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Abstract

In order to provide a general framework for applications of nonstandard

analysis to quantum physics, the hyperfinite Heisenbeig group, which is a

finite Heisenberg group in nonstandard universe, is formulated and its uni-

tary representations are examined. The ordinary Schr\"odinger representation of

the Heisenberg group is obtained by a suitable standardization of its internal

representation. As an application, a nonstandard-analytical proof of noncom-

mutative Parseval’s identity based on the orthogonality relations for unitary

representations of finite groups is shown. This attempt is placed in a general

framework, called the logical extension methods in $pl\iota ysics$ , whicti aims at the

systeinatic applications of me $tl\iota ods$ of foundations of malhemalics to extending

physical tlieories. The program and the achievement of $tl\iota e$ logical extension

$metl\iota ods$ are cxplaiiicd in soitie detail.
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1. Introduction

In recent years the interplay between foundations of quantum mechanics and physics

of macroscopic or mesoscopic systems has made evident the demand for thorough

understanding of the mutuaJ relationship between quantum mechanics and classical

mechanics. The developments in such experimental researches as microfabrication

techniques, quantum optics, precision measurements, as well as their applications to

the optical communication and the gravitational-wave detection have opened a new

domain of scale in applications of quantum mechanics different from the traditional

scale of atomic physics [1]. These experimental attempts have prompted the research

in the quantum theory of non-ideal measurements of continuous observables incor-

porating with introduction of the deep ideas from probability theory, mathematical

statistic, and information theory [2].

Now, one of the major problems in mathematical physics required from these

recent developments is to provide a suitable mathematical framework for applying

quantum mechanics to more macroscopic objects than the traditional scale of atomic

physics in order to make it possible to describe interactions between macroscopic

objects and microscopic objects. A difficulty in this kind of descriptions has been

well known, exemplied by the famous paradox of Schr\"odinger’s cat, which caricatures

the absurdity arising when quantum mechanics is applied to a phenomenon includ-

ing a very large scale difference. The traditional prescription of the correspondence

principle between quantum mechanics and classical mechanics by no means works for

this problem, since taking of the limit as $harrow 0$ changes $tl\iota e$ whole systcm, and no

microscopic structures are maintained a[ter taking limit. Moreover, the $C^{*}$-algebraic

approach, which has been considered to give one of the most general mathematical

framework for quantum field theory and statistical meclianics [4], does not seem to
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work so well in this context: According to Ozawa [5], it is not possible to describe a

measuring interaction between a microscopic system and a macroscopic apparatus by

the standard notions of $C^{*}$-dynamical system (if one sticks to the conventional idea

of describing this interaction process in use of a l-parameter automorphism group.)

To attain a consistent description of number-phase uncertainty relations (which is an

important issue in the theoretical description of quantum optical processes), Ozawa

[6] attempted to incorporate, into quantum mechanics, the number system contain-

ing the infinities or inffiitesimals. It is remarkable in this approach that quantum

mechanics can be conveniently formulated in the nonstandard universe just on the

hyperfiniie lattice in a discretized phase space with infinitesimal intervals, whose unit

cells have just the volume equal to the Planck constant $h=2\pi\hslash$ . Although this

looks simply like the repetition of the naive intuitive picture of Planck’s quantization

method [7,8], it will turn out to provide us with a more general and flexible framework$\cdot$

of quantum theory, when it is combined with a sophisticated mathematical methods

of nonstandard analysis. Then, the main purpose of the present paper is to provide

a general framework for the attempts of extending quantum mechanics to the ex-

tended number system, and to explain a general feature of our method, the logical

extension method in physics, which aims at the systematic applications of methods of

foundations of mathematics to extending physical theories.

To this end, it may be instructive to give first an overview of this mathematical

method of logical extension. Originally, methods of foundations of mathematics have

been developed mainly for producing metatheorems which are theorems on axioms,

infcrences, $p_{\sim}roofs$ , models, and so OIl, bu $t$ not for producing theorems on ordinary

objects of mathematics. TIiis is a main reason $wl\iota y$ there has been very little interest

in the interplay between physics and foundations of mathematics. However, in the

last three decades, foundations of mathematics have developed two methods useful
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for ordinary mathematics: nonstandard analysis and Boolean-valued analysis.

In 1960 Robinson found that the methods of nonstandard models in mathematical

logic provides a suitable framework of calculus with infinitesimal and infinite numbers

[9]. His method, nonstandard analysis, has been developed nowadays in various fields

of mathematics [10], in particular, in probability theory and stochastic analysis [11].

By the way, in 1966, three years after Cohen proved the independence of continuum

hypothesis by the method of forcing [12], Scott and Solovay invented Boolean-valued

models of set theory [13] which reformulates Cohen’s forcing in a simple framework.

Although the original aim of the Boolean-valued model is independence proo&, its

usefulness for ordinary mathematics has been pointed out by Scott [14]. This idea

was realized in 1978 when Takeuti [15] instituted the Boolean-valued analysis, the

systematic applications of Boolean-valued models to mathematical problems. In sub-

sequent years, the Boolean-valued analysis has been developed in algebra, harmonic

analysis, and operator algebras $[16]-[18]$ .

In the context of mathematics, the motivation for the logical extension methods

came in 1985 from the following two results in Boolean-valued analysis and non-

standard analysis: the (algebras of all bounded operators on Hilbert spaces” in a

Boolean-valued universe is functorially equivalent to the “type I von Neumann alge-

bras of all decomposable operators on direct integral Hilbert spaces” in the standard

universe [17,18], and that a “matrix algebra” in the nonstandard universe naturally

gives rise to a “type $II_{1}$ factor” in the standard universe [19]. The former result has led

to the following logical analysis of an extension of quantum mechanics used in a mea-

surcmcnt llicory [20,21]: (quantum mcclianics wi $tl\iota$ a contiiiuous supcrsclcctioIl rulc”

in the standard universe is equivalent to “quaiilum mechanics” in tlie Boolcan-valued

uiverse plus “averaging over the Boolean truth-values” [22]. The latter result in non-

standard analysis suggests a possibility to develop quatum mechanics only with finite
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matrices in the nonstandard universe, and has led to the number-phase quantization

[23] which realizes the ideal limit of the Pegg-Barnet phase operator [24].

The general idea of the logical extension methods as a general paradigm for ex-

tending physical theories arose from the discussions between present authors since

1987. Through their collaboration in 1991, the idea of quantum mechanics on the

hyperfinite lattice in the nonstandard universe has been crystalized into the general

framework unifying the quantum and classical mechanics in various situations, on the

basis of the hyperfinite Heisenberg group and its unitary representations (hyperfinite

harmonic analysis). In this context, the noncommutative Parseval’s identity for the

canonical commutation relation can be proved in a very natural way by transferring

the orthogonality relations for the unitary representations of compact or finite groups

[25]. The perspectives of the program and the achievement in the logical extension

method in physics is summarized in Section 3.

In Section 2, a general framework for applications of nonstandard analysis to quan-

tum physics is developed. While the discovery of Loeb measures [26] has yielded the

considerable developments of nonstandard analysis in probability theory and stochas-

tic analysis, the applications to quantum physics have been just sporadic [27]. One

reason for this appears to be the absence of the universal target of research which can

be described simply in the language for the nonstandard universe and yet contains

sufficiently complicated structures of the research objects. It goes without saying that

the hyperfinite probability space is the target in probability theory and fulfills ideally

these conditions. In tliis paper, we propose $tl\iota e$ hyperfinite IIeisenberg group as a

univcrsal target in the applicalions of nonslandard analysis to quantum physics. In

Subseclions 2.1 and 2.2, necessary preliminaries for noiistandard analysis are given.

In Subsection 2.3, the $hyperfi^{\backslash }nite$ Heisenberg group is defined togetlier with its in-

ternal Sclir\"odiiiger represcntation. $I\iota 1SectioIl2.4,$ it is sliowii tltat $aI1$ appropriale
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standardization of the internal Schr\"odinger representation naturally gives rise to the

standard Schr\"odinger representation of the standard Heisenberg group. As an appli-

cation of the present framework, a rigorous nonstandard-analytical proof is carried

out, in Section 2.5, of noncommutative Parseval’s identity for the representation of

the canonical commutation relation (CCR).

