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ABSTRACT. Let $X$ be an open smooth geometrically connected curve over a field $k\subset \mathbb{C}$ ,
and $B_{0,n}X$ the configuration space of unordered $n$ points on $X$ . The main puipose of
this manuscript is to announce that the Gal $\langle\overline{k}/k)$-action on the profinite fundamental
group of $B_{0,n}X$ can be completely described in terms of only the action on the profinite
fundamental group of $X$ and that of $\mathbb{P}^{1}-\{0,1, \infty\}$ . This is a generalization of the joint
work with Y.Ihara[20], which treats the case $X=A^{1}$ .

The description tightly relates the Gal$(\overline{k}/k)$ -actions for a positive genus cmve md
for $\mathbb{P}^{1}-\{0,1, \infty\}$ . Using this, we prove a generalization of Belyi’s Injectivity Theorem:
for a number field $k$ , Gal $(\overline{k}/k)arrow$ Out$\pi_{1}^{a1g}(X\otimes_{k}\overline{k})$ is injective if $X$ is an affine mrve
over $k$ with non-abelian fimdamental group.

Also, we study field towers over $\mathbb{Q}$ introduced by Takayuh Oda, and prove some part
of his conjectuies.

Introduction

Throughout this manuscript, $k\subset \mathbb{C}$ denotes a subfield of the complex number field $\mathbb{C}$ ,
and $\overline{k}$ denotes the algebraic closure of $k$ in C. For a smooth geometrically irreducible variety
$V$ defined over $k$ , we denote by $\overline{V}$ the variety $V\otimes_{k}\overline{k}$ , and denote by $K(V)$ the function
field of $V$ . Let $x$ be a scheme-theoretic point of $V$ (not necessarily closed), and let te be a
geometric point on $x$ . Then, there is a short exact sequence of profinite groups

(0.1) $1arrow\pi_{1}^{alg}(\overline{V},\overline{x})arrow\pi_{1}^{alg}(V,\overline{x})arrow Ga1(\overline{k}/k)arrow 1$.

By the Comparison Theorem, the left group is (canonically up to an inner automorphism)
isomorphic to the profinite completion $\pi V=\hat{\pi}(V)$ of the topological fundamental group

(0.2) $\pi V=\pi(V):=\pi_{1}(V(\mathbb{C}), *)$

(V(C) is the set of C-rational points of $V$ with C-topology, and $*$ is any base point). This
exact sequence induces the outer Galois representation

$\rho_{out}:Gal(\overline{k}/k)arrow Out\hat{\pi}V:=Aut\hat{\pi}V/Inn\hat{\pi}V$

as follows. We define the image of $\gamma\in\hat{\pi}V$ by $\sigma\in$ Gal$(\overline{k}/k)$ to be $\tilde{\sigma}\gamma\tilde{\sigma}^{-1}$ , where $\tilde{\sigma}$ is any
lift of $\sigma$ to the middle group of the exact sequence (0.1). The ambiguity of $\tilde{\sigma}$ is absorbed in
$Inn\hat{\pi}V$ , and this provides a well-defined element of $Out\hat{\pi}V$ .

Let $\pi^{l}V$ denote the $pr(\succ l$ completion of $\pi V$ for a fixed prime $l$ . Then, the quotient
representation

$Ga1(\overline{k}/k)arrow$ Out $\hat{\pi}Varrow$ Out $\pi^{l}V$

is called the pro-l outer Galois representation.
There are three results in this manuscript. The first result (Theorem 1.1) is a generaliza-

tion of [20]: for any open smooth geometrically connected curve $X$ over $k$ with a k-rational
puncture specified, there exists a lifting of the outer Galois representation to a true action

$Ga1(\overline{k}/k)arrow Aut\hat{\pi}B_{0,n}X$
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which can be completely described by the data for $\mathbb{P}^{1}-\{0,1, \infty\}$-case and a specified
lifting Gal $(\overline{k}/k)arrow Aut\hat{\pi}X$ . Here $B_{0,n}X$ is the configuration space of distinct unordered $n$

points on $X$ . This space is the quotient space of $F_{0,n}X$ by the symmetric group $S_{n}$ , where
$F_{0,n}X=X^{n}-\Delta$ is the configuration space of distinct ordered $n$ points on $X$ .

The theorem asserts that there are nontrivial group homomorphisms

$\hat{\pi}F_{0,n}(A^{1}-0)arrow\hat{\pi}F_{0,n}X$ , $\hat{\pi}Xarrow\hat{\pi}F_{0,n}X$

compatible with Galois actions. The union of the images of these two homomorphisms
generate whole $\hat{\pi}F_{0,n}X$ . These group homomorphisms do not come from any algebraic ho-
momorphisms unless $X$ has genus zero. (See Remark 1.2 for a relation to the Grothendieck)$s$

conjecture[ll]. $)$

The description of Galois action on $\hat{\pi}B_{0,n}X$ tightly relates the action on $\hat{\pi}X$ with that on
$\hat{\pi}(\mathbb{P}^{1}-\{0,1,\infty\})$ . This tight relation comes from the topology of braids. In $\pi B_{0,n}X$ , there
are intertwining topological relations between $\pi X$ and $\pi(\mathbb{P}^{1}-\{0,1, \infty\})$ . For example, the
commutator product of some two elements in $\pi B_{0,n}X$ coming from the former group lies in
the latter group. (See the relations in Proposition 2.1 and the figure above them.) From this,
roughly speaking, we see that if an element of Gal$(\overline{k}/k)$ acts trivially on $\hat{\pi}X$ , then so does it
on $\hat{\pi}(\mathbb{P}^{1}-\{0,1, \infty\})$ . As a result, we can prove a conjecture generalizing $Bely\check{i}$ ’s Injectivity
(see e.g. [44]): let $X$ be an affine curve over a number field $k$ . If $\pi X$ is nonabelian, then
the outer Galois representation Gal $(\overline{k}/k)arrow$ Out $\hat{\pi}X$ is injective (Theorem 2.1). This is the
second result of this manuscript. A pro-l analogue is also studied (cf. Theorem 2.2).

