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GLOBAL LOGIC RESULTING FROM DISEQUILIBRATION PROCESS
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Describing a system in which internal detection or
observation proceeds at a finite velocity 1is always destined to
end up with a form of self-contradiction. For any formal language
for such a description must assume that the velocity of
observation propagation or VOP be infinity. In the present paper,
we propose a self-referential scheme intended for formally
describing a system exhibiting the process of disequilibration
propagating at a finite VOP, and find that a global 1logic can
emerge from local disequilibration. Conservative cellular
automata of Margolus type, for instance, enable disequilibration
to be replaced by such a process that the number of particles is
not conserved globally while appearing to be conserved by local
observers. One cannot determine  1local rules universally.
Nevertheless, global logic emerges as a result of the dynamics of
a one-to-many type mapping. This 1is a fundamental aspect of
natural languages or communication relevant to natural life and
intelligence.

1. Introduction

Describing the time evolution of an interacting many-element
system usually forces us to employ a set of local rules claimed
to be valid over the entire space. Such a globality of 1local
rules suggests the existence of a kind of field, rendering both
local and global inrteractions feasible in a mutually consistent
manner. However, it is also suggested that 1local description
often conflicts with its global counterpart in the realm of
biology. One attempt for escaping the conflict 1is appraisal of
hierarchical structure. This perspective naturally raises. a

question on the origin of hierarchy in 1life, evolution and
intelligence,- a lasting battle field between holism and
reductionism.

Antagonism between local and global description originates
in the aspect that one cannot have local rule that are claimed to
be universal at the same time. This universality involves the
assumption that the velocity of observation propagation (VOP) be
set to be infinite. Once the finiteness of VOP 1is legitimately
noted, one comes to face the disparity between the global feature
generated by those 1local rules and those global features
conflicting with the rules. Langevin equations, for instance,
are an example exhibiting such a conflict, in which 1local rules
embodied in the deterministic part show marked and conflicting
contrast to the stochastic part. The 1larger the velocity of
observation propagation is, the more effective the stochastic
term would become in the time evolution of the system called
dissipative structures. If one replaces the deterministic term
by a chaotic map, a coupled map lattice can well approximate a

"system with a finite VOP (Crutchfield & Kaneko, 1987; Kaneko,
1989). An artificial enzymatic neuron (Conrad, 1985; Kirby &
Conrad, 1986) would also do the similar approximation. For the
relationship between chaotic map and diffusion emulates the
relationship between intra- and inter-cellular computation. If



one understands that the assumption of an infinite VOP arises
from discarding intra-cellular computation, a coupled map lattice
may be an approximation to a system with a fininte VOP. ,
However, describing a system with a finite VOP or not
forgetting intra-cellular computation leads to a paradox or
unprogrammability. This differs from dissipative structures that
could be defined definitely. A Resolution out of such a paradox
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might be either an approximate description or a description by

the logic embedding paradoxes in an emergent state. Varela tried
the latter type of formulation for life (Varela, 1979), and came
up with autopoiesis (Maturana & Varela, 1980). A contradictory
state such as a=7a in the two-valued logic (the primary algebra)
is embedded in Varela's - extended algebra, while the extended
algebra no longer admits the principles of the excluded middle.
Although paradoxes in the primary algebra have been removed in
the extended algebra, actual identification of the process of
removing paradoxes is missing there. The present incapability of
identification 1is similar to the lack of intra-cellular
computation in the coupled map lattice.

Chaotic dynamics involves indeterminacy with respect to the
halting problem (Nicolis, 1991). It implies that whether or not
the time evolution through iterating a chaotic map be attracted
into a stable fixed point for any set of 1initial and boundary
conditions is not determinate due to  the presence of Lyapunov
exponent greater than zero. In other words, if the history or
the actual  trajectory 1is assumed ¢to carry semantic values,
chaotic attractors entail indeterminacy. Indeed, some' chaotic
maps like a map expressing Belousov Zapotinsky reaction induce an
order (Matsumoto & Tsuda, 1983; Matsumoto, 1984), but some do
not. Behavior of the evolution through chaotic maps is completely
determinate in a state space. This implies that any changes
in state space needs to be controlled by an order parameter. Even
if one may find a strange chaotic attractor that may well
emulate an organism, it has to be examined how the state space
evolved in the first place, from simple to complex. Therefore,
one is destined to examine the origin of 1life again.