2. Unitary representations of the hyperfinite Heisenberg group

2.1. Nonstandard universe

For any set $X,$ $P(X)$ stands for the set of all subsets of $X$ , called the power set of $X$ .

The superstructure over $X$ , denoted by $V(X)$ , is defined by the following recursion:

$V_{0}(X)=X$ , $V_{n+1}(X)=V_{n}(X)\cup P(V_{n}(X))$ ,

$V(X)= \bigcup_{n\in\nu}\{V_{n}(X)$ ,

where $\omega$ is the set of finite ordinals. The set $X$ is called a base set if $\emptyset\not\in X$ and for

all $x\in X,$ $x\cap V(X)=\emptyset$ . It is shown that any set $X$ can be easily replaced by a

base set of the same size [28, p. 287], and we always assume that $X$ is a base set. An

element of $X$ is called an atom relative to $V(X)$ , and an element of $V(X)\backslash X$ a set

relative to $V(X)$ . The language which describes $V(X)$ is the language $\mathcal{L}(V(X))$ of

set theory augmented by the set $\{C_{u}|u\in V(X)\}$ of constant symbols; $C_{u}$ denotes

$u$ , and we will write $\phi[u_{1}, \ldots , u_{n}]$ for $\phi(C_{u_{1}}, \ldots, C_{u_{n}})$ . Thus any formula in $\mathcal{L}(V(X))$

is constructed from llie symbols for logical connectives $\neg,$ $\wedge,$ $\vee,$ $\Rightarrow,$ $\Leftrightarrow,$ $quantif\iota ers$

$\forall,$
$\exists$ , individual variables $x’,x”,$ $\ldots$ , individual constants $C_{u}(u\in V(X)$ , aiid two

binary predicate constants $=,$ $\in$ . An individual variable $x$ in a formula $\phi$ is called

bound wlien $\phi$ has a quantifier $(\forall x)$ or $(\exists x)whicl\iota$ is $e!fective$ on $x$ , and called free
otherwise. A formula in which every variable is bound is called a statement. We
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will use the following abbreviations, called bounded quantifiers: $(\forall x\in y)\phi$ means

$(\forall x)[x\in y\Rightarrow\phi],$ $(\exists x\in y)\phi$ means $(\exists x)[x\in y\wedge\phi]$ . A $\Sigma_{0}$ -formula is a formula

constructed from atomic formulas using connectives and bounded quantifiers.

The interpretation of the statements in $\mathcal{L}(V(X))$ relative to $V(X)$ is given by the

following rules:

(1) $C_{u}=C_{v}$ is true if and only if $u$ and $v$ are identical.

(2) $C_{u}\in C_{v}$ is true if and only if $u$ is an element of $v$ .

(3) $\neg\phi$ is true if and only if $\phi$ is not true.

(4) $(\phi_{1})\wedge(\phi_{2})$ is true if and only if both $\phi_{1}$ and $\phi_{2}$ are true.

(5) $(\phi_{1})\vee(\phi_{2})$ is true if and only if either $\phi_{1}$ or $\phi_{2}$ is true.

(6) $(\phi_{1})\Rightarrow(d_{2})$ is true if and only if $\phi_{1}$ is not true or $\phi_{2}$ is true.

(7) $(\forall x)\phi(x)$ is true if and only if $\phi[C_{u}]$ is true, for all $u$ in $V(X)$ .

(8) $(\exists x)\phi(x)$ is true if and only if there is some $u$ in $V(X)$ such that $\phi[C_{u}]$ is true.

We will write $V(X)\models\phi$ when $\phi$ is true under this interpretation.

A nonstandard universe is a triple $\{V(X), V(Y),\star\}$ consisting of superstructures

$V(X),$ $V(Y)$ and a map $\star:V(X)arrow V(Y)$ satisfying the following three conditions:

(1) $X$ and $Y$ are infinite base sets.

(2) (Transfer Principle) The map $\star:a\mapsto\star a$ is an injective mapping from $V(X)$

into $V(Y)$ , and for any $\Sigma_{0}$-formula $\phi(x_{1}, \ldots, x_{n})$ in $\mathcal{L}$ ,

$V(X)\models\phi[u_{1}, \ldots , u_{n}]$ if and only if $V(Y)\models\phi[\star t4_{i}, \ldots, \star u_{n}]$ ,

for any $u_{1},$ $\ldots,$
$u_{n}$ in $V(X)$ .

(3) $*x=Y$ .
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In this case, $u\in V(Y)$ is called standard if there is $x\in V(X)$ such that $u=\star_{X}$ ,

and called internal if there is $x\in V(X)$ such that $u\in\star_{X}$ . A nonstandard uni-

verse $\langle$ V(X), $V(Y),\star\}$ is called countably saturated, or $N_{1}$ -saturated, if it satisfies the

following condition:

(4) (Saturation Principle) Any countable sequence of internal sets $A_{n}\in V(Y)\backslash Y$

with the finite intersection property has a nonempty intersection.

A mapping from $V(X)$ to $V(Y)$ satisfying the Transfer Principle described in (2)

is called generally a bounded elementary embedding, and $V(Y)$ a bounded elemeniary

extension.

The following theorem is a model-theoretic foundation of nonstandard analysis.

Theorem 2.1. (Existence of Nonstandard Universes) There exists a

countably saturated nonstandard universe $\{V(X), V(Y),\star\}$ .

For the proof, we refer to [28, p. 268, Theorem 4.4.5].

Let $A$ be a set relative to $V(X)$ . From the Saturation Principle, we can show

that, if $A\in V(X)$ is an infinite set, $\sigma A$ defined by

$\sigma A=t^{\star}a|a\in A\}$

is a proper subset of $\star A$ . Thus $\star A$ for any infinite set $A$ relative to $V(X)$ is an

extension of $A$ , and called the nonstandard extension of $A$ . By renaming the elements

of $Y$ , we can assume without loss of generality that $X$ is a subset of of $*x$ and $\star_{x}=x$

for each $x\in X$ .

Given any subset $U\subset V(X)$ , defne $\star U$ by

$\star U=\bigcup_{n\in w}\star(U\cap V_{n}(X))$ .
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Let $F(X)$ be the set of finite sets relative to $V(X)$ . An element of $\star p(X)$ is called

a hyperfiniie set. Hyperfinite sets have the same formal properties as the finite sets

relative to $V(X)$ . The set $\star V(X)$ is the set of all internal sets.

2.2. Infinitesimal analysis

In what follows, we will develop fragments of infinitesimal analysis based on a count-

ably saturated nonstandard universe (V(N), $V(\star N),\star\rangle$ . The set $N$ of natural num-

bers is usually defined as the set $\omega$ of finite ordinal numbers, but since $N$ is not a base

set, we redefine $N$ as the base set of all $\{\omega\backslash n\}$ with $n\in\omega$ , so that the n-th natural

number $(n\in\omega)$ is $\{\omega\backslash n\}$ . Note that all mathematical objects having been necessary

for physics are in $V(N)$ ; for example, natural numbers are in $V_{0}(N)$ , integers are

in $V_{2}(N)$ , rational numbers are in $V_{5}(N)$ , real numbers are in $V_{6}(N)$ , and complex

numbers are in $V_{8}(N)$ . We have also $N\in V_{1}(N)$ , the set of integers $Z\in V_{3}(N)$ , the

set of rationals $Q\in V_{6}(N)$ , the set of reals $R\in V_{7}(N)$ , the set of complex numbers

$C\in V_{9}(N)$ , Euclidean space $R^{n}\in V_{4+2n}(N)$ , Schwartz space $S(R)\in V_{11}(N)$ , space

of tempered distributions $S’(R)\in V_{14}(N)$ , Hilbert space $L^{2}(R)\in V_{12}(N)$ , and for

$n>1,$ $S(R^{n})\in V_{7+2n}(N),$ $S’(R^{n})\in V_{10+2n}(N),$ $L^{2}(R^{\mathfrak{n}})\in V_{8+2n}(N)$ , and the set of

all von Neumann algebras acting on $L^{2}(R^{n})$ is in $V_{13+2n}(N)$ .