The third result is about Oda’s field towers. In \S 3, a Lie version of the above arguments
shows a part of his conjecture (Theorem 3.2):

$\mathbb{Q}[g, r, l;m]\supset \mathbb{Q}[0,3, l;m]$ for $r\geq 1,2-2g-r<0$ .

The field $\mathbb{Q}[g, r,1;m]$ is, roughly speaking) the smallest field of definition of the moduli stack
of $r$ punctured genus $g$ curves with pro-l level $m$ structure on $\pi^{l}X$ . Oda conjectured that
this would be independent of $g\geq 2$ and $r\geq 0$ , and would coincide with $Iharas$) tower. From
this conjecture, Oda predicted the existence of some obstructions to the surjectivity of the
Johnson-Morita homomorphism other than the Morita trace[26].

Note that this inclusion has already been proved by H.Nakamura[30] in a different manner
using [32]. A part of his proof was stimulated by a result in this manuscript.

In \S 4, we prove a special case of Oda’s conjecture on the kemel (Theorem 4.1):

$\mathbb{Q}[g, r, l;\infty]=\mathbb{Q}[0,3, l;\infty]$ for $r\geq 1,2-2g-r<0,$ $l-1|2g$ .

In particular, we show that for $l=2,3_{1}7,$ $r\geq 1,2-2g-r<0$ , the Oda’s conjecture on
the kernel is true for any genus. The caae $l=7$ uses a result of Nakamura[30].

In the rest, we have no room to state the complete proofs. Please see [25] for details.

1. Description of Galois action on Braid groups

1.0. Notation. We denote by $k$ a subfield of C. A variety (or a curve) over $k$ is a
smooth and geometrically connected scheme (of dimension 1, resp.) of finite type over $k$ ,
which may not be proper, unless otherwise specified.

For a variety $V$ over $k$ , we denote by $\pi V$ or $\pi(V)$ the topological fundamental group
$\pi_{1}(V(\mathbb{C}), *)$ , with $*$ an arbitrary base point. Its profinite completion is denoted by

$\hat{\pi}V=\hat{\pi}(V)=\overline{\pi_{1}}(V(\mathbb{C}), *)$

and pro-l completion by
$\pi^{l}V=\pi^{l}(V):=\pi_{1}^{l}(V(\mathbb{C}), *)$

for a prime number $l$ .
For $g,$ $r\geq 0$ , we call $X$ a $(g, r)$ -curve over $k$ if $X$ is a curve over $k$ whose smooth

compactification $X^{*}$ has genus $g$ and the number of k-rational points on $X^{*}$ but not on $X$
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is $r$ . We call such a point $a$ puncture of $X$ . The term k-rational puncture means that the
puncture is a k-rational point on $X^{*}$ .

Following to Birman[6], we denote by $F_{0,n}X$ the configuration space of distinct ordered
$n$ points on $X$ . To be precise,

$F_{0,n}X=X^{n}- \bigcup_{1\leq i<j\leq n}\Delta_{\dot{*}j}$

where
$\Delta_{ij}arrow\succ X^{n}$

is the divisor $\{(x_{1}, \ldots, x_{n})\in X^{n}|x_{i}=x_{j}\}$ of $X^{n}$ . Thus, $F_{0,n}X$ is an n-dimensional variety
over $k$ , and $F_{0,n}X(\mathbb{C})$ is the configuration space defined in [6]. We call $\pi F_{0,n}X$ the pure
braid group of n-strings on $X(\mathbb{C})$ . We also define

$\pi F_{m,n}X$

as the fundamental group of $F_{0,n}(X(\mathbb{C})-S)$ , where $S=\{b_{1}, \ldots, b_{m}\}$ is a set of $m$ points
on $X(\mathbb{C})$ . Note that the abstract group $\pi F_{m,n}X$ is independent of the choice of $S$ , but we
don’t define an algebraic variety like $F_{m,n}X$ . Note also that $\pi F_{m,1}X$ is isomorphic to the
fundamental group of the open curve $X(\mathbb{C})-\{b_{1}, \ldots, b_{m}\}$ .

If $X$ is not $\mathbb{P}^{1}$ , then we have a short exact sequence (e.g.[6])

(1.1) $1arrow\pi F_{n-1,1}Xarrow\pi F_{0,n}Xarrow\pi F_{0,n-1}Xarrow 1$ .

The right morphism comes from the fiber map $F_{0,n}Xarrow F_{0,n-1}X$ obtained by forgetting
$\vee|$

the i-th moving point, and the left morphism comes from a fiber of this map at $(b_{1}, \ldots, b_{n})\in$

$F_{0,n-1}X$ . The sequence obtained by its profinite completion (also pro-l completion, Lie-
algebraization) can be proved to be exact.

The symmetric group $S_{n}$ acts on $F_{0,n}X$ without fixed points, so we may consider the
quotient variety

$B_{0,n}X:=F_{0,n}X/S_{n}$ .

Thus, $B_{0,n}X$ is the configuration space of distinct unordered $n$ points on $X$ . Its topological
fundamental group is usually called the braid group of $nstr\tau ngs$ on $X(\mathbb{C})$ .

For a positive real number $\epsilon$ , let $(0, \epsilon)$ denote the open interval of the real line $\mathbb{R}$ in C.