While describing a system with a finite VOP 1leads to a
paradox, it is a necessary condition for life and complexity but
not sufficient. This is the reason why some chaotic dynamics
induces an order even under the presence of perturbations but
some do not. Moreover, self-repairing or self-organizing
stability and evolvability, in addition to indeterminacy, are
regarded as essential features of biological systems (Fleishaker,
1989). We note that if one defines a paradox as a form of
dynamics by employing a one-to-many type mapping under a given
logical constraint, one can formalize a system with a fininte VOP
and accordingly to comprehend self-organization processes and
evolvability (Gunji & Nakamura, 1991; Gunji & Konno, 1991; Gunji,
1992, 1993a,b). A system with a finite VOP exhibits its own
dynamics as much as a programmbale machine does, in the latter of
which however VOP 1is 1infininte. Hence, an external observer
toward a system with a finite VOP finds that removal of preceding
paradox causes subsequent another paradox in the manner that
removal of paradox is destined to fail every time(Matsuno, 1989).
Such a system looks as if 1t increases the diversity of its own
rules and enhances the specificity of actual rules with time
through repetition of limited rules (Gunji, 1993b). This 1is an
aspect of self-organizing process featuring evolvability.

In this paper, a relationship between a self-referential
system (Gunji, 1993b) and a system with a finite VOP is formally



180

examined. In the end, we will emphasize the role of a one-to-
many type mapping embodying a paradox in general state space.
The one-to-many type mapping differs from a chaotic attractor in
that such features of self-organizing processes as tending toward
a stable state in some time and moving away. from it 1in other

times are common to any system with a finite VOP. Since the

finiteness of VOP 1s found in any material system, self-
organizing capability would also be found in more or 1less all
material systems. In this context, evolvability is intrinsic to
any material system in its own right. We will demonstrate an
operation of disequilibration process with the use of self-
referenital systems comprising Margolus cellular automata
(Margolus, 1984; Toffoli & Margolus, 1987). When the system with
a finite VOP below which self-consistency cannot be maintained
any more is the case, a global logic that cannot be reduce to
local ones will be found. Hierarchical structures will arise
through interference between local and global description.

2. Perspective of an Internal Observer

It has been argued that the phenomenon of life is described
as a self-referential form because no form in organisms <can be
separated from its function. The ambiguity in the separation of
an operator and an operand is originated from the aspect of a
finite VOP (Matsuno, 1989; Gunji & Nakamura, 1991; Gunji & Konno,
1991). The finite VOP is compared to the velocity of reading
sentences by a reading subject, 1n which each page of a book 1is
turned by the reader or the internal observerbefore he has -
finished reading the page. This indicates an instance of a
finite VOP (Gunji, - 1993). While formal description of
interactions should be expressed from the perspective of an
internal observer, an external .observer appears to be
distinguished from the internal counterpart. This is because the
resulting description involves the assumption of an infinite VOP
on the part of external observer on the one hand and at the same
time the internal observer reads pages (interacts with them) at a
finite VOP (Gunji & Nakamura, 1991). As a result, the external
observer cannot identify the correspondence table between words
and their meanings that theinternal observer has even  if the
latter has its own correspondence table.

When one describes a form of interaction among components in
a system, it is always assumed that interactions are communicated
at an infinite VOP. In terms of the category theory, the
assumption of an infinite VOP can be compared to that of the
limit of a category C, because the 1limit represents the presence
of a universal observer. That 1limit introduces the products.
Also, extending the idea of the limit between categories, one can
obtain the definition of the exponential and the isomorphism
C(AxB, C)=C(B, C*). It implies that any interaction ¢:4xB>C is
expressed by the form of ¢=eve(id,x$) where ev:AxCi->C, ¢:BC4,
and 1d4 :424 representing an identity. It also implies that any
interaction is articulated into the form of identifying an input
(¢) and processing it (ev). Insofar as one accepts an
identification process proceeding at a finite VOP, one obtains a
paradox or a fixed point (Gunji & Nakamura, 1993).

Let ¢ be a tactile process of an enzyme and ev be a
transformation applied to an active pattern in an enzymatic
neuron (Conrad, 1985). If a tactile process proceeds at an
infinite VOP, one can express a series of reactions in an
enzymatic neuron in the language of a sequential machine. That



is due to the commutability of ¢=eve(idsx¢) for any pair of an
input (a?*) and an internal state (b?) in A4xB. The resulting
active pattern at t+At in C is expressed as c'*%t=¢(at, bt).
Once we examine the tactile process proceeding over a finite time
At' (At>>At'), the interaction will turn out to have the form
ct*bt=p(bt)(at)=Fft*4t' (at), where Ft*bt' eCh, Expressing the
tactile process as

