IE1A 0 N Fill Ay —5 T¥1 Ay — 0

Taking a quotient of these exact sequences for s and s + 1, we obtain the following
isomorphism for s < r.
I[S]AcrysnF'il;Acrys [and I[S]Acrys

T T A FillAceys | g T 0 Acrys”
-2
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Put mo = ¢ — p € W(R). Since 7 = q"p = pl¢'”! = 0 mod pAcrys, We have
S‘D(QIT—St{S}) — pr(l + %)r.—-st{s} € prAcrys-

Hence ¢"5tls} ¢ F iy Acys N T [S]Acrys As Z;-f- is contained in [ [1]Acrys (Consider the
1mage of ¢"(m) under the morphism ), we have '
14 (q/r st{s}) — t{s} mod I[s+1]Acrys
pr

Therefore we obtain the following commutative dlagram The bottom horizontal
arrow is defined by a — ¢""*a — ¢(a).

I AcrysNFill Acrys ~ el Aceys
T+ Ay sNFill Acrys 1— P I+ A, o
PT
qlr—st{s}]‘ ITCoro]la.ry 2.3

W(R) —— W(R)/INW (R)
Hence it suffices to prove the following lemma. O (

Lemma 2.6. Forn > 1, ¢" - o }(IMW(R)) is contained in INW (R) and the mor-
phism ‘
W (R)/o™ (IMW(R)) — W(R)/ W (R); a — ¢"a ~ ¢(a)

is an isomorphism.

Proof. As ¢ € Fil!'W(R), the first statement is trivial. If ¢(a) — ¢™a is contained
in INW (R) for a € W(R), ¢™(a) — o™ (¢"™)¢™ () is contained in Fil'W(R) for
all m > 1. By induction on m, it follows that ¢™(a) is contained in Fil'W(R) for
m > 1, that is, ¢(a) € IMW(R). Hence this homomorphism is injective. As for the
surjectivity, it is enough to show that the homomorphism R — R; a — ¢"a — a” is
surjective since W(R) is p-adically complete and separated. This is easy. O

3. INVARIANCE UNDER TATE TWIST OF H!(S.(r)x)

Let X be a quasi-compact and separated scheme which is smooth over O.

Choose ¢, € O as in §2. We define an element ¢ of I'(Y, H(Sy'(1)5)) as follows.
Let L be a finite sub-extension of K/K such that e, € L, and let X = X Qo OL-
If we are given globally a closed immersion X7 < Z with Z} smooth over W and a
compatible system of liftings of frobenius {Fy, ,: Zpn — Z1,}, then we can define
an element t of I'(Yz, H*(S(1)x,.z,)) by

log( - 1) € F(YL,JDL n,)«p:p

where ~ denotes a lifting of an element of Ox, , to Op, . For general X, we can glue
this element and obtain an element ¢ of F(YL, 'HO(S"'(l) x,))- Define an element ¢ of
(Y, H°(S;(1)%)) by the image of this element. This is independent of the choice of
L.
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By the product structure of S’ (r)x (cf. [Kal] 1§2), we can define a map
(3.1) HI(S (9)x) — HU(S(r)x); a— 1777 a
for0< g <.

Theorem 3.1. For 0 < g <, there exists a positive integer N which depends only
on r and q such that the kernel and the cokernel of the morphism (3.1) are killed by
pN for everyn > 1.

Remark 3.2. When 0 < ¢ <r < p—1, K. Kato has proved in [Kal] that
H(Sn(q)x) — H(Salr)x); a1 - a

is an isomorphism. See [Kal] or the beginning of §4 for the definition of S,(r).

As the question is etale local on X, we may assume that X is isomorphic to the
base change of a smooth scheme over W. Hence we may assume that O = W.
Furthermore we may assume that k is algebraically closed (hence Y = Y'), and there
exists a lifting of frobenius Fx : X — X. Choose FYy.