The elements of $\star R$ are called hyperreal numbers. We will assume $R\subset\star R$ by

identifying $x\in R$ with $\star_{X}\in\star_{R}$ . By the Transfer Principle, $\star R$ is a proper ordered

field extension of $\star R$ . A hyperreal number $x$ is called infinite if $|x|>n$ for any $n\in N$ ,

finite, wrile $|x|<\infty$ , if there is some $n\in N$ such that $|x|<n$ , and infinitesimal if

$|x|<1/n$ for any $n\in$ N. The elements of $\star C$ is called hypercomplex numbers; we

assume $C\subset\star c$ by identifying $x\in C$ with $\star_{X}\in$ *C. $\Gamma^{J}cr$ any $x,$ $y\in*c$ , we will

write $x\approx y$ if $|x-y|$ is infnitesimal, $x=O(y)$ if $y\neq 0$ and $|x/y|$ is finite, and $x_{\wedge}^{\vee}y$

if $x,$ $y\neq 0$ and botli $|x/y|$ and $|y/x|$ are finite. lor any finite liyperreal number $x$ ,
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there is a unique real number $r$ such that $\star r\approx x$ ; this $r$ is called the standard part of

$x$ and denoted by $0_{X}$ .

Any function $f$ from $X$ to $Y$ is extended to an internal function $\star f$ from $*x$

to $\star Y$ . A sequence $a_{n}\in C(n\in N)$ is extended to an internal sequence $\star a_{\nu}\in*c$

$(\nu\in\star N)$ , so that $\lim_{narrow\infty}a_{n}=a$ if and only if $\star a_{\nu}\approx a$ for all $\nu\in\star N\backslash N$ .

Let $\mathcal{X}$ be an internal normed linear space with norm $||\cdot||$ . The principal galaxy

fin $(\mathcal{X})$ and the principal monad $\mu(\mathcal{X})$ are defined by

fin $(\mathcal{X})$ $=$ $\{x\in \mathcal{X}|||x||_{2}<\infty\}$ ,

$\mu(\mathcal{X})$ $=$ $\{x\in \mathcal{X}|||x||_{2}\approx 0\}$ .

Then both of them are linear spaces over C. The nonstandard hull of $\mathcal{X}$ is the quotient

linear space $\hat{\mathcal{X}}=fin(\mathcal{X})/\mu(O)$ equipped with the norm given by

$||^{o}x||=Q||x||$ ,

for all $x\in fin(\mathcal{X})$ , where $0_{X}=x+\mu(0)$ . Then it is shown by the Saturation Principle

that $\hat{\mathcal{X}}$ is a Banach space, which is called the nonstandard hull of $\mathcal{X}$ . For an normed

linear space $\mathcal{Y}$ , the nonstandard hull of $\mathcal{X}=\star y$ is usually denoted by $\hat{\mathcal{Y}}$ .

Let $\mathcal{H}$ be an internal Hilbert space with inner product $\langle\cdot|\cdot\}$ . Then the nonstandard

hull 77 is also a Hilbert space with inner product given by

$\langle Ox|^{o}y\rangle=0\{x|y\}$ ,

for any $x,$ $y\in fin(H)$ . Let $\star c(Tt)$ be $t$ he internal algebra of bounded opcrators on $H$ .

Then $\star \mathcal{L}(?t)$ is an internal $C^{*}$-algebra, and it is easy to see tliat its nonstandard hull

$*\hat{c(\tau}\ell)$ is also a $C^{*}$-algebra. Let $T:\prime k\ellarrow H$ be an internal bounded opcrator such

that the bound $||T||$ is finite, i.e., $T\in fin(\star \mathcal{L}(H))$ . Then, $T$ leaves fin $(Tl)$ and $\mu(0)$

invariant, and induces a linear map $\hat{T}$ on $7^{\wedge}\{$ by the relation $\hat{T}(x+\mu(0))=Tx+\mu(0)$ .
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It is easy to see that $||\hat{T}||=Q||T||$ , and that the correspondence $QTarrow\hat{T}$ is a faithful
$*$-representation of $\star\hat{c(?}\{)$ on $’\hat{\kappa}$ . The operator $\hat{T}$ will be called the nonstandard hull

of $T$ .

2.3. Hyperfinite Heisenberg group

Let $K$ be a fixed nonstandard natural number, i.e., $K\in\star N\backslash N$ . Let $K$ be the ring

of residue classes of internal integers modulo $K$ , i.e., $K=*z/K^{\star}Z$ . For $k,$ $k’\in K$ ,

$k\oplus k’$ stands for the sum of $k$ and $k’$ in $K,$ $k\otimes k’$ the product of $k$ and $k’$ , and

$\ominus k$ the minus $k$ . We always assume that $K$ is represented by a complete system

of incongruent residues to modulus $K$ . The. hypercomplex number $e^{2\pi};k/K$ is unam-

biguously determined independent of the choice of the complete system, and we have

$e^{21(k\oplus k’)/K}\pi=e^{2\pi i(k+k’)/K}$ and $e^{2\pi i(k\otimes k’)/K}=e^{2\pi ikk’/K}$ for all $k,$ $k’\in$ K.

Let $R(K)$ be the internal K-dimensional linear space of $\star c$-valued internal func-

tions on K. Let $\triangle x$ be a fixed positive hyperreal number. Denote by $R(K, \triangle x)$ the

internal unitary space consisting of the internal linear space $R(K)$ and the internal

inner product $\langle\cdot|\cdot\rangle$ defined by

$\{f|g\}=\sum_{k\in K}\overline{f(k)}g(k)\Delta x$ ,

for all $f,$ $g\in R(K, \triangle x)$ , where $\sum$ denotes the internal sum. The norm of $f\in$

$R(K, \triangle x)$ is defined by $||f||=\{f|f\rangle^{1/2}$ . Let $\delta_{k}$ be the internal function such that

$\delta_{k}(k’)=\frac{1}{\Delta x}\delta_{k,k’}$ ,

for all $k’\in K$ , wliere $\delta_{k.k^{\iota}}$ staiids for $I\langle ronecker$ ’s delta. Tlien $\{\delta_{k}|k\in K\}$ is a basis

of $R(K, \triangle x)$ such that

$\{\delta_{k}|f\rangle=f(k)$ ,
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for all $f\in R(K, \triangle x)$ and $k\in K$ . For any natural number $n$
} the space $R(K^{n}, (\triangle x)^{n})$

is defined analogously, so that $R(K^{n}, (\triangle x)^{n})$ is internally isometrically isomorphic to

$\otimes_{j=1}^{n}R(K, \triangle x)$ .

The hyperfinite Heisenberg group based on $K$ is the group $H$ with the underlying

set $K\cross K\cross K$ whose group operation is

$(k, l, m)(k’, l’, m’)=(k\oplus k’, l\oplus l’, m\oplus m’\oplus k\otimes l’)$ .

Then the unit is $(0,0,0)$ , and the inverse of $(k, l, m)$ is $(\ominus k, \ominus l, \ominus m\oplus k\otimes l)$ .

For any $(k, l, m)\in H$ , define the operator $W(k, 1, m)$ on $R(K)$ by

$W(k, 1, m)f(k’)=e^{2\pi i(m+lk^{t})/K}f(k’\oplus k)$ ,

for all $f\in R(K)$ , and $k’\in K$ .

Proposition 2.2. The map $W:(k, l, m)\mapsto W(k, l, z)$ is an internal irreducible

unitary representation of the Heisenberg group $H$ on $R(K, \triangle x)$ .

Proof. Follows from Transfer Principle. $\square$

We call the representation $W$ the internal Schrodinger representation of H. De-

note by $\hat{R}(K, \triangle x)$ the nonstandard hull of $R(K, \triangle x)$ , and by $\nu\hat{V}(k, 1, m)$ the nonstan-

dard hull of $W(k, l, m)$ on $\hat{R}(K, \triangle x)$ . The definition of $\hat{W}(k, l, m)$ depends on $\triangle x$ ,

and we will denote it by $\hat{W}_{\triangle x}(k, 1, m)$ when the dependence of $\triangle x$ is to be explicit.

Proposition 2.3. The map $\hat{W}$ : $(k, l, m)\mapsto\hat{W}(k, 1, m)$ is an unitary representa-

tion of $H$ on $\hat{R}(K, \triangle x)$ .