This figure means that we take a domain on $X^{*}(\mathbb{C})$ homeomorphic to a rectangle containing
the $r$ punctures, so that $r-1$ punctures are arranged in near the upper edge and $O$ is near
the down-left corner. (We now regard $X$ just as a topological space, hence this is possible.)

For the arrangement of $b_{i}’ s$ , let us take a uniformizer $u$ of the maximal ideal $m_{X,O}$ of the
local ring $O_{X^{*},O}$ . Then, $u$ can be viewed as a meromorphic function $u$ : $X^{*}(\mathbb{C})arrow \mathbb{P}^{1}(\mathbb{C})$ ,
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$O\mapsto 0$ , giving a homeomorphism of a neighbourhood $\mathcal{N}_{O}$ of $O$ in $X(\mathbb{C})$ to an open disk
centered at $0$ with radius $\epsilon$ in $\mathbb{P}^{1}(\mathbb{C})$ . Let $(0, \epsilon)$ be the inverse image of $(0, \epsilon)\subset \mathbb{R}\subset \mathbb{P}^{1}(\mathbb{C})$

by $u$ restricted to $N_{O}$ . We may assume that $(0, \epsilon)$ is parallel to the bottom edge of the
rectangle, by a homeomorphic deformation. Now $b_{1},$

$\ldots,$
$b_{n}$ are assumed to lie on $(0, \epsilon)$ , so

that $0<u(b_{1})<u(b_{2})<\cdots<u(b_{n})<\epsilon$ .
Since

$\mathcal{B}_{n}$ $:=B$ $:=\{(b_{1}, \ldots, b_{n})\in N_{O}|0<u(b_{1})<u(b_{2})<\cdots<u(b_{n})<\epsilon\}\subset F_{0,n}X(\mathbb{C})$

is simply connected (actually contractible), $\pi_{1}(F_{0,n}X(\mathbb{C}), \mathcal{B})$ makes sense; because the fun-
damental groups for any two base points in $\mathcal{B}$ are canonically isomorphic via a (homotopi-
cally unique) path in $B$ . In the case $n=1$ , we have $B=(0, \epsilon)$ .

Since the image of $\mathcal{B}\subset F_{0,n}X(\mathbb{C})$ in $B_{0,n}X(\mathbb{C})$ , denoted by $\overline{\mathcal{B}}$, is homeomorphic to $\mathcal{B}$ ,
the same arguments apply to $B_{0,n}X$ and $\overline{\mathcal{B}}$ . We identify $\pi_{1}(B_{0,n}X(\mathbb{C}),\overline{B})$ with $\pi B_{0,n}X$ .
This means that if we write $\pi B_{0,n}X$ it denotes $\pi_{1}(B_{0,n}X(\mathbb{C}), \overline{\mathcal{B}})$ from now on. Let $\tau_{i}$

$(1\leq i\leq n-1),$ $\eta i(1\leq i\leq n),$ $\xi_{i}=\eta_{1}\cdots\eta i(1\leq i\leq n)$ , and $z_{iarrow j}(1\leq i\leq n_{1}1\leq j\leq r-1)$

be the elements of $\pi B_{0,n}X$ described below. These elements except $z_{iarrow j}s$

) are defined also
in $\pi B_{0,n}(A^{1}-0)$ in the same manner.

1 2 $i$ $i+1$ $n$

$O$

$\tau_{i}C$

. . .

. . .

$n$

$n$$n$

$g_{i}$

We denote by $z_{O}$ the element in $\pi X=\pi_{1}(X(\mathbb{C}),\overline{(0,\epsilon)})$ that circles $0$ as drawn above.

DEFINITION 1.1. We define a homomorphism

$\phi$ ; $\pi X=\pi_{1}(X(\mathbb{C}),\overline{(0,\epsilon)})arrow\pi F_{0,n}X=\pi_{1}(F_{0,n}X(\mathbb{C}), \mathcal{B})$

as follows. Let us fix a closed disc $D$ of $X^{*}(\mathbb{C})$ centered at $O$ and containing $\{O, b_{1}, \ldots, b_{n-1}\}$

but $D\ni b_{n}$ . Let $\phi$ be the composite morphism $\pi_{1}(X(\mathbb{C})-O, b_{n}).\simarrow\pi_{1}(X(\mathbb{C})-D, b_{n})arrow$

$\pi_{1}(X(\mathbb{C})-\{b_{1}, b_{2)}\ldots, b_{n-1}\}, b_{n})arrow\pi_{1}(F_{0,n}X(\mathbb{C}), b)$ , where the last morphism is the left
morphism in the short exact sequence (1.1).

Thus,
$\phi:\pi_{1}(X(\mathbb{C}), b_{n})arrow\pi_{1}(F_{0,n}X(\mathbb{C}), b)$ ; $\gamma\mapsto\phi(\gamma)$
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is obtained if we define $\phi(\gamma)$ to be a path in $F_{0,n}X(\mathbb{C})$ such that $b_{1},$
$\ldots,$

$b_{n-1}$ are fixed
near $O$ , and $b_{n}$ moves along $\gamma$ , provided that we chose a representative of $\gamma$ which does not
intersect with $D$ .

Before stating the first result, we need a lifting by Bely $\check{1}[5]$ . We shall later use a geometric
construction of this lifting by Ihara[16],

PROPOSITION 1.1 $(BELY\check{I})$ . The group $\overline{\pi_{1}}(\mathbb{P}^{1}-\{01\infty\}, (0,1))$ is the free profinite group
$\overline{F_{2}}$ of two generators $x,y$ as below.