Lemma 3.3 ([Kal] I Lemma (4.6)). The object S;(r)x is isomorphic to the map-
ping fiber of
pT — ® d(p: Fiercrys ®W an/Wn e Acrys ®W Q:Xn/Wn’

where dp is the morphism induced by Fx. By this isomorphism, the element t €
[(Y,H°(S7(1)%)) corresponds to the element given byt®1 € Fil' Ays @w T'(Y, Ox,,)

Let Fil) Acrys and I[”]Ac,ryS be as in §2. Let C,(r) be the mapping fiber of
1 - ‘101”: FZ.l;“'Acrys ®W QXn/Wn —_— Acrys ®W Q;Xn/Wn,

where ¢, is the morphism whose degree ¢-part is 17‘*”_—(1 ® /\qd—;ﬁ. Consider the filtration

(I[s] Acrys N Fill™ Agys) ®w Ux, yw, C Fill™ Acrys Ow Qx,yw,
and
I[s]Acrys Ow QXn/Wn C Agys Qw Q}("/Wn.
Then the morphism ¢, preserves this filtration and we can define a filtration I"C,(r)

of Cy(r).

Lemma 3.4. Let r, v’ and q be non-negative integers such that r’' > r.

(1) Ho(gr; Cu(r)) =0 if s £ —q.
(2) If r — ¢ > 0, the morphism

tlr!=r}

H(gr ™ Ca(r)) == Mo (gr] * Culr"))
factors into
H(gry Cu(r)) = Ho(gr7 " Cu(r')) = Ho(gr] ~* Cu(r)),

where a € Z, is defined by tI"~"} .t = o . {r'=},
(3) HQ(ISCTL(T')) =0 ZfS >r— q+2'
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Proof. Put IW(R) = IMW(R) and I'W(R) = ¢ '(IMW(R)) (§2) to simplify the
notation. By Corollary 2.3 and 2.5, we get the following isomorphisms.

W(R) .
IW(R) w Q?X,,/Wﬂ - ng(ACJ‘yS ®W. Qan/Wn) (S 2 0)

w i 8w

W (k) Ry
W (R Qw Q?Xn/Wn = gty (Fily™ Acys Ow Q% yw,) (0<s<r—gq)

W qlr—q—st{s} Cw

W(R o
II/V((R)) Qw Qg(n/Wn — ng(Fle chrys Qw Qg(n/wn) (3 >r— q)

w s 1} w
Hence the morphism

1~ gri(Fil,” Acys ®w O, yw,) — 8r7(Acys @w Qx/w,)

for s > 0 is described as follows. (See the proof of Corollary 2.5)

pd %®Qr32Lﬁ%®ﬂrleﬁ®ﬂrs
lq’z—wcb/\r‘w% lq'—w@l\“s_l% Jl—ap@/\r-sipﬂ
(3.2) __;l_) I%lvi(%:% ® Q=2 94 %{(I_;% ® Qr-s-1 _4 'IVT‘//V%)T Q Qs
—_— _I_Vé(_ﬁt)j Qs 4, IEW(% Q-2 4,
2, TVI‘}’VJ(I_;%)_ ® Qr-s+1 _4 TV‘/‘%(_II% ® Qr—s+2 _9.,

(2) easily follows from this.
Proof of (1): We may assume that s > 0. As we have a short exact sequence

0 — gry Cn(r) AN gr7 Cpya(r) — gr; Ci(r) — 0,

we can reduce to the case n = 1 by induction on n. As ¢(¢') = p mod Fil'W(R)
and ¢’ € Fil'W(R), an element a of W(R) is contained in I'W(R) if and only if ¢'a
is in IW(R) i.e. the morphism ¢: W(R)/I'W(R) - W(R)/IW(R) is injective. As
¢ —p € 'W(R), ¢* = pq’ mod IW(R). On the other hand, we have an isomorphism

W(R)/[I'W(R) @w D, . = o(W(R)[IW (R)) @w Ok, ;1

(3:3) “SHUW(R)/TW (R) ®w D, 1),
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which coincides with ¢ ® /\qip‘e, and it is easy to see that the homomorphism

dp
1-—p@N— > : ZY(W(R)[IW(R) @w Q, /) — H (W (R)/IW(R) ®w Qx, ;1)
is surjective. Hence, from (3.2), we obtain
| H(gr; Cu(r)) =0 -
1fs<r—q 2ors>r—q+1 (q<r——s—2orq>r-—3+1) and

W(R 7= "—p‘e o W(R i

ifs=r—q—1(¢g=r—s—1). It remains to prove the injectivity of ¢ — ¢ ® /\‘71“e
By W(R)/pW(R) = R and Proposition 2.1, the projection to the second component
R — O /pOx; (un)n>o0 + u; gives isomorphisms

W(R)/IW(R) ® Z/pZ = Ox/(e1 — 1)0%
W(R)/I'W(R) ® Z/pZ = Ox/(e2 — 1)Ox-

Hence the morphism in problem is described as follows. Here q denotes the image
of ¢’ under the above homomorphisms.