Proof. An immediate consequence from tlie fact tliat tlie correspoiidence

$W(k, 1, m)arrow\hat{W}(k, 1, m)$ is an algebraic liomoinorpliisni. $\square$
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For any $\triangle x$ and $\Delta x_{1}’$ the scalar multiplication on $R(K)$ by $\sqrt{\triangle x/\triangle x}$‘ is an in-

ternal unitary transformation from $R(K, \triangle x)$ onto $R(K, \Delta x’)$ , which implements the

internal unitary equivalence between $W$ on $R(K, \Delta x)$ and $W$ on $R(K, \Delta x’)$ .

Proposition 2.4. For any positive hyperreals $\triangle x$ and $\triangle x’$ , if $\Delta_{X\wedge}\vee\Delta x’$ then

$\hat{W}_{\Delta x}$ on $\hat{R}(K, \triangle x)$ and $\hat{W}_{\Delta x’}$ on $\hat{R}(K, \triangle x’)$ are unitarily equivalent.

Proof. Let $U$ be the internal unitary transformation from $R(K, \Delta x)$ onto

$R(K, \triangle x’)$ defined by $Uf=\sqrt{\Delta x/\Delta x’}f$ . If $\triangle x\vee\wedge\Delta x’$ , then $\sqrt{\Delta x/\triangle x’}$ is finite,

and the nonstandard hull $\hat{U}$ of $U$ is a unitary transformation from $\hat{R}(K, \Delta x)$ onto

$\hat{R}(K, \Delta x’)$ , which implements the unitary equivalence between $\hat{W}_{\Delta x}$ and $\hat{W}_{\Delta x’}$ . $\square$

2.4. The Schr$6dinger$ representation

Let $S$ be a nonstandard natural number. In this section, we assume $K=4S^{2}$ ,

$\Delta x=(2S)^{-1}=K^{-1/2},$ $\epsilon=\Delta x/2$ and identify $K$ with complete $s\overline{y}stem$

$\{-2S^{2}+1, \ldots, -1,0,1, \ldots, 2S^{2}\}$

of incongruent residues to modulus $K$ .
Consider $R^{3}$ with coordinates $(p, q, t)$ . We make $R^{3}$ into a locally compact group

with group law

$(p, q,t)(p_{t}’q’,t’)=(p+p’, q+q_{t}’t+t’+pq’)$ . (2.1)

We call this group the Heisenberg group and denote it by $H_{1}$ ; in [29] this is called the

polarized Heisenberg group.

Let $n$ be a natural number. Denote by $L^{p}(R^{n})$ the $L^{p}$ space with respect to

Lebesgue measure, $||f||_{p}$ is the $L^{p}$ norm of $f$ . The inner product is defined by

$\{f|g\rangle=\int_{R^{n}}\overline{f(x)}g(x)dx$ ,
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for all $f,$ $g\in L^{2}(R^{n})$ .

Let $h$ be a positive real number. The Schrodinger representation of $H_{1}$ with

Planck’s constant $h$ is the strongly continuous unitary representation $\rho_{h}$ of $H_{1}$ on

$L^{2}(R)$ defined by

$\rho_{h}(p, q, t)f(x)=e^{2\pi i(t+qx)/h}f(x+p)$ , (2.2)

for all $f\in L^{2}(R)$ .

Denote by $L^{p}(\star R^{n})$ the nonstandard extension of $L^{p}(R^{n})$ with internal norm $||\cdot||_{p}$ .

The internal inner product is denoted by $\langle\cdot|\cdot\rangle$ , which satisfies

$\langle f|g)=\int_{\star}R^{n}\overline{f(x)}g(x)dx$ ,

for all $f,$ $g\in L^{2}(\star R^{n})$ , where the integral is internal Lebesgue integral. We will

denote the nonstandard hull of $L^{p}(\star R^{n})$ by $\hat{L}^{p}(\star R^{n})$ . For $f\in L^{p}(R^{n})$ , we will

identify $\circ*f$ with $f$ for simplicity of notations, and accordingly identify the subset

$\{Qf|f\in\sigma(L^{P}(R^{n}))\}$ of $\hat{L}^{p}(R^{n})$ with $L^{p}(R^{n})$ .

For any $k\in K$ , consider the internal intervals $I_{k}=(k\triangle x-\epsilon, k\triangle x+\epsilon]$ . Let $\mathcal{F}$ be

the internal $\sigma$-subfield of the internal Borel $\sigma- field\mathcal{B}(\star R)$ generated by all $I_{k}(k\in K)$ ,

and $L^{2}(\mathcal{F})$ the internal closed subspace of $L^{2}(\star R)$ consisting of internal $\mathcal{F}$-measurable

functions. For any $k\in K$ , let $\triangle_{k}$ be the indicator function of the internal interval $I_{k}$ ,

i.e., $\triangle_{k}(x)=1$ if $x\in I_{k)}$ and $\triangle_{k}(x)=0$ otherwise. Then $L^{2}(\mathcal{F})$ is internally spanned

by $\{\triangle_{k}|k\in K\}$ , and we have

$\langle\triangle_{k}|\triangle_{k’}\}=\delta_{k,k’}\triangle x$ .

We will denote the intcrnal closed subspacc $\otimes_{\dot{g}=1}^{n}L^{2}(\mathcal{F})$ of $L^{2}(\star R^{n})$ by $L^{2}(\mathcal{F}^{n})$ .

Let $\mathcal{U}$ be a linear map from $R(K^{\mathfrak{n}})$ to $L^{2}(\mathcal{F}^{n})$ sucli tliat

$\mathcal{U}f=\sum_{k_{1\prime}\ldots,k_{n}\in K}f(k_{1}, \ldots, k_{\iota})\triangle_{k_{1}}\cdots\triangle_{k_{n}}$
,
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for all $f\in R(K^{n})$ . Then it is easy to see that $\mathcal{U}$ is an internal unitary transformation

from $R(K^{n}, (\triangle x)^{n})$ onto $L^{2}(\mathcal{F}^{n})$ , and that $\mathcal{U}(\delta_{k_{1}}\cdots\delta_{k_{\hslash}})=(\triangle x)^{-n}\triangle_{k_{1}}\cdots\triangle_{k_{n}}$. For

any $(k, l, m)\in H$ , define the internal unitary operator $\pi(W(k, l, m))$ on $L^{2}(\mathcal{F}^{n})$ by

$\pi(W(k, l, m))=\mathcal{U}W(k, l, m)\mathcal{U}^{-1}$ ,

and denote by $\hat{\pi}(W(k, l, m))$ the nonstandard hull of $\pi(W(k, l, m))$ . Obviously, the

map $(k, l, m)arrow\pi(W(k, l, m))$ is an internal unitary representation of $H$ internally

unitarily equivalent to $W$ , and $(k, 1, m)arrow\hat{\pi}(W(k, l, m))$ is a unitary representation

of $H$ unitarily equivalent to $\hat{W}$ .

Let $C_{b}(R^{n})$ be the space of bounded complex-valued continuous functions on $R^{n}$ ,

and $C_{b}(\star R^{n})$ the nonstandard extension of $C_{b}(R^{n})$ . For any $f\in C_{b}(\star R^{n})$ , define

$Sf\in R(K^{n})$ by

$(Sf)(k_{1}, \ldots, k_{n})=f(k_{1}\triangle x, \ldots , k_{n}\triangle x)$ ,

for all $k_{i}\in K$ $(i=1, \ldots , n)$ . Then the map $S$ : $f\mapsto Sf$ is defined as an internal

linear transformation from $C_{b}(\star R^{n})$ to $R(K^{n}, (\triangle x)^{n})$ . For any $f\in L^{2}(\star R^{n})$ , define

$\mathcal{E}f\in R(K^{n})$ by

$( \mathcal{E}f)(k_{1}, \ldots, k_{n})=\frac{1}{(\triangle x)^{n}}\{\triangle_{k_{1}}\cdots\triangle_{k_{\hslash}}|f\}=\frac{1}{(\triangle x)^{n}}\int_{I_{k_{1}}x\cdots xI_{kn}}f(x)dx$ .