$0$ 1

$For\sigma\in Ga1(\overline{\mathbb{Q}}/\mathbb{Q})$ , there exists a unique element $f_{\sigma}(x, y)\in[\overline{F_{2}},\overline{F_{2}}]$ such that
$x\mapsto x^{\chi(\sigma)}$ , $y\mapsto f_{\sigma}(x, y)^{-1}y^{\chi(\sigma)}f_{\sigma}(x, y)$

is an automorphism $0\underline{f}\overline{F_{2}}$ ( $\chi(\sigma)$ being the cyclotomic character) and that the image of this
automorphism in $outF_{2}$ coincides with the image of $\sigma$ by $Ga1(\overline{\mathbb{Q}}/\mathbb{Q})arrow Out\overline{F_{2}}$ .

Note that for any two elements $\xi$ and $\eta$ in any profinite group $G$ , there exists a unique
morphism $F_{2}arrow G$ with $x\mapsto\xi,$ $y\mapsto\eta$ . We denote by $f_{\sigma}(\xi, \eta)$ the image of $f_{\sigma}(x, y)$ by this
map.

The first result of this manuscript is the following theorem. This theorem generalizes a
previous result in the joint work with Y. Ihara [20], which treats the genus zero case. The
idea of the proof is an extension of [20].

THEOREM 1.1. Let $X$ be a smooth geometrically connected curve over a field $k\subset \mathbb{C},$ $X^{*}$

its smooth compactification. Assume that there exists a k-rational point $O$ in $X^{*}$ not on $X$ .
Then there exist sections

$Ga1(k/k)arrow\pi_{1}^{alg}(B_{0,n}X,\overline{\eta})$

$Ga1(\overline{k}/k)arrow\pi_{1}^{a1g}(X,\overline{\eta})$

to the short exact sequences (0.1) for $x=\overline{\eta},$ $V=B_{0,n}X$ , and for $x=\overline{\eta},$ $V=X,$ $respectively_{f}$

such that the induced morphism

Gal$(\overline{k}/k)arrow$ Aut$\hat{\pi}B_{0,n}X$

satisfies the following conditions.
Let $\sigma\in$ Gal $(\overline{k}/k)$ .

(i)

$\sigma:\xi_{i}\mapsto\xi_{i}^{\chi(\sigma)}(1\leq i\leq n)$ , $\tau_{i}\mapsto f_{\sigma}(\xi_{i}, \tau_{i}^{2})^{-1}\tau_{i}^{\chi(\sigma)}f_{\sigma}(\xi_{i}, \tau_{i}^{2})(1\leq i\leq n-1)$ .

In particular, the homomorphism

$\hat{\pi}B_{0,n}(A^{1}-0)arrow\hat{\pi}B_{0,n}X$

defined (group theoretically) by $\xi_{i}\mapsto\xi_{i},$ $\tau_{i}\mapsto\tau_{i}$ is $Ga1(\overline{k}/k)$ -compatible.
(ii) The profinite completion of the above $\phi$ (Definition 1.1)

$\hat{\phi}:\hat{\pi}Xarrow\hat{\pi}B_{0,n}X$

is compatible with the Gal $(\overline{k}/k)$ -actions.
(iii) If we denote by $X_{+O}$ the curve obtained from $X$ by filling up the puncture $O_{f}$ then

the natural map $\hat{\pi}B_{0,n}Xarrow\hat{\pi}B_{0,n}X_{+O}$ is $Ga1(\overline{k}/k)$ -compatible (the action on the
right side is given by a suitable section).

REMARK 1.1. The elements $\xi_{1},$
$\tau_{1},$

$\ldots,$ $\tau_{n-1}$ and the image of $\phi$ generates $\pi B_{0,n}X$ . Thus,
the above description completely determines the action of Gal $(\overline{k}/k)$ on $\hat{\pi}B_{0,n}X$ .
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The key idea in proving this theorem is as follows. We restrict the moving points
$b_{1},$

$\ldots$ , $b_{n}$ to be near $O$ , and let $u_{1},$ $\ldots,$ $u_{n}$ be the coordinates of $b_{i}$ in terms of the $1e\succ$

cal coordinate $u$ at $O$ . Then, we put $t_{i}$ $:=u_{i}/u_{i+1},$ $(1\leq i\leq n-1)$ , and $t_{n}:=u_{n}$ . The
parameters $t_{i}$ give a kind of blow-up of $X^{n}$ at $(O, O, \ldots , O)$ , so that the hyper diagonal
$\Delta$ becomes normal crossing at $t_{1}=\cdots=t_{n}=0$ . We take a tangential base point at this
point. This means we take a base point of $F_{0,n}X$ outside $F_{0,n}X$ , on which we may consider
$t_{1},$ $\ldots,t_{n}$ as infinitesimally small. Then, if we move $t_{i}$ only, then the points $u_{1},$ $\ldots,$

$u_{i}$

move in proportion to $t_{\acute{i}}$ , but $u_{1},$ $\ldots,$ $u_{i-1}$ are infinitesimally small and $u_{i+2},$ $\ldots,$ $u_{n}$ are
infinitesimally large compared with $u_{i}$ . Thus, the branched locus seems to be only $t_{i}=0,1$ ,
the former point giving $u_{1}=\cdots=u_{i}=0$ and the latter giving $u_{i}=u_{i+1}$ . Thus we have
$A^{1}-\{0, \infty\}$ . This is the reason why $\pi(\mathbb{P}^{1}-\{01\infty\})$ occurs in $\pi B_{0,n}X$ .