(3.4)
- d .
—0® Aq—p‘fz Z(Og/(e2 — 1) O ® Uy, i) — HI(Ox/(e1 — 1)0x ® R, 1)

H (g7 7 Cy(r)) = Ker {Z“"(

Define the filtrations of RHS by the images of LHS in the following commutative
diagram.

(;2450%) /(62— 1)0g® 0%, ),  —  Og/(e2—1)0x @ Q% i

en42—1 -
rlwo/\qd—pﬁ zlwof\qd—,?
H((;25505)/(e1 — 1)0g @ Uy, ) — HU(Og/(e1 — 1)0g ® Uy, /i)

The bijectivity of the vertical arrows are verified in the same way as (3.3), and the
two horizontal arrows are injective. We give on Z(Og/(e2 — 1)0x ® Q%, ;) the

filtration induced by that of Og/(e; — 1)Ox ® Q% /. Since ¢;O0x/(e1 — 1)0x =
2=20%/(e1 — 1)Og, the morphism (3.4) preserves these filtrations and its gr”

eo—
g (Z2%(Ox/(e2 — 1)Og @w Qx, /i)
€g—1 -1 '
Ox O+ Q!
s —1 )/(€n+3 1 %) Ow U, i
— QA q__‘ﬂ 1.— 1 1 — 1
(= Or)/(

Entl — 1 Ent2 —

1 Ox) ®w Qx, k)
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is injective. Hence it is enough to show

(3.5) NZ2 - (Ox 8w Ox) = (&2~ 1)(Ox &w Ox).

n €n —

Since X ®o, Or is normal for any finite sub-extension L of K /K, we can show
(3.5), using the discrete valuations of primes of height 1 containing p.
Proof of (3): As I AqysNFill Acrys = I Acrys and o(I¥) Acrys) C pAarys if s > 741,

the morphism
1=, 1 (1P Acrys N Fill ™ Acrys) @w %, — 1 Acrys Ow Q%
is an isomorphism if s > r — ¢+ 1. Hence HY(IFIC,(r)) =0if s >r—qg+2. O

Proof of Theorem 3.1. By Lemma 3.3 and p"(Ful” Aerys/ Fil] Arys) = 0, it is enough
to show that for 0 < ¢ < r, there exists an integer N’ depending only on r and ¢
such that the kernel and the cokernel of the morphism

£ H(Ca(g) — HI(Ca(r))
is killed by p™'. From Lemma 3.4 (1) and (3), we obtain the isomorphism

HI(Cu(r)) = Hi(gry " Ca(r))
for r > ¢ > 0. Hence the claim follows from Lemma 3.4 (2). O

4. PROOF OF THEOREM 1.1 IN THE GOOD REDUCTION CASE

In this section X is a smooth scheme over Ok. First assume that we are given
globally a closed immersion X < Z into a smooth scheme Z over W and a compatible
system of liftings of frobenius {Fz,: Z, — Z,}. Further assume that these satisfy
the following condition. ’

(*) There exist Ty,--- ,Ty € I'(Z,0%) such that dT; form a basis of Qyw and-
Fg (T;) =TF for n > 1.

In this situation, we define the complex S (r)x,z for r > 0, which coincides with
Sn(r)x z defined in [Kal] if r < p, as follows. Using the fact that X is syntomic over
W, we can verify that the following sequence is exact. (See [Kal] I Lemma (1.3).)

g oy g gkl .
- Define the subsheaf J g]' of Op, by

T5 = {a € B len,(a) € 7O, ).
Here ¢p,: Op, — Op, is the homomorphism induced by F7z,. Then Jp [T]' L ®L[p"Z
(s > r) is independent of s, and we describe this sheaf by J, [’ ] . Using the above exact
sequence, we can verify that JDn is flat over W,,. Note that Jp [T] = Jp [T]' if r < p. We
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)

can deﬁne a ¢p,-linear map ¢,: Jj| — Op, by the followmg commutative diagram

(cf. [Kal] I Corollary (1.5)).