The map $\mathcal{E}$ : $f\mapsto \mathcal{E}f$ is defined as an internal linear transformation from $L^{2}(\star R^{n})$ to

$R(K^{n})$ . Let $E$ be the internal projection from $L^{2}(\star R^{n})$ onto $L^{2}(\mathcal{F}^{n})$ . Then $E=\mathcal{U}\mathcal{E}$ .

We define $S:L^{2}(\star R^{n})arrow L^{2}(\mathcal{F}^{n})$ by $S=\mathcal{U}S$ . Denote by $\hat{E}$ and $\hat{S}$ the nonstandard

hull of $E$ and $S$ , respectivcly.

Lcinma 2.5. Let $n$ be a natu $\tau\cdot al$ number. $\Gamma^{r}or$ any $f\in C_{b}(R^{n})\cap L^{p}(R^{n})$ , we have

$||S^{\star}f-\star f||_{p}\approx 0$ .
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Proof. Let $n=1$ . For any $\nu\in\star N$ , let $f_{\nu}$ be such that

$f_{\nu}(x)=\{\begin{array}{ll}\star f(\frac{k}{2\nu}) if k\in\star N, -2\iota/^{2}<m\leq 2\iota/^{2}, and \frac{2k-1}{4\nu}<x\leq\frac{2k+1}{4\nu},0 otherwise,\end{array}$

for all $x\in R$ . Then it is easy to see that $f_{\nu}$ is standard for all $\nu\in N$ , and that the

standard sequence $\{||f_{\nu^{-\star}}f||_{p}|\nu\in N\}$ converges to $0$ , and hence $||f_{s^{-\star}}f||_{p}\approx 0$ .

Since $S^{\star}f=f_{S}$ , we have $||Sf-\star f||_{p}\approx 0$ . The proof for general $n$ is analogous. $\square$

Denote by $K(R)$ the space of complex-valued continuous functions on $R$ with

compac $t$ support.

Theorem 2.6. For any $f\in L^{2}(R^{n})$ , we have $||E^{\star}f-\star f||_{2}\approx 0$ .

Proof. Let $f\in K(R)$ . By the transfer principle and a property of projection,

we have $||E^{\star}f-\star f||_{2}\leq||S^{\star}f-*f||_{2}$ , and hence by Lemma 2.5 $||E^{\star}f-\star f||_{2}\approx 0$ .

It follows that $\hat{E}f=f$ for all $f\in K(R)$ . By the density of $K(R)$ in $L^{2}(R)$ and

continuity of projections, this holds for all $f\in L^{2}(R)$ . Thus we have $||E^{\star}f-\star f||2\approx 0$

for all $f\in L^{2}(R)$ . $\square$

From the above theorem, we can embed $L^{2}(R^{n})$ in $\hat{L}^{2}(\mathcal{P})$ as a closed linear

subspace by the correspondence between $f\in L^{2}(R^{n})$ and $\hat{E}f=\circ(Ef)\in\hat{L}^{2}(\mathcal{F}^{n})$ .

Now, let $\star H_{1}$ be the nonstandard extension of $H_{1}$ . For any $(p, q, t),$ $(p’, q’, t’)\in$

$\star H_{1}$ , we write $(p, q, t)\approx(p’, q’, t’)$ , if $p\approx p’,$ $q\approx q’$ , and $t\approx t’$ , and write $|(p, q, t)|<$

$\infty$ , if $|p|<\infty,$ $|q|<\infty$ , and $|t|<\infty$ . Lel fin $(\star H_{1})$ be the principal galaxy of $\star H_{1}$ ,

and $\mu(\star H_{1})$ tlie principal monad of $\star H_{1}$ , i.e.,

$fi_{\ddagger}\iota(\star H_{1})$ $=$ $\{(p, q, t)\in\star H_{1}||(p, q, \iota)|<\infty\}$ ,

$\mu(\star H_{1})$ $=$ $\{(p, q, t)\in\star H_{1}|(p, q, t)\approx(0,0,0)\}$ .

Then we have tlie following; for tlie proof see [9, p. 204].
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Lemma 2.7. The set fin $(\star H_{1})$ is a subgroup of $\star H_{1},$ $\mu(H_{1})$ is a normal subgroup

of fin$(\star H_{1})$ , and the quotient group fin$(\star H_{1})/\mu(H_{1})$ is isomorphic to $H_{1}$ under the

correspondence $x\mu(H_{1})$ and $x\in H_{1}$ ,

We will denote by $\star\rho_{h}$ the nonstandard extension of $\rho_{h}$ . Then $\star\rho_{h}$ is an inter-

nal unitary representation of $\star H_{1}$ on $L^{2}(R)$ . In the following lemmas, we assume

$(k, l, m)\in H$ , and $k’,$ $k”\in K$ .

Lemma 2.8. We have the following relations.

$\{\triangle_{k’}|\pi(W(k, l, m))|\triangle_{k^{\prime t}}\rangle$

$\simeq$ $\delta_{k’\oplus k_{1}k’’}e^{2\pi i(m+lk’)/K}\triangle x$ ,

$\{\triangle_{k^{l}}|^{\star}\rho_{h}(k\triangle x, hl\triangle x, hm(\triangle x)^{2})|\triangle_{k’’}\rangle$

$=$ $\{\begin{array}{ll}\delta_{k’+k,k^{l\prime}}e^{2\pi i(m+lk^{l})/K}\frac{\sin\pi(l\triangle x)\triangle x}{\pi(l\triangle x)\triangle x}\triangle x, if l\neq 0,\delta_{k’+k_{1}k’’}e^{2\pi im/K}\triangle x, if l=0,\end{array}$

Proof. The assertion follows from routine computations and the transfer principle.

$\square$

Lemma 2.9. If $|k\triangle x|<\infty$ and $|k’\triangle x|<\infty$ , then $k’\oplus k=k’+k$ . If $|k\triangle x|<\infty$

and $|k’’\triangle x|<\infty$ , then $k”\ominus k=k’’-k$ . If $|k\triangle x|<\infty,$ $then\ominus k=-k$ .

Proof. It follows from the assumptions that $|k’\triangle x+k\triangle x|<\infty$ . Thus there is a

standard $n\in N$ such that $-n<(k’+k)\triangle x<n$ , and hence $-2S^{2}<-2nS<k’+k<$

$2nS<2S^{2}$ . Therefore, we have $k’\oplus k=k’+k$ . The proofs for the other assertions

are similar. $\square$

Lcinma 2.10. Suppose $|k\triangle x|<\infty$ . If $|k’\triangle x|<\infty$ or $|k’’\triangle x|<\infty$ , then

$|\{\triangle_{k’}|\pi(W(k, 1, m))-\star\rho_{h}(k\triangle x, hl\triangle x, hm(\triangle x)^{2})|\triangle_{k’’}\}|$

$=$ $\{\begin{array}{ll}\delta_{k’+k,k’’}(1-\frac{sin\pi(l\triangle x)\triangle x}{\pi(l\triangle x)\triangle x})\triangle x, if l\neq 0_{1}0 if l=0.\end{array}$
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Proof. When $|k’\triangle x|<\infty$ , the assertion follows immediately from Lemmas 2.8 and

2.9. When $|k’’\triangle x|<\infty$ , the proof is analogous from the relations $\delta_{k’\oplus k,k’’}=\delta_{k’,k’’\ominus k}$ ,

$\delta_{k’+k,k^{u}}=\delta_{k’,k’’-k}$ , and $k”\ominus k=k’’-k$ . $\square$

Theorem 2.11. For any $(p, q, t)$ $\in$ $H_{1}$ and $(k, l, m)$ $\in$ $H_{f}$ if
$(k\triangle x, hl\triangle x, hm(\triangle x)^{2})\approx(p, q,t)$ , then

$||\pi(W(k, l, m))E^{\star}f-\star(\rho_{h}(p, q, t)f)||_{2}\approx 0$, (2.3)

for all $f\in L^{2}(R)$ .