REMARK 1.2. According to Grothendieck’s philosophy [11], any Gal $(\overline{k}/k)$-compatible
map from $\pi_{1}^{alg}(\overline{V})$ to $\pi_{1}^{alg}(\overline{V’})$ would come from an algebraic morphism $Varrow V’$ , if $V$ and
$V’$ are anabelian) varieties over a number field $k$ , under some conditions. The precise
formulation of the conjecture is still not clear (cf. [44]).

Theorem 1.1 states that for $V$ $:=F_{0,n}(A^{1}-\{0\})$ and $V’$ $:=F_{0,n}X$ with a positive genus
curve $X$ , there exists a Galois-compatible injective morphism between fundamental groups
which does not come from a morphism between varieties. (Note that any morphism from
$V=F_{0,n}(A^{1}-\{0\})$ to $F_{0,n}X$ maps whole $V$ to one point. The injectivity of the group
homomorphism easily follows by induction on $n$ and the five lemma.

This would be because $F_{0,n}A^{1}$ is not anabelian, since it has a nontrivial center $<\xi_{n}>$ .

2. Application to the injectivity of the outer Galois representation

By Bely $\vee 1$ ’s uniformization theorem[5], the outer Galois representation

$G_{\mathbb{Q}}arrow Out\hat{\pi}(\mathbb{P}^{1}-\{01\infty\})$

was proved to be injective. A conjecture generalizing this result (see for example the remark
before Theorem 3 in VoevodskiI[44] for the affine case) is

CONJECTURE 2.1. If $X$ is a smooth geometrically connected curve over a number field $k$

with nonabelian fundamental group; then

Gal$(\overline{k}/k)arrow$ Out $\hat{\pi}X$

is injective,

The first application of our Theorem 1.1 is to prove this conjecture for affine curves.

THEOREM 2.1. Conjecture 2.1 is true if $X$ is affine.
$v_{oevodski_{\check{1}[44]}}$ proved for the case of $X$ being genus 1 with at least one puncture. The

author knows no example of proper curves for which the above conjecture is proved or
disproved.

To prove Theorem 2.1, we may assume that at least one of the punctures of $X$ is k-
rational, by the following reason. Let $O$ be a puncture of $X$ . Then $O$ is k’-rational for some
number field $k’$ . Let $\sigma\in G_{k}$ lie in the kernel. Since $G_{k’}$ is of finite index in $G_{k}$ , some power
of $\sigma$ lies in $G_{k’}$ , then if we could settle the k’-rational puncture case, then this power of
$\sigma$ is identity. It is well-known that $G_{k}$ has no torsion except the Gal $(\overline{\mathbb{Q}}/\mathbb{Q})$ -conjugates of
complex conjugation, (see [3]), hence $\sigma$ must be one of these if $\sigma\neq 1$ . Then its cyclotomic
character $\chi(\sigma)$ is $-1$ , hence $\sigma$ acts on the abelianization of $\hat{\pi}X$ nontrivially, leading to a
contradiction.

If there exists an algebraic morphism $Xarrow \mathbb{P}^{1}-\{01\infty\}$ over $k$ inducing a surjection on
the (topological) fundamental groups, then it is easy to see that $X$ satisfies the Conjecture.
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Thus, if $X$ is genus zero and with more than three punctures, then Theorem 2.1 is true. So,
we may assume that the genus $g\geq 1$ .

This case follows from the following theorem.

THEOREM 2.2. Let $k$ be any subfield of $\mathbb{C}$ . Let $X$ be a smooth geometrically connected
curve over $k$ wiih at least one k-rational puncture and with genus positive. Then the kernel
of the outer Galois representation

(2.1) $G_{k}arrow$ Out$\hat{\pi}F_{0,n}X$

is independent of $n\geq 1$ , and is contained in the kernel of
(2.2) $G_{k}arrow Out\hat{\pi}(\mathbb{P}^{1}-\{01\infty\})$ .

These statements are also correct for the pro-l case, i. e., even if we replace $\hat{\pi}F_{0,n}X$ with its
pro-l completion $\pi^{l}F_{0,n}X$ and $\hat{\pi}(\mathbb{P}^{1}-\{01\infty\})$ with $\pi^{l}(\mathbb{P}^{1}-\{01\infty\})$ .

Note that the kernel from the profinite completion to the pro-l completion is a charac-
teristic subgroup, and hence we have a canonical morphism Out$\hat{\pi}arrow$ Out $\pi^{l}$ .

By this theorem and the Belyi’s result, (2.1) is proved to be injective if $k$ is a number
field. Theorem 2.1 follows from this case and the note below Theorem 2.1.

REMARK 2.1. The independence of the kernel of (2.1) for $n\geq 1$ for pro-l case is one of
the main results in Ihara-Kaneko[19] (a part of Theorem 2 there).

$\alpha_{i}$
$\beta_{i}$

PROPOSITION 2.1. (i) $\alpha_{i}=\tau_{i}\alpha_{i+1}\tau_{i}^{-1}$ .
(ii) $\alpha_{i}^{-1}\beta_{i+1}^{-1}\alpha_{l}\beta_{i+1}=\tau_{i}^{2}$ .

Let $\sigma\in Ga1(\overline{k}/k)$ be in the kernel of $Ga1(\overline{k}/k)arrow$ Out $\hat{\pi}X$ . By Theorem 1.1, we may
basically assume that $\sigma$ acts trivially on $\alpha_{n}$ and $\beta_{n}$ . Hence, the image of the relation

$[\tau_{n-1}\alpha_{n}^{-1}\tau_{n-1}^{-1}, \beta_{n}^{-1}]=\tau_{n-1}^{2}$

by $\sigma$ can be written in terms of only $f_{\sigma}(x, y)$ and $\chi(\sigma)$ . We rewrite the new relation as
a nontrivial relation in a $f_{f}ee$ subgroup of $\hat{\pi}B_{0,n}X$ . Then, by some combinatorial group
theory, we can show that $f_{\sigma}=1$ and $\chi(\sigma)=1$ , and hence by $Bely\check{i},$ $\sigma=1$ .