©
JDn+v- OD"+T

| I’
Jl[;l' . Op,.

From the condition (*), it follows that the subsheaves

J[Tn—q]l ®0,, Qan/Wn C Op, R0y, Qan/Wn (re)

give a sub-complex of Op, ®o,, Oy, /w,. Put

J[T; ]l ® QZ"/WH (Jl[;n-i-]: ® Q'Zn-(-r/Wn-#r) ® Z/an
Define the complex S/ (r)x 7 to be the mapping fiber of

L— Qg J[ ]®QZ W = O, @ Qg 1w, -

Here ¢ is the morphism induced by the canonical morphism

Dn+r ® QZn+r/Wn+r - OD ® QZn/Wn

and ¢, is the morphism whose degree ¢-part is
Gr_yg @/\qd; TV @QY e — Op, O 4.
If < p, the complex S;,(r)x,z coincides with S(r)x,z defined in [Kal].
We can define the product structure and the symbol map
(7" 5.0% )" — HU(S,(9)x.2)

in the same way as [Kal]. Here ¢ (resp. j) is the morphism ¥ = X @ k — X
(resp. Xk < X). For an integer r > 0, we define Z/p"Z(r) by Z/p"Z(r) :=
(pqq »(1)) @ Z/p*Z, where ¢ is the maximum integer < r/(p —1).

Proposition 4.1. There exists a canonical morphism
(4.1) Su(r)xz — ¢ Ry.L[p"Z(r)
in DY(Y,Z[p"Z) compatible with the product structures and the symbol maps.
Here the symbol map
(i"5.0%, )% — " R'j.ZL[p"Z(q)
is defined by 'the map ’
"5 O%, —, "R JZ[p"Z(1)
induced by the Kummer sequence and cup products. We do not give a proof of this
proposition here. See [Tsu].
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By the same argument as [Ku], we can prove the following theorem, using the

result of Bloch-Kato [BK].

Theorem 4.2. Let q be an integer > 0 and let m be the integer vp(rlp”), where r is
the mazimum integer < q/(p — 1). Then for any n > m, if the primitive p"-th roots
of unity are contained in Ok and p > 3, the morphism

HI(S,(0)x,z) — " RIZ[p"Z(q)'
induced by (4.1) factors into
HY(S(Dxz) —— CRULL[PL(q)

J [

HUS, m(@)xz) — v RYLL[P"L(g),

where the left vertical map is surjective and the right one is injective. Furthermore
the bottom horizontal morphism is an isomorphism

Remark 4.3. Theorem 4.2 has already been proved when ¢ < p— 2 in [Ku]. See also
[Kal].

We have a map
(4.2) Sy (r)xz — Su(r)x .z

defined by the multiplication by p on Jg:'] ® @ and the identity on Op, ® .
Combining this with the morphism (4.1), we obtain

(4.3) Sy (r)x,z — " RjL[p"ZL(r)'.

Now we consider a general X and do not assume the global existence of X «— Z

etc. By “gluing together” the locally defined morphism (4.3) and taking “inductive
limit”, we can construct a morphism

(4.4) Sy (ryx — U RIZ[p"L(r)
in D¥(Y,Z/p"Z), where ¢ (resp. j) is the morphism Y « X = X ® O (resp.
X7 — X). If X is proper over O, we obtain a morphism
m(y m 1/p" m

(4.5) H™(X, So,(r)) — Het(Xz, Qp(r)) = Hit(Xg, Qu(r)),
compatible with the product structures, where the first morphism is the one induced
by (4.4).
Proof of Theorem 1.1. As the morphism (4.2) is a quasi-isomorphism up to bounded
torsions, it follows from Theorem 4.2 and Theorem 3.1 that the morphism

HISy (r)x) — @ R, Z/p"Z(r)

induced by (4.4) is an isomorphism up to bounded torsions if » > ¢ > 0. Then it
follows that the morphism (4.5) is an isomorphism. [
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