Feroae =4(b?), (2-1)

however, is not sufficient enough for the process proceeding at a
finite VOP. An internal observer sitting on an enzyme cannot
control the timing of receiving an input. This can 1lead to
receiving another input in the midst of the preceding tactile
process proceeding at a finite VOP. Therefore, the internal
observer has to compute the tactile process in the presence of a
small deviation of the timing (Ati<<At’) for receiving an input.
‘'This requires

Frtede’ =g, (pt+at1), (2-2)

Eq-(2-2) also implies that a small perturbation to an internal
state (operand) comes to affect or .change the operator, ¢.
Similarly, controlling the tactile process requires the
expression like (2-2) for any small time duration At;, and
finally we obtain
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to define the timing of receiving for any ascending accuracy,
At1>>At2>>++>>At; >>++, That is an infinite regression. In short,
a system proceeding at a finite VOP entails the observation that
one has to regard a bundle of trajectories (Eq-(2-3)) as a
trajectory in the state space of ¢:4xB>C. In other words,
programming of a system proceeding at a finite VOP leads to the
measurement problem in which one has to identify the neighborhood
of a single state as a specific single state. However the
neighborhood is 1ll-suited in the sense of structural stability.
The measurement problem of a system proceeding at a finite
VOP is expressed as follows. If an internal observer uses a logic
of which any statement is programmable (i.e., any propostion can
be proved either A or not 4, where A is any semantical value), a
logic itself involves the assumption of an infinite VOP. The
reason why it leads to an infinite regression, is that the aspect
in which an internal observer measures at a finite VOP is
describable under the assumption that he measures at an infinite
-VOP. In order to cope with the process posessing such an infinite
regression, the internal observer has to choose a specific

infinite sequence B=(bt+at1 ptesr2 ptrati  YesB=BxBxe-«
(an infinite product) and identify its meaning. Define an
infinite set B={8¢, B81,.., Bi,..} and the set of its meanings as
B. Also, define @ :B»B® such that

B—-‘A——HBXBMBXBB _ﬂ__) B (2-4)

where A represents a diagonal map. One can choose a specific
infinite sequence and identify its meaning 1if one knows the
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correspondence table between B and BB. It implies that BS
involves no extraneous element with respect to @ (Gunji &
Nakamura, 1993). Finally, for any 8 there exists g' such that
g(B)=¢1 (B')(8) in terms of any g:B»B, and we obtain

b=d1 (8') (B) (2-5)

for any b in B(Lawvere, 1969). Note that the measurement in
choosing 8 leads to a fixed point because ¢ has a self-
referential property. If one assumes that one can identify a
specific infinite sequence of 1, ¢, .., & ,.. and define an
infinite product map é=($1, ¢2,.., & ,..):B2R, where R=C*xCAxe-
(an infinite product), the measurement problem appears as that of
in choosing an infinite sequence of gy=(Ff1t*8t’, fFat+bdt’ |
F:;t*st” ) in a set R. Therefore, like the measurement problem
of choosing 8, we obtain the correspondence table between R and
(C4)R as

R—é—")RXRMRX(C“ )RL)(;A , (2-86)

and for any y there exits vy' such that Ah(y)=¢2 (') (y) in terms of
any h:R>C#. Then for any ¥ in C?, we obtain

F=2 (') (7). (2-7)

In this framework, we have assumed the commutable diagram,
ée(z')(zg 4
é) . (fcﬁ _ (2-8)
g—v1(8')(B) 2"

The morphisms R>C* and B2B 1involves the measurement problem
owingto a finite VOP. Also, é:B9R is surjective because now we
assume that é results from coding a natural system and then it
involves the measurement problem. Therefore, in choosing any ¢
in ¢4, for any a in 4,

(2-9)

It implies that there exists & in B such that b=¢1(8")(8).
Finally, for any a in A there exists b in B such that

fla)=¢(b)(a). (2-10)

We find that the measurement problem arising from a finite VOP
leads to that ¢ must be an onto mapping whether 4, B and C are
finite or infinite sets. It is clear that Eq-(2-10) leads to a
paradox or a fixed point é(b)(a*) such that '

é(b) (a*)=hd(b)(a*), (2-11)

because for any g:4-C one can find a*e4 such that g(a° )=hé(b) (a*)
with the use of any function h:C+C(Laqure, 1969). It "implies
that one cannot determine a unique rule ¢ in describing a system
proceeding at a finite VOP under the assumption of an infinite
VOP.