3. Filtrations on Gal$(\overline{\mathbb{Q}}/\mathbb{Q})$

3.1. Induced filtration and a conjecture by Oda. Let II be a group, and $\Gamma$ another
group with a homomorphism $\varphi$ : $\Gammaarrow$ Out$\Pi$ . Suppose $\Pi$ has a central filtration

$\Pi=\Pi(1)\supset\Pi(2)\supset\Pi(3)\supset\cdots$ ,

i.e., a descending sequence of normal (closed if a topological group) subgroups satisfying
$[\Pi(m), \pi(n)]\subset\Pi(m+n)$ . Then, we define the induced filtration

$\Gamma=\Gamma[0]\supset\Gamma[1]\supset\Gamma[2]\supset\cdots$
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by

$\Gamma[m]$ $:=$ $\{\sigma\in\Gamma|$ there exists $\tilde{\sigma}\in$ Aut $\Pi$ mapped to $\varphi(\sigma)$ in Out $\Pi$ , such that
$\tilde{\sigma}(w)w^{-1}\in\Pi(S+m)$ for every $w\in\Pi(s)$ for every $s\geq 1$ }.

We can also define the induced filtration if we are given a morphism $\Gammaarrow$ Aut $\Pi$ , by replacing
$\tilde{\sigma}$ with the image of this morphism in the above definition. For the case $\Gamma=$ Aut $\Pi$ , the
latter induced filtration Aut$\Pi[m]$ is included in the filtration induced from Aut $\Piarrow$ Out $\Pi$ ,
but may not coincide. It is known that $\{\Gamma[m];m\geq 1\}$ gives a central filtration on $F[1]$ again
(see [7, Ch.2 \S 2.4 Exer.3]).

We apply this definition for a variety $V$ over a field $k$ and its outer Galois representation
on the pro-l fundamental group

$\varphi$ : $Ga1(\overline{k}/k)arrow$ Out$\hat{\pi}Varrow$ Out $\pi^{1}V$.

Now fix a prime number $l$ . Let $X$ be a $(g, r)$-curve over $k$ . Oda (c.f. [23] for no-puncture
case) defined the weight filtration on the pro-l group $\pi^{l}F_{0,n}X$ as the fastest decreasing
central filtration with $z_{iarrow j}$ (see \S \S 1.0) being in the second filtration; namely:

$\pi^{l}F_{0,n}X(1)$ $:=$ $\pi^{l}F_{0,n}X^{l}$

$\pi^{l}F_{0,n}X(2)$ $:=$ $<<[\pi^{l}F_{0,n}X, \pi^{l}F_{0,n}X],$ $z_{iarrow j}|1\leq i\leq n,$ $1\leq j\leq r\rangle\rangle$

.
$\pi F_{0,n}X(m)$ $;=$

$<< \bigcup_{i+j=m}[\pi^{l}F_{0,n}X(i), \pi^{\dagger}F_{0,n}X(j)]>>$
for $m>2$

$([A, B]$ denotes the closure of the group generated by the commutator product of $A$ and $B$ ,
and $<<A>>$ denotes the normally generated closed subgroup by $A$ ).

In the case of $\Pi$ $:=\pi^{l}F_{0,n}X$ , it is easy to show by induction that

$($ 3.1 $)$

Out $\Pi[m]$ $:=$ $\{\sigma\in$ Out $\Pi|$ there exists a lift $\tilde{\sigma}\in$ Aut $\Pi$ such that
$\tilde{\sigma}(w)w^{-1}\in\Pi(m+1)$ for every $w$ in a fixed generating set of $\Pi$

and $\tilde{\sigma}(z_{iarrow j})z_{iarrow j}^{-1}\in\Pi(m+2)$ for every $1\leq i\leq n,$ $1\leq j\leq r$ . }

Here note that any element $\tau\in\pi B_{0,n}X$ induces an automorphism $x\mapsto\tau x\tau^{-1}$ on
$\pi^{l}F_{0,n}X$ , and this automorphism preserves the filtration, since it only permutes the con-
jugacy classes of $z_{iarrow j}s$

) . Similarly, Gal $(\overline{k}/k)$-action preserves the filtration, since they just
permutes the inertia groups.

Since we have a canonical morphism $\varphi$ : Gal $(\overline{k}/k)arrow$ Out $\pi^{l}F_{0,n}X$ , the above filtration
provides $G_{k}$ $:=Ga1(\overline{k}/k)$ an induced filtration, which we shall denote by

$G_{k}=G_{k}[F_{0,n}X;0]\supset G_{k}[F_{0,n}X;1]\supset G_{k}[F_{0_{t}n}X;2]\supset\cdots$ .

For $n=1$ ,
$G_{k}[X;m]$ $:=G_{k}[F_{0,1}X;m]$

is the induced filtration investigated by many authors (see Asada-Kaneko[4] and Kaneko[21],
and this filtration has a rich application in bounding the Galois centralizer: see Naka-
mura[29], Nakamura-Tsunogai[33] $)$ . In particular, for $X=\mathbb{P}^{1}-\{01\infty\},$ $G_{\mathbb{Q}}[X;m]$ is the
filtration introduced in the pioneering works by Ihara[13][14] and by Deligne[8] (note that
the index $m$ here is twice of that in [13][14] and [8] $)$ . See [16] and a series of Nakamura’s
works for the significance in studying such filtrations.