Proof. By the continuity of $\hat{\pi}(W(k, l, m))$ and $\rho_{h}(p, q, t)$ on $L^{2}(R)$ , it suffices to

prove Eq. (2.3) for all $f\in K(R)$ . Let $f\in K(R)$ . Suppose $(k\triangle x, hl\triangle x, hm(\triangle x)^{2})\approx$

$(p, q,t)$ . Since $f\in K(R)$ , there is a real $M>0$ such that $\star f(x)=0$ if $|’\vee r|>M$ , and

hence

$Sf=\sum_{-M<k’\Delta x<M}f(k’\triangle x)\triangle_{k^{l}}$
,

and

$|| Sf||_{2}^{2}=\sum_{-M<k’\triangle x<M}|f(k’\triangle x)|^{2}\triangle x$
.

Suppose $1\neq 0$ . By the assumption, $l\triangle x=O(1)$ , and hence

$1- \frac{\sin\pi(l\triangle x)\triangle x}{\pi(l\triangle x)\triangle x}=O(\frac{1}{I\zeta})$ .

Thus from Lemma 2.10,

$||\pi(W(k, 1, m))S^{\star}f-\star\rho_{h}(k\triangle x, hl\triangle x, hm(\triangle x)^{2})S^{\star}f||_{2}^{2}$

$=$
$( \triangle x)^{-1}\sum_{k’\in K}|\langle\triangle_{k’’}|\pi(W(k, 1, m))^{\star}-\rho_{h}(k\triangle x, hl\triangle x, hm(\triangle x)^{2})|S^{\star}f\rangle|^{2}$

$=$
$( \triangle x)^{-1}\sum_{k’\in K}\sum_{-M<k’\triangle x<M}|^{\star}f(k’\triangle x)|^{2}\cross$

$\cross|\{\triangle_{k’’}|\pi_{h}(W(k, 1, m))-\star\rho_{h}(k\triangle x, hl\triangle x, hm(\triangle x)^{2})|\triangle_{k’}\rangle|^{2}$
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$=$ $( \triangle x)^{-1}\sum_{-M<k’\Delta x<M}|^{\star}f(k’\triangle x)|^{2}(\triangle x)^{2}O(\frac{1}{K})^{2}$

$=$ $o( \frac{1}{K})^{2}\sum_{-M<k’\Delta x<M}|^{\star}f(k’\triangle x)|^{2}\triangle x$

$=$ $o( \frac{1}{K})^{2}||Sf||_{2}^{2}$ .

Thus we have

$||\pi(W(k, l, m))S^{\star}f-\star\rho_{h}(k\triangle x, hl\triangle x, hm(\Delta x)^{2})S^{\star}f||_{2}\approx 0$

It is easy to see that the las $t$ relation holds for the case $1=0$ with equality. By Lemma

2.5 and Theorem 2.6, $||E^{\star}f-\star f||_{2}\approx 0$ , and hence $||\pi(W(k, l\}m))(E^{\star}f-S^{\star}f)||_{2}\approx$

$0$ . By Lemma 2.5, $||S^{\star}f-\star f||_{2}\approx 0$ , so that $||^{\star}\rho h(k\triangle x, hl\triangle x, hm(\triangle x)^{2})(S^{\star}f-$

$\star f)||_{2}\approx 0$ . By strong $contin\underline{u}ity$ of $\rho_{h}$ , we have $||^{\star}\rho_{h}(k\triangle x, hl\triangle x, hm(\triangle x)^{2})^{\star}f-$

$\star(\rho_{h}(p, q, t)f)||_{2}\approx 0$. Therefore, we have

$||\pi(W(k, 1, m))E^{\star}f-\star(\rho_{h}(p, q, t)f)||_{2}$

$\leq$ $||\pi_{h}(W(k, l, m))(E^{\star}f-S^{\star}f)||_{2}$

$+||\pi(W(k, l, m))S^{\star}f^{\star}-\rho h(k\triangle x, hl\triangle x, hm(\triangle x)^{2})S^{\star}f||_{2}$

$+||^{\star}\rho_{h}(k\triangle x, hl\triangle x, hm(\Delta x)^{2})(S^{\star}f-\star f)||_{2}$

$+||^{\star}\rho(k\triangle x, hl\triangle x, hm(\triangle x)^{2})^{\star}f-\star(\rho_{h}(p, q, t)f)||_{2}$

$\approx$ $0$ .

This completes the proof. $\square$

$\Gamma^{\tau}or$ any $(p.q.t)\in H_{1}$ , definc $\triangle(p, q, t)\in H$ by

$\triangle(p, q, t)=([\frac{p}{\triangle x}], [\frac{q}{h\triangle x}], [\frac{t}{h(\triangle x)^{2}}])$ ,

where $[r]$ is the greatest integer $n$ such tliat $n\leq r$ . Recall that $L^{2}(R)$ is embedded

in $\hat{L}^{2}(\mathcal{F})$ by tlie realation $f=\hat{E}f$ for all $f\in L^{2}(R)$ . Tlien we have tlie following.
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Theorem 2.12. For any $(p, q, t)\in H_{1}$ and $f\in L^{2}(R)$ ,

$\hat{\pi}(W(\triangle(p, q, t)))f=\rho_{h}(p)q,$ $t)f$ .

Proof. Let $f\in L^{2}(R)$ , and $(k, l, m)=\triangle(p, q, t)$ . Since $(k\triangle x, hl\triangle x, hm(\triangle x)^{2})\approx$

$(p, q, t)$ , from Theorem 2.11,

$||\hat{\pi}(W(\triangle(p)q, t)))f-\rho_{h}(p, q, t)f||_{2}$

$=$ $\circ||\pi_{h}(W(\triangle(p, q)t))E^{\star}f-\star(\rho_{h}(p, q, t)f)||_{2}$

$=$ $0$ .

$\square$

Let fin $(H, \triangle x)$ and $\mu(H, \triangle x)$ be such that

fin$(H, \triangle x)$ $=$ $\{(k, l, m)|(k\triangle x, l\triangle x, m(\triangle x)^{2})\in fin(H_{1})\}$ ,

$\mu(H, \triangle x)$ $=$ $\{(k, l, m)|(k\triangle x, 1\triangle x, m(\triangle x)^{2})\in\mu(H_{1})\}$ .

Then it follows from a similar argument to the proof of Lemma 2.9 that fin $(H, \triangle x)$

is a subgroup of $H$ , and $\mu(H, \triangle x)$ is a normal subgroup of fin $(H, \triangle x)$ . By Lemma

2.7, the quotient group fin$(H, \triangle x)/\mu(H, \triangle x)$ is isomorphic to $H_{1}$ . Thus we have the

following theorem.

Theorem 2.13. Let $f\in L^{2}(R)$ with $f\neq 0$ , and $\prime k\ell$ be the closed subspace of
$\hat{R}(K, \triangle x)$ such that

$’\kappa=\{\hat{W}(k, 1, m)(\circ \mathcal{E}^{\star}f)|(k, 1, m)\in fin(H, \triangle x)\}^{\perp\perp}$ .

$\Gamma^{r}or$ any $(k, 1, m)\in fin(H, \triangle x)$ , let $\tilde{W}(k, 1, m)$ be the restriction of $\hat{W}(k, 1, m)$ to $H$ .

Then the map $(p, q, t)\mapsto\tilde{W}(\triangle(p, q, t))$ is a sirongly continuous unitary representation

of $H_{1}unitaril?/$ equivalent to the Schrodinger representation $\rho_{h}$ on $L^{2}(R)$ .

Proof. An immediate consequence from Theorem 2.12 and $tl\iota e$ irreducibility of $\rho_{h}$ .

$\square$
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2.5. Noncommutative Parseval’s identity

In [25], one of the authors (I.O.) proposed an idea of a nonstandard-analytic proof

of noncommutative Parseval’s identity for the Schr\"odinger representation of the CCR

by transferring the orthogonality relations for unitary representations of compact or

finite groups. The rigorous proof along with this line can be carried out in the present

framework. The proof runs as follows.

Noncommutative Parseval’s identity for the Schr\"odinger representation of the CCR

is known as the following relation

$\int\int_{R^{2}}\langle\psi_{1}|\rho_{h}(p, q, 0)|\varphi_{1}\}\langle\varphi_{2}|\rho_{h}(p, q)0)^{-1}|\psi_{2}\rangle\frac{dpdq}{h}=\langle\varphi_{2}|\varphi_{1}\rangle\{\psi_{1}|\psi_{2}\rangle$ , (2.4)

for all $\psi_{i},$ $\varphi;\in L^{2}(R)(i=1,2)$ .