While ¢:B>C* can be identified whether or not it is an onto



mapping, it must always be an onto mapping in sofar as one takes
the measurement or a finite VOP into consideration. Hence the
ambuigity in ¢, which may be both an onto mappig and not at the
same time can be no longer described in terms of a map. Then, we
need the notation of a one-to-many type mapping <¢>, a symbol
surrounded by a bracket. If we write the mapping as

ct*bt=<¢p>(at, b?), (2-12)

it implies that there exists b* for &' such that c¢t*%¢ is proved
to be both ¢(at, bt )=¢(b*)(at) and hd(b*)(at) for any h:C>C.

It has been argued that a system proceeding at a finite VOP
is destined to be described as a one-to-many type mapping
(Matsuno, 1989; Gunji & Nakanura, 1991; Gunji & Konno, 1991;
Gunji 1992), because it leads to a paradox (Gunji, 1992) or a
fixed point (Gunji, 1993a,b; Gunji & Nakamura, 1993). On the
other hand, chaotic dynamics involves an indeterminacy in terms
of Lyapunov exponent (Nicolis, 1991). Achaotic attractor is in
fact one  expression of a one-to-many type mapping. This
observation involves the assumption that one can regard a bundle
of trajectories as a trajectory in the sense of coarse-graning.
Though it sounds trivially all right, our formalization of a
system with a finite VOP suggests that it cannot be. While the
commutable diagram (2-8) represents that the coarse-graining
makes us choose a specific state space, the commutability 1leads
to a paradox (2-11) in its own right. A one-to-many type mapping
results in a fixed point. Hence, we emphasize that a one-to-many
type mapping in a system proceeding at a finite VOP 1is not
described as a specific interpretation; the coarse-graining (Fig.
1). v

However, the evolution of a system proceeding at a finite
VOP does not actualize under no constraint. An external observer
finds not only a paradox 1in this aspect but finds that the
subsequent resulting removal of the resulting paradox 1is always
destined to fail (Matsuno, 1989; Gunji, 1993b), because the
internal observer can comprehend even an indefinite input or
information in spite of non-existence of his own correspondence
table. Note that a paradox appears when one describes an
interaction while assuming that the internal observer has his own
corresponding table between an input information and its meaning
(i.e. enzyme switch) in spite of no objective corresponding table
available to the external observer. This assumption implies that
a system with a finite VOP is described in terms of a formal
system featuring an infinite VOP. The idea of a system proceeding
at a finite VOP lets us acknowledge that the system generates
its own paradox and then removes it. That 1is the process of
disequilibration.

Gunji (1993a, b) proposed a self-referential system which
exhibits disequilibration with a finite VOP and demonstrated the
breaking of a one-to-many type mapping <¢> into a forward (¢), a
backward (¢~ ) and a contradictory (¢.) map. This formulation can
‘be used even in the above context. Now ¢, the transpose of ¢, is
an onto mapping under a finite VOP. We can make this constraint
weaker. Define that for any (a, f)€4xC? there exists beB such
that f(a)=¢(b)(a). It does not imply #=¢(b). We call this a weak
self-referential property of ¢. Therefore, there exists an onto
map I':AXB2AxC* such that everl=eve(idsx¢$)=¢. Hence, if for any k,
k’:C»X with any X, ke¢=k’°¢, then k=k', because kecevel=k'cevel,
keev=k'oev (I is an onto-map) and then k=k’(ev is also an onto-
map). It implies that there exists an onto map AxB>C. Let ¢ be
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an onto map ¢. :AxB->C. The aspect defined here 1implies that one
cannot distinguish ¢ from ¢. and it entails a one-to-many type
mapping <¢>. In order to describe such a paradoxical condition,
we introduce the symbol ~ instead of the symbol =, and express
the condition as :

¢lat, bt )~pe (at, bt). (2-13)

An 1idea of disequilibration 1leads to that one cannot
determine either ¢ or ¢. a priori but can only a posteriori. This
process means that if the state at instant t is definite as &%,
the state at instant ¢t+At can be proved to be both ¢(at, b*) and
¢c (at, bt), then

bt »[e(a’, b*)A®: (a*, b?)] (2-14)

in a Booelan logic form for the sake of convenience. Hence it
also implies that

[7o(at, b)V7ee (at, b?)]+7bt. - (2-15)