Let us define a relative version of this filtration (this was also essentially defined by
Oda[37][38] $)$ . Let $S$ be a smooth geometrically connected scheme locally of finite type over
$k$ , and let $(Carrow S;s_{1}, \ldots, s_{f} : Sarrow C^{*})$ be a smooth family of smooth $(g, r)$-curves with
punctures ordered over S. This means that there exists proper smooth morphism $C^{*}arrow S$
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and its sections $s_{1},$ $\ldots,$
$s_{r}$ such that $C=C^{*}- \bigcup_{1\leq i\leq n}s_{i}(S)$ and $Carrow S$ is the restriction of

$C^{*}arrow S$ , and each fiber of $Carrow S$ is a $(g, r)$-curve.
Let $\eta$ be the generic point of $S,\overline{\eta}$ its geometric point, $C_{\eta},$ $C_{\overline{\eta}}$ be the fiber on $\eta,\overline{\eta}$ , re-

spectively (hence being $(g,$ $r)$ -curves over $k(\eta),$ $k(\overline{\eta})$ , respectively). Then, we have an outer
representation

(3.2) $Ga1(k(\overline{\eta})/k(\eta))arrow Out\pi_{1}^{alg}(C_{\overline{\eta}})$ .

REMARK 3.1. By smooth base change theorem in SGAI[10, \S 13],

$\pi_{1}^{alg}(C_{\overline{\eta}})\cong\pi_{1}^{alg}(C_{\overline{x}})$

holds for any point $x$ on $S$ , and an inertia group in Gal $(k(\overline{\eta})/k(\eta))$ of $x$ trivially acts on the
right hand side. Thus, (3.2) factors through

$\pi_{1}^{alg}(S,\overline{\eta})arrow Out\pi_{1}^{alg}(C_{\overline{\eta}})$,

which is sometimes called the monodromy representation.

Now we have an induced filtration

$\{G_{k(\eta)}[C_{\eta};m]|m=1,2, \ldots\}$

on $G_{k(\eta)}=$ Gal $(k(\overline{\eta})/k(\eta))$ . By taking their image by the surjection $G_{k(\eta)}arrow G_{k}$ , we define
the induced filtration on $G_{k}$ associated with $C/S$ and denote them by $G_{k}[C/S;m]$ . (Note
that this notation consistently works for the case $S=Speck$ ; that is, $G_{k}[C/Speck, m]=$

$G_{k}[C;m].)$

Now we can state a conjecture by Oda (an explicit formulation in the punctured case is
in [31], cf. also [32]. $)$

CONJECTURE 3.1. Let us define
$G_{\mathbb{Q}}[g, r, l;m]:=$ $\cup$ $G_{k}[C/S;m]$ ,

$c/s/k$ $(g,r)$ -family

where the union is taken over all families $Carrow S$ of $(g, r)- cu\gamma\eta)es$ with punctures ordered,
with $S$ a smooth scheme over a number field $k$ (hence $k$ moves). Then, if $2-2g-r<0$ ,

$G_{\mathbb{Q}}[g, r, l;m]=G_{\mathbb{Q}}[\mathbb{P}^{1}-\{01\infty\};m]$

holds.

REMARK 3.2. If there exists a commutative diagram

$C’$ $arrow$ $C$

1 $\square$
$\downarrow$

$S’$ $arrow$ $S$

1 $\downarrow$

$Speck’$ $arrow$ $Speck$

with the upper square being the fiber product and $k’/k$ being an algebraic extension, then

$\pi_{1}^{alg}(S’,\overline{\eta}^{J})$ $arrow$ $\pi_{1}^{alg}(S,\overline{\eta})$ $arrow$ Out $\pi_{1}^{alg}(C_{\overline{\eta}})=Out\pi_{1}^{alg}(C’\eta^{J}-)$

(3.3) $\downarrow$ $\downarrow$

$G_{k’}$ $rightarrow$ $G_{k}$

and hence
$G_{k’}[C’/S’;m]rightarrow G_{k}[C/S;m]$ .

Thus, if there exists a solution

$(C_{g_{1}r}arrow \mathcal{M}_{g,r};s_{1}^{\mu}, \ldots s_{r}^{\mu}:\Lambda t_{g,r}arrow C_{g,r}^{*})$
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to the moduli problem:

$\forall(Carrow S;s_{1}, \ldots, s_{f}):(g, r)$-family
$C$ $arrow$ $C_{g,r}$ $C^{*}$ $arrow$ $C_{g,r}^{*}$

$\ni!Sarrow \mathcal{M}_{g,r}$ such that $\downarrow$
$\square$

$\downarrow$ and $s_{i}\uparrow$ $O$ $\uparrow s_{i}^{\mu}$

$S$ $arrow$ $\Lambda t_{g,r}$ , $S$ $arrow$ $\mathcal{M}_{g,r}$ ,

(thus $\mathcal{M}_{g,r}$ is.the moduli scheme of $(g,$ $r)$-curves with punctures ordered), then the left hand
side of Conjecture 3.1 is nothing but

$G_{\mathbb{Q}}[g, r, l;m]=G_{\mathbb{Q}}[C_{g,r}/\mathcal{M}_{g,r};m]$ .

Oda stated his conjecture in this style, namely, $G_{\mathbb{Q}}[Cg, r/\mathcal{M}_{g,r};m]$ was defined as the image
in $G_{\mathbb{Q}}$ of $\pi_{1}(\mathcal{M}_{g,r})[m]$ (see Remark 3.1 and [35][36]).