By the way, let $G$ be a compac $t$ group with two-sided Haar measure $\mu,$ $\sigma$ an

irreducible unitary representation of $G$ on a unitary space $V$ . Then the $follo\iota ving$

orthogonality relations hold

$\int_{G}\{\psi_{1}|\sigma(g)|\varphi_{1})\{\varphi_{2}|\sigma(g)^{-1}|\psi_{2}\}d\mu(g)=\frac{\mu(G)}{\dim(V)}\{\varphi_{2}|\varphi_{1}\rangle\{\psi_{1}|\psi_{2}\rangle$, (2.5)

for any $\varphi;,$ $\psi_{i}\in L^{2}(G)(i=1,2)$ . By Transfer Principle, the internal irreducible

representation $W(=\sigma)$ of the hyperfinite group $H(=G)$ on the space $R(K, \triangle x)$

$(=V)$ satisfies the above relation with $\mu(G)=K^{3}$ and $\dim(V)=K$ . Thus we have

$\frac{1}{If^{2}}\sum_{k,l,m\in K}\langle\psi_{1}|W(k, 1, m)|\varphi_{1}\}\{\varphi_{2}|W(k, 1, m)^{-1}|\psi_{2}\}=\{\varphi_{2}|\varphi_{1}\}(\psi_{1}|\psi_{2}\}$,

for all $\varphi;,$ $\psi;\in R(K, \triangle x)(i=1,2)$ . $1^{I}\urcorner rom$ llic rclatior $\ddagger\prime V(k, 1, m)=e^{2\pi im/\int_{\backslash }^{\sim}}\ddagger jV(k, l, 0)$

aiid $W(k, 1, m)^{-1}=e^{-2\pi im/K}W(k, 1,0)^{-1}$ , we liave

$\frac{1}{It’}\sum_{k,l\in K}\langle\psi_{1}|W(k, 1,0)|\varphi_{1}\}(\varphi_{2}|W(k, 1,0)^{-1}|\psi_{2}\}=\langle\varphi_{2}|\varphi_{1}\}\{\psi_{1}|\psi_{2}\}$.
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Since $W(k, l, m)$ and $\pi(W(k, l, m))$ are internally unitarily equivalent, we have

$\sum_{k_{J}l\in K}\langle\psi_{1}|\pi(W(k, 1,0))|\varphi_{1}\}\langle\varphi_{2}|\pi(W(k, l, 0)^{-1})|\psi_{2}\rangle(\triangle x)^{2}=\langle\varphi_{2}|\varphi_{1}\rangle\langle\psi_{1}|\psi_{2}\rangle$
, (2.6)

for all $\varphi i,$ $\psi_{1}\in L^{2}(\mathcal{F})(i=1,2)$ .

Let $\mathcal{D}(R)$ be the space of infinitely differentiable complex-valued functions on $R$

with compact support. By the density of $D(R)$ in $L^{2}(R)$ , we can assume $\varphi:,$
$\psi_{:}\in$

$D(R)(i=1,2)$ without any loss of generality. Then there is a standard $M>0$

such that $\star\varphi i(x)=*\psi_{i}(x)=0$ for all $x\in\star R$ with $|x|>M$ . Thus we have for any

$k,$ $k’\in K,$ $\star\varphi;((k’\oplus k)\triangle x)=\varphi i(k’\triangle x+k\triangle x)$ , etc.

Then, from Eq. (2.6) and Lemma 2.5, we have

$\langle\varphi_{2}|\varphi_{1}\rangle\langle\psi_{1}|\psi_{2}\rangle$

$\approx$ $\langle S^{\star}\varphi_{2}|S^{\star}\varphi_{1}\rangle\langle S^{\star}\psi_{1}|S^{\star}\psi_{2}\rangle$ (by Lemma 2.5)

$=$
$\sum_{k,l\in K}\{S^{\star}\psi_{1}|\pi(W(k, 1,0))|S^{\star}\varphi_{1})\{S^{\star}\varphi_{2}|\pi(W(k, l, 0)^{-1})|S^{\star}\psi_{2}\rangle(\triangle x)^{2}$

(by Eq. (2.6)

$=$
$\sum_{k,l,k,k’’\in K}\overline{\star\psi_{1}(k^{J}\triangle x)}e^{2\pi i(l\Delta x)(k’\Delta x)\star}\varphi_{1}(k’\triangle x+k\triangle x)e^{-2\pi\dot{\iota}(l\Delta x)(k’’\triangle x)}\cross$

$\cross\overline{\star\varphi_{2}(k’’\triangle x+k\triangle x)}^{\star}\psi_{2}(k’’\triangle x)(\triangle x)^{4}$ (by definition)

$\approx$ $\int_{\star}R^{4}\overline{\star\psi_{1}(x’)}e^{2\pi iqx’/h\star}\varphi_{1}(x’+p)e^{-2\pi iqx’’/h}\cross$

$\cross\overline{\star\varphi_{2}(x’’+p)}^{\star}\psi_{2}(x’’)dp(dq/h)dx’dx’’$ (by Lemma 2.5)

$=$ $\int_{R^{2}}\{\psi_{1}|\rho_{h}(p, q, 0)|\varphi_{1}\rangle\langle\varphi_{2}|\rho_{h}(p, q, 0)^{-1}|\psi_{2}\}\frac{dpdq}{h}$ . (by definition)

Since the first and the las $t$ terms are standard, they must be equal. Therefore, we

have proved Eq. (2.4) from Eq. (2.5).

3. Logical extcnsion methods in pliysics

The purpose of this section is to give a brief account on tlie preseiit status and tlte

acliieveinent of the prograni in tlie logical exteiision $n\iota etl\iota ods$ in pliysics, wliicli is
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summarized in Figure 1.

standard model of
quantum mechanics: $QM$

hyperfinite cut-off

Figure 1: Diagram of logical extension methods. Every site shows a physical theory,

and every arrow shows a method for obtaining a new theory or a relation between

two theories.

3.1. Boolcan-valucd cxtcnsion of quantum mcchanics

Througliout $11\iota is$ section a (Boolean algebra” means a “complele Boolean algcbra” in

the ordinary sense, and $B$ denotes a Boolean algebra. In the diagram, $QM$ stands

for the standard quantum mechanics and $CM$ the standard classical mechanics.
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The Boolean-valued universe $V^{(B)}$ of set theory based on $B$ is a model of ZFC, the

Zermelo-Fraenkel set theory with the Axiom of Choice, in which the truth value of a

statement is determine as an element of $B[13]$ . In the right side, $QM^{(B)}$ stands for

the “quantum mechanics” in the Boolean-valued universe, $or$ Boolean-valued quan-

tum mechanics in short, which is the interpretation of syntactical rules of quantum

mechanics in a Boolean-valued universe instead of the standard universe. The ar-

row from $QM$ to $QM^{(B)}$ symbolizes the process of Boolean-valued extension, one of

the logical extensions, of quantum mechanics, that is the change of the theory from

standard quantum mechanics to the Boolean-valued quantum mechanics.

A common feature of such logical extensions is to leave the syntax of the original

theory invariant, but to change the semantics according to $certa_{\overline{1}}n$ logical procedures

described rigorously. Since the validity of mathematical inferences or proofS is dom-

inated only by syntactical rules as formulated in terms of symbolic manipulations,

and is independent of the meanings of sentences, the change of semantics without

changing the syntax does not affect the syntactical validity such as provability or

deducibility, and leads to transfer principles which transfer a valid sentence in one

theory to the corresponding valid sentence in another. Nevertheless, the extended

theory can have the drastically different physical meaning yielded by the semantical

change.

The peculiar feature of the Boolean-valued extension is the change of logic from

the 2-valued logic to the B-valued logic, a certain many-valued logic with even con-

tinuously many truth values. A serious analysis of the Boolean-valued quantum

mcclianics arosc as lhc first atlcmpl of $t1\iota e$ logical cxlcnsion mcthods $i_{I1}$ tlic $follo\iota viiig$

circumstances.