We regard 7¢(at, bt) as ¢.(at, bt), and 7¢. (at, bt) as ¢(at, bt),

then the form (2-15) can be replaced by [¢(at, b?)IVe: (a?,

b2 )]=+7bt . We distinguish the statement a  priori from that a
posteriori, by way of the scheme that ¢(at, bt )A7¢(at, bt )=¢(at,

bt )A¢: (at, b*) a priori but ¢(at, bt )V7¢(at, bt)ze(at, bt)Ves (at,

bt) a posteriori. Then, while the statement (2-15) is ill-suited,

this is not the statement that is always true. We here find that
the statement (2-15) involves an act of choice a posteriori. It-
implies that if one determines the state at 1instant t+At as
¢ (at, bt) (resp. ¢(at, bt)) there exists b’t such that

¢c (a*, b*)=¢(a’, b'?) (2-18)

(resp. ¢(at, bt )=¢:(at, b't)). Note that we distinguish the state
a priori from that a posteriori. Since the form (2-13) implies
both ¢¢ (at, bt)=¢(at, b*) and ¢, (at, bt)z¢(at, bt), the statement
(2-14) means that the principles of the excluded middle does not
hold a priori. The statement (2-15), however, implies that one
can choose 7¢(at, bt) or 7¢:.(at, b') a posteriori. We can
distinguish the state a priori from that a posterioi by starting
from the ill-suited statement (2-14).

Eq-(2-16) implies that for any (a, ¢) such that c=¢:(a,
b)#¢p(a, b), there exists b* such that c=¢(a, b'), bzd'.
Therefore, we can define ¢~ :4xC->B such that for any (a?!, b?)eAxB

7¢p(at, bt)=¢(at, ¢ (at, ¢ (at, b*))). (2-17)

The articulation of distinction between a priori and a posteriori
is embodied through the introduction of both a forward (¢ and ¢ )
and a backward map (¢-) due to b't=¢p~ (at, ct*dt)., Finally,
because of the condition (2-13), ¢(at, bt )~ (at, bt )=7¢(at, bt)
and Eq-(2-17), we obtain the form of a one-to-many type mapping
as

<p>(at, bt)=<¢>(at, ¢ (at, ¢ (at, bt))). (2-18)

It cannot be programmable. However, if when we rewrite Eq-(2-18)
to



cxt*dt=gp(at, bt), (2-19a)
brt=¢ (a?, ¢c(at, b)), (2-19b)

the - one-to-many type mapping can be made programmable with the

use of the transition from bst to c¢cxt*tt., It 1is <clear that a

paradox follows if one removes all brackets from the form (2-18).
In short, we can break the form of a fixed point down 1into Eq-
(2-19a) and (2-19b). ' ' :

In the previous paper, we poposed a system of the form
similar to Eq-(2-19), called the self-referetial system. We shall
call the system (2-~19) also the self-referential system. In the
self-referential system, the time transition expressed in (2-19)
does by no means follow the transition defined by the map ¢.
Therefore, it looks as |if transition rules are perpetually
changed as time progresses. Also, if one defines a 1local rule
such as ¢:4324, one finds either that ¢ no 1longer asserts for
universality or that the local rule is of a one-to-many type
mapping. At this point, it is reasonable to suppose that if ¢=¢.,
"the system, has no paradox conditioned by an infinite VOP. The
smaller the VOP, the larger the metric distance between ¢ and ¢ .
Hence we can estimate the behavior of a system in terms of VOP.
In the next chapter we shall estimate it for the case of the
Margolus cellular automata (Margolus, 1982).

3. Self-reference in conservative sysfem
3-1. local universal rule in Margolus automata

In this section, we replace the consistency of a local rule
by the conservation of the number of particles in the scheme of
cellular automata. If a local rule has the universality in the
space, the number of particles counted at each a unit time
duration is conserved. It means that the 1local 1logic of the
conservation law is consistent with the global logic. As far as
an infinite VOP were taken for granted, the global and 1local
logic would be tautological. A system proceeding at a finite VOP
is destined to lose the universality of a local rule, and then it
is expected to exhibit disequilibrations.

To express a conservative system in the cellular automata,
Margolus (1982) defined a local universal rule Ff:Q2-Q2, 0={0, 1}
which has the invertibility, over a whole lattice space. If £ 1is
defined in such a manner that f(0, 0)=(0, 0), #f(0, 1)=(1, 0),
f(1, 0)=(0, 1), and f(1, 1)=(1, 1) [we call the rule the original
Margolus CA], the number of particles denoted as 1 1is conserved
both locally and globally. A step-wise grid conversion (Fig. 2a)
is also introduced to make a pair of lattice interact with the
nearest pair. As a result, a local rule f loses the universality
in the strict sense because the time evolution of the state of a
lattice requires the determinant of either grid 1 or 2 by which
the position of operation f is determined, and it requires both
the position and the time step of the lattice. ’

A fixed point owing to the finite VOP is expressed 1in the
form that a local universal rule cannot uniquely be determined.
It, thus, requires the formal relation between the decidability
of a local universal rule and the conservation law. We have to
formulate a local universal rule corresponding to the Margolus CA
without introducing the setp-wise grid conversion. Taking
Margolus CA as the rule space,

Rn={Ff|Q2>Q2, ¥ is bijective}, (3-1)

185
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denote a rule feRn by the rule number #(f) defined by
#(f)=<de, d1, d2, d3s>, (3-2)

such that, for Y (a, b)eQ?, di=Ff(a, b) and k=2a+b. The rule <0,
2, 1, 3> denotes the rule exhibiting the time evolution as shown
in Fig. 2A. The number _of elements of Rn 1is 4!=24, and we
identify a rule f with f if #(f)=<de, di, d2, dz:> and

#(F)=<ds, di, d2, do>, (3-3)

where dr =1 (di ) such that 3=¢1(0), 2= (1), 1=¢1(2), 0= (3).
Also identify a rule £ with # if #(Ff)=<de, di, d2, ds> and

#(F)=<de, d2, a1, dz>, (3-4)

where d:={2(d+) such that 0=¢2(0), 2=f2(1), 1=¢2(2), 3=L2(3). As
a result of this identification, the number of rules in Margolus
CA is degenerated into ten types as shown in Fig. 3.

Now we define a local universal rule ¢ simulating a rule ¥
in Margolus CA if there exists a map ¢:0°-Q such that for any
(ai-1t"1', a;t-', aj-2¢t, ai-1*, a;*)=(a, b, e, ¢, d)et there
exists a;**! =g} such that

a=¢(a, b, e, c, d). ' (3-5)

The number of arguments in ¢ can be decreased and the number 5 is
the maximal number. It implies that there are at most two cases
in determining the value of a=a;-:1!*!' and B8=a;t*!': (i) One can
determine whether (a;-1¢, a;¢t)=(c, d) results from the operation
adopting the grid 1 or 2 (Fig. 2b). It 1leads that one can
determine whether a=mnz°f(e, ¢) or a=me°f(c, d), where m :02-Q
(resp. m2) is a projection map taking the first (resp. the
second) component. Hence, if for given (a;-1t-', a;/t-1)=(a, &)
and (a;-1t, a;t*)=(c, d),

(c, d)=Ff(a, b) (3-6a)
and there does not exist x, y<Ql such that
c=m°f(x, a), d=me°f(d, y), (3-6b)

one can see that (¢, d)=f(a, b) results from the operation along
the grid 1. Otherwise, i1t results from the grid 2. (ii) If one
cannot determine either grid 1 or 2, one can obtain

mof(c, d)=mof(e, c). (3-7)

Note that the equation (a;-1?!, a;¢)=Ff(a;-1t"', a;t"1') can be
rewritten to a;-1*=fi(a;-1%"', a;*"'), a;?=f2(ai-1?'7', @;t"1') by
using #1, f2:02-0Q defined by fi=mn °f and fz=m °f. Finally, as far
as one distinguish the condition of grid 1 [denoted by g(a;-1%t-1,
a;t-t', a;-1%t, a;t)] from that of grid 2, one can generally
express a universal local rule as

a; itV =¢p(a;i-1t-1, a;*"t', ai-2¢t, @i-1t, a:t)
=[gp(a;-1t-1, a;t" 'V, a;-1t, a;t)*f2(a;-1¢t-1, a;t-1)] (3-8)
AM7e(ai-1t-1, a;t-1, ai-1t, ait)»F1(a;-1t"1, a;t"1)],



where the symbol =, A, and 7 represents Boolean operators,
IMPLICATION, OR and NOT.

For exmaple, we can estimate a " local wuniversal rule
corresponding to the original Margolus one, #(f)=<0, 2, 1, 3>,
type 2. In this rule (¢, d)=f(a, b), iff b=c and a=d. For given
(a;i-1t-1', a;¢t-')=(a, b) and (a;-2%, ai-1t, a;t)=(e, ¢, d), one
can determine elther c==ni°f(a, b) or not if d#e. Because if a=d,
one can find (¢, d)=Ff(a, b) and find that there is no xef} such
that (e, c)=f(x, a) due to e#a (i.e. grid 1). Likewise, if azd,
one can find xeQ such that (e, c)=f(x, a) due to e=a and (c,
d)#f(a, b) (i.e. grid 2). Therefore, if a=d (resp. a#d), one can
obtain a;-1?*!'=a such that

a=e (resp. a=d). : (3-9)

Also, one cannot determine either grid 1 or 2 (i.e. the grid can
be proved to be both 1 and 2) if d=e. It 1implies, however,
d=a=e. Then one can obtain mof(c, d)=me°f(e, c)=d=e. Finally
we obtain ¢:0°-Q such that

a; ¢+l
(a; - 1@a; +1t)=a;+1 P IA((7(a; ¢ 1@a; +1t ) )=a;-1t) (3-10)

®(a; -1, a;t-1', ai+1t)
(
(ai+1tA7a; - 1)V((a;t-1=»a;+1t)Aai -1 ),

where the symbol & and V represents Boolean operators, MODULO and
OR. However, in this formulation there exists an 1ill-suited
value of the triplet (a;-1%, a;*-!', a;+1%)=(e, a, d)eQ®, because
f:02-02 on the one hand and ¢:03-Q on the other. Altough it will
be discussed in the later section, we note the simulatability of
¢ with respect to f. Now, for any configuration #eQ” and the
boundary condition &eQ2, Fr Q72907 , k=1, 2. and ¢:02(7+223Q7 are
defined by the operation of # and ¢ over the whole space (7*2? and
Q2(n+2) respectively, where f+ represents the operation of f
along the grid k. It is defined that the rule ¢ can simulate the.
gehavior of the rule £ in the Margolus CA if for any ne(®* and ¢,
'502,

o(n, (Feln, &), &'))=F: (Fu(n, &, &), (3-11)

where s=2 if k=1 (resp. s=1 if k=2).

For all ten types in the Margolus CA, one can determine a
local universal rule for eight types as well as the original
Margolus CA as shown in Table 1. Type 5 and 6 are the only rules
such that Eq-(7) does not hold when the condition (6) 1is not
satisfied. It can be easily proved if one classify the condition
for a given (a;-1t-t, a;t-1', a;-2t, a;-1t, ait)=(a, b, e, ¢,
d)eqs. Finally one can find that for a given (a;-1t-', a;t-1,
ai-2¢, ai-1t, a;t)=(a, a, 1-a, 1-a, 1-a), a=), Eq-(7) does not
hold if (a, 1-a)=f(1l-a, 1-a) or (l-a, a)=f(l-a, 1-a). From the
assumption of a given configuration, (1l-a, l1-a)=Ff(a, a).
Therefore, one cannot determine whether the time transition of
(1-a, 1-a)=f(a, a) follows grid 1 or grid 2. As far as (a, 1-
a)=f(l-a, 1-a) (resp. (1l-a, a)=f(1l-a, 1l-a)), (ai-1%*', a@;®*')=
f(l-a, 1-a)=(a, 1-a) and a;**'=1-a (resp. a;¢**1'=a) if (1-a, 1-
a)=f(a, a) follows the grid 1, and (a;¢*!, a;+it*!)=F(l-a, 1-
a)=(a, 1-a) and a;,¢*!'=a (resp. a;**'=1-q) if (1-a, 1l-a)=F(a, a)
- follows the grid 2. It is easy to find that the condition (a, 1-
a)=Ff(l-a, 1-a) or (l-a, a)=Ff(l-a, 1-a) is satisfied in the rule
#(f)=<3, 0, 2, 1>; <3, 2, 0, 1>; <3, 0, 1, 2>; <3, 1, 0, 2> (if
a=0); and <1, 2, 3, 0>; <1, 3, 2, 0>; <2, 1, 3, 0>; <2, 38, 1, 0>
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(if a=1). They all belong to type 5 or 6 (Fig. 3).

~ For a rule of the Margolus CA of which there exists a local
universal rule, one can define a rule space in which local
universal rules generally have no weak self-referential property
while there exists a local rule with weak self-referential
property. In the rule space, we estimate the significance of the
weak self-referential property and can demonstrate the
disequilibration process such that the contradiction arising from
the process as to remove the contradiction can be by no means
removed and the process perpetually continues.

3-2. Self-contradiction and conservation of the number of
particles

For a given local universal rule,s P:Q">Q, ns$5, which can
simulate the rule £ in Margolus CA, we define the rule space
Ru(r)» that involves a specific rule which can simulate a Margolus
rule by

Recr) ={@:Q"-Q}. (3-12)

It is defined that the rule £ constitutes the rule space Ru¢r).
In this section, we concentrate on the rule space Rce213> Wwhich
is constituted by the original Margolus rule of which the number
of particles is locally coserved and then one can find a global
conservation law with respect to the number of particles. In this
rule space, the rule which has a weak self-referential property
has a local conservation law. Therefore removing the
contradiction arising.from the pursuit of logical consistency in
spite of the self-reference can be replaced by removing the
contradiction arising from the pursuit of local conservation of
the number of particles in spite of a finite VOP.

The rule of #(f)=<0, 2, 1, 3> shows a symmetirc feature, and
then we here define Rce213>={¢|Q3-0Q, ¢(a, b, c)=¢(c, b, a)},
where a, b, ceQ. The ¢:0Q%->Q defined by Eq-(3-8) is expressed as

0 0 1 1
1,0 1.1 100 11

a; t-1 0 0, 1 1
ai—ita;g;“‘ 0,0 01 0,0 0,1 1 1

0 1 0 0 1. (3-13)
However, (a;-1%*, a;*-', a;+1*)=(0, 1, 0) and (1, 0, 1) are ill-
suited values as arguments because such configurations cannot be
found in the time evolution of the original Margolus rule. The
simulatability defined by Eq-(3-11) admits that the rule ¢,
defined as in the form (3-13) except for ¢(0, 1, 0) and ¢(1, O,
1), can simulate the original Margolus rule irrespective whether
¢(0, 1, 0) and ¢(1, 0, 1) equals to 1 or 0. Consequently, there
exist four rules of ¢ that can simulate the original Margolus
rule.

When the expression of ¢ can be rewritten to a;!*!'=¢(x,
a; "', y), x=a;-1t@a;*-!' and y=a;+«1?'@a;*-!', any rule which can
simulate the original Margolus rule is expressed as :

a; ¢! 0 0 1 1 0 0 1 1
X g ¥ OOO 011 00 0,1 1.0 lz} 1,0 1z

1 0 1 0 : (3-14)

where z1 and z» are either 0 or 1, respectively. Finally we
obtain the local universal rule which can simulate the  original

‘Margolus rule with a weak self-referential property in the form

of a;**'=¢(x, a;t-1', y). Because one need not have to pay
attention to ¢(1, 0, 1) and ¢(1, 1, 1) which have nothing to do



with the simulatability, one finds that for any triplet of (a, b,
c)en® except for (1, 0, 1) and (1, 1, 1), ¢(a, b, c)z¢(a, 1-b,
c). It is equivalent to the weak self-referential property(Gunji,
1993b). '

When the rule number of ¢eR<ez213>, #(¢), 1s defined by

#(0)= Zodi 2t (3-15a)
de =¢(a, b, c), (3-15b)
k=4(a®b)+2b+(bOC), (3-15¢)

with a, b and ceQ, the rule number of the rules with the weak
self-referential property in the form of a;**!'=¢(x, a;¢*"1', y) are
22 (z1=22=0), 54 (z1=0, z2=1), 150 (z1=1, z2=0) and 182 (zi1=2z2
=1). They all can simulate the original Margolus rule 1in the
sense of Eq-(3-11), however, for any 1initial configuration

aﬂ:(‘I‘B’ aaa,,,, aNB)=ﬂuv and a1=(a|1, a2190-, (1”1)=711 with ﬂuy
e involving ill-suited values of (x, a2, y)=(1, 0, 1) and
(1, 1, 1) with x=a;-1'®a;? and y=a;+110a;?. These ill-suited

values are transmitted with the progression of time. Fig. 4 shows
the time evolution of the rules with a weak self-referential
property for both well-defined and ill-suited initial
configurations. A well-defined initial configuration is given by
a random configuration n?e* and #'=f(n?), and an ill-suited one
is given by two random configurations 7%, »!''eQ¥ . An 1ill-suited
configuration conflicts the local conservation law of the number
of particles, and then it gives rise to that the rule cannot
simulate the original Margolus rule. As far as a local universal
rule is definite, the contradiction to the simulability 1is
derived only from an initial and boundary condition and then it
is maintained through the time evolution. Contrarily; in the time
evolution for a well-defined initial condition no contradiction
appears.

There are four rules which have no paraox or have a weak
self-referential property in the rule space (3-12). Therefore we
can divide the rule space into four subspaces. We here examine
the behavior of a rule in Rcpz213> with a finite VOP. As discussed
in the above chapter, we formalize a system proceeding at a
finite VOP by Eq-(2-19). When ¢:Q"*2->Q", Q={0, 1}, is defined by
the operation of ¢:03-Q over a whole space, we here <define the
universality of a local rule ¢, which