Actually, $C_{g,r}$ and $\Lambda t_{g,r}$ are in general not schemes but algebraic stacks for $g\geq 1$ .
Oda$[37][38]$ developed the theory of fundamental groups of stacks[34] and stated his con-
jecture in terms of stacks. We do not want to use the stacks’ fundamental groups here, so
adopt the above style for stating the conjecture. We only mention the equivalence of the
two definitions as below.

(i) If

$c_{1}^{J}$ $arrow\square$ $C_{g,r,\downarrow}$

$S’$ $arrow$ $\Lambda t_{g)}$ ,

is a fiber product of stacks with $S’$ a geometrically connected scheme over $\mathbb{Q}$ , and
if $\pi_{1}(S’)arrow\pi_{1}(\Lambda t_{g,r})$ is surjective, then $G_{\mathbb{Q}}[C’/S’;m]=G_{\mathbb{Q}}[C_{g,r}/\Lambda t_{g,r};m]$ follows
from (3.3),

(ii) For $g\geq 1$ and $r’>2g+2,$ $\mathcal{M}_{g,r’}$ can be proved to be a scheme[22]. Thus, taking
$1\Lambda_{g,r’}$ for $S’$ and taking fiber product $C’:=\mathcal{M}_{g,r’}X_{\lambda 4_{g,r}}C_{g)}f$ (this also becomes
a scheme), we have the desired surjection between fundamental groups and may
define $G_{\mathbb{Q}}[g, r, l;m]$ $:=G_{\mathbb{Q}}[C’/\Lambda t_{g,r’} ; m]$ .

Note that the right hand side in Conjecture 3.1 can be denoted as $G_{\mathbb{Q}}[0,3, l;m]$ , since
the solution to the corresponding moduli problem is $\mathbb{P}^{1}-\{01\infty\}arrow Spec\mathbb{Q}$.

We use Theorem 1.1 to prove

THEOREM 3.1. Let $X$ be a smooth geometncally connected curve over $k$ of nonzero genus.
Suppose that $X$ is affine and its compactification $X^{*}$ has a k-rational point outside X. Then,

$G_{k}[\mathbb{P}^{1}-\{01\infty\};m]\supset G_{k}[F_{0,n}X;m]=G_{k}[X;m]$

holds for $n\geq 1$ and for $m\geq 0$ .

By this theorem, we can prove one inclusion in Oda’s conjecture:

THEOREM 3.2. For $g\geq 0,$ $r\geq 1$ with $2-2g-r<0$ and for any $m\geq 0$ ,

$G_{\mathbb{Q}}[g, r, l;m]:=\bigcup_{c/s/k}G_{k}[C/S;m]\subset G_{\mathbb{Q}}[\mathbb{P}^{1}-\{01\infty\};m]$
.

holds.

The idea of proof is same with that of Theorem 2.2, except for that we deal with filtered
groups or Lie algebras instead of profinite groups.
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REMARK 3.3. This inclusion and some stronger results have been already proved by
Nakamura[30], by an independent method using the Deligne-Mumford compactification of
moduli stacks (see his paper in this volume). Some part of his results is stimulated by the
author)$s$ private communication on Theorem 3.1.

The right identity in Theorem 3.1 was essentially proved by Nakamura-Takao-Ueno (see
(4.3)Theorem in [32] $)$ generalizing the method of [19]. Also, in [32], $G_{\mathbb{Q}}[g, r, l;m]$ is proved
to be independent of $r$ for the case $g\geq 1$ and $r\geq 1$ and for several other cases.

4. The kernel of pro-l Galois Representations

Let $G_{k}arrow$ Out $\pi^{l}V$ be the outer Galois representation on a vaiiety $V$ over $k$ . We denote
the kernel of this representation by

$G_{k}[V;\infty]$ $:=Ker[G_{k}arrow$ Out$\pi^{I}V]$ ,

for if $V$ is a curve $X$ with $2-2g-r<0$ , then it is known that

LEMMA 4.1.

$G_{k}[X;\infty]=\bigcap_{m\in N}G_{k}[X;m]$
.

We can define the higher genus version by setting

$G_{\mathbb{Q}}[g, r, l;\infty]:=\bigcap_{m\in N}G_{\mathbb{Q}}[g, r, l;m]$
.

(Actually, we may define $G_{\mathbb{Q}}[g, r, l;\infty]$ as the image of the kernel of $\pi_{1}^{alg}(\mathcal{M}_{g,r},\overline{\eta})arrow$

Out$\pi^{l}(X)$ by $\pi_{1}^{alg}(\mathcal{M}_{g)r},\overline{\eta})arrow G_{\mathbb{Q}}$ . This can be proved in the same way with Lemma 4.1.)
Then, Oda’s Conjecture 3.1 implies its weaker version:

CONJECTURE 4.1. For any $g,$ $r,$
$l$ with $2-2g-r<0$ , we have

$G_{\mathbb{Q}}[g, r, l;\infty]=G_{\mathbb{Q}}[\mathbb{P}^{1}-\{01\infty\};\infty](=G_{\mathbb{Q}}[0,3, l;\infty])$ .

We prove a case of this conjecture.

THEOREM 4.1. Let us assume $2-2g-r<0$ and $r\geq 1$ . If $l-1$ divides $2g$ , then

$G_{\mathbb{Q}}[g, r, l;\infty]=G_{\mathbb{Q}}[\mathbb{P}^{1}-\{01\infty\};\infty]$ .

Thus, the Oda’s weaker Conjecture 4.1 for $l=2,3$ and $r\geq 1$ is true. The proof uses a
Fermat-like curve which is an l-power cover of $\mathbb{P}^{1}$ . The case $l=7$ and $r\geq 1$ can be proved
by using a result of Nakamura[30] (Remark 3.3 above), but we omit it here.
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