In 1980 Machida and Namiki [20] proposed a tlieory of measurement, called tlie

many Hilbert space theory, incorporating with extending tlie formalism of quantum
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mechanics by allowing a macroscopic parameter, and Araki [21] laid the mathemat-

ical foundation of their extension on the continuous superselection rule (CSR). The

arrow bom $QM+superselection$ rules” to $QM+CM$” symbolizes Araki’s proposal

of using the CSR as the framework of description of micrxmacro combined systems.

In 1984 Yanase [30] pointed out a parallelism between an idea of the indefinite de-

scription of a quantum system in Machida-Namiki theory and fuzzy set theory, and

proposed a program of making foundations of Machida-Namiki theory from the log-

ical point of view. By the way, in 1983 Takeuti [17] and Ozawa [18] established the

transfer principle between (the algebras of all bounded operators on Hilbert spaces”

in a Boolean-valued universe and “the type I von Neumann algebras of all decom-

posable operators on direct integral Hilbert spaces” in the standard universe. From

this result, Ozawa [22] established the transfer principle between the Boolean-valued

quantum mechanics and the standard quantum mechanics with a CSR. According to

this transfer principle, we have the following equivalence between the two theories.

$QM+CSR_{\mu}=QM^{(B)}+(averaging$ $by$ $\mu$”,

where $CSR_{\mu}$ is the continuous superselection rule induced by an absolutely continuous

measure $\mu$ , and $B$ is chosen as the measure algebra of $\mu$ . The arrow from $QM^{(B)}$ to

$(\zeta QM+$ superselection rule” symbolizes this equivalence.

Thus the consecutive three arrows from $QM$ through $QM^{(B)}$ to $QM+CM$ give

naturally a certain logical analysis of the Machida-Namiki theory. The real numbers

in the Boolean-valued universe arc rcpresented by random variables, and hence the

Boolcan-valued quantum mechanics predicts the expcctation of tlie oulcome of a

measureincnl as a raiidom variable. Neverllieless, tlie prediclion in $QM+CSR_{\mu}$ is

a standard real number, wliich in turn $coii\iota cides$ witli $t\mathfrak{l}\iota e$ average of tlie prediction

in $QM^{(B)}$ by measure $\mu$ . Thus we can conclude that tlie semaiitical chaiige froin tlie
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$QM$ to $QM+CSR_{\mu}$ is the change of logic from 2-valued logic to the Boolean-valued

logic, and that the syntactical change is the additional prescription of averaging the

random prediction by measure $\mu$ . This kind of understanding of the CSR leads to

the following answer to Yanase’s problem: the Machida-Namiki extension of quantum

mechanics by adding a macroscopic parameter is mathematically equivalent to the

extension of the real number system augmented by a generic real by the method of

forcing. For the full account of the parallelism between the Machida-Namiki theory

and Cohen’s forcing, we will refer to [22].

3.2. Heyting-valued extension of quantum mechanics

Heyting algebras naturally arise as the algebraic structure of the truth values in the

intuitionistic logic instituted by Brower. As the inference rules of the intuitionistic

logic generalizes the classical logic, the Heyting algebras generalize the Boolean al-

gebras. The most typical example of a Heyting algebra is the complete lattice of

open sets in a topological spac $e$ . The construction of the Heyting-valued universe is a

direct adaptation of the construction of the Boolean-valued universe, and the Heyting-

valued universe is a model of intuitionistic set theory, topos theory, and higher-order

sheaf theory as well as fuzzy set theory in a special case [31]. However, “the quantum

mechanics” in the Heyting-valued universe, indicated by $QM^{(\Omega)}$ in the left side of the

diagram, where $\Omega$ stands for a Heyting algebra, has not been studied seriously.

3.3. Nonstandard extension of quantum meclianics

The nonstandard universe is described in Subscction 2.1. The nonstandard quantum

mechanics, denoted by $\star QM$ in tlie center of tlie diagram, is the interpretation of

quantum mechanics in the nonstandard universe. Since tlie nonstandard universe

is a bounded elementary extension of the standard superstructure, tlie iionstaiidard
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quantum mechanics is naturally an elementary extension of the standard quantum

mechanics, as indicated by the arrow from $QM$ to $\star QM$ . Usually, the nonstandard

universe is constructed by the bounded ultrapower of a standard superstructure.

However, Ozawa [32] extended the construction to any Boolean algebra $B$ so that

the quotient of a (superstructure” in $V^{(B)}$ by an $\omega$-incomplete ultraffiter yields a

nonstandard universe, and that the $or$dinary construction corresponds a special case

where $B$ is atomic. The arrow from $QM^{(B)}$ to $\star QM$ indicates the change from $QM^{(B)}$

to $\star QM$ caused by this construction of the nonstandard universe. Thus, $QM^{(B)}$ has

another way to yield a theory in the 2-valued logic with numerical predictions. The

arrows from $QM^{(B)}$ to $QM+CM$ via $\star QM$ corresponds in turn to selecting an

ideal superselection sector contrasting to the way of averaging over all superselection

sectors mention in Subsection 3.1. However, these two theories obey entirely different

physical interpretations on these numericalization processes. The arrow from $\star QM$

to $CM$ indicate the process of choosing the unit with $\hslash\approx 0$ and taking the standard

part, which is equivalent to taking limit as $\hslasharrow 0$ in the traditional correspondence

principle. Thus the process indicated by this arrow yields the classical mechanics. The

arrow from $\star QM$ to $QM+CM$ indicates that the nonstandard quantum mechanics

gives rise to a synthesis of quantum mechanics and classical mechanics in a natural

way. In the nonstandard quantum mechanics, the observables are represented by

the internal self-adjoint operators on an internal Hilbert space $?t$ , and the states

the internal density operators. Obviously, the expectation values are predicted as

hyperreal numbers, and hence we will call the standard part of a prediction of $\star QM$

as the standardized prediction.

The case where the quantum system is an one-dimensional quantum harmonic.

oscillator is examined in detail by Ozawa [6]. In this case, by direct transfer we liave

$\prime kl=L^{2}(\star R)$ , and the Hamiltonian is $H=h \omega(\star N+\frac{1}{2})$ , wliere $N$ is tlie internal
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number operator and $\omega$ is the angular frequency. Now, we have options in choosing

a unit system in describing the same physical system; the following two unit systems

are considered: 1) a micro-unit system in which $h=1$ , and 2) a macro-unit system

in which $h=\epsilon$ where $\epsilon\approx 0$ , and the units of mass and time is assumed to be

the same in the both scales. Then under this assumptions, it is shown that the

standardized prediction of $\star QM$ under the micro-unit system is the same as the

standard quantum mechanics, whereas the standardized prediction under the macro-

unit system coincides with the classical harmonic oscillator with the same mass and

angular frequency. Thus we have

$\star_{QM}+h\sim 1"+(standard$ part” $=$ QM,

$\star QM+(\hslash\approx 0"+((standard$ part” $=$ CM.

In this way, we have in $\star QM$ a consistent synthesis of quantum mechanics and classical

mechanics described by the same mathematical structure with different unit systems.

For the detail. we refer to [6].

3.4. Hyperfinite cut-off

In the ordinary physics, the cut-off is used to avoid the divergence in the early stage

of calculations. However, it is usual that a theory with the cut-off and the theory

after the limit process of clearing the cut-off are much different in mathematicaJ or

intuitive point of view. In the nonstandard quantum mechanics, the hyperfinite cut-off

is possible, and taking the standard part clears the cut-off. Thus the theories with cut-

off and without $cul$-off can dcscribe $t$ he same physical state; $t1\iota$ is is usually impossiblc

in the ordinary approach since tlie taking of tlie limit clianges tlie pliysical state

described by the theory. Our approach of the liyperfnite Heisenberg group developed

in Section 2 is considered as a unifed approach to the hyperfiiiite cut-off theories of the
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nonstandard quantum mechanics. In fact, the Schr\"odinger representation discussed in

Subsection 2.4 is equivalent to the hyperfinite cut-off of both position and momentum,

and the number-phase quantization proposed in [23] corresponds to the hyperfinite

cut-off of the number of quanta. The arrow from $\star QM$ to the “hyperfinite cut-off” is

slightly mo$re$ open than others, and prompting a future development of this direction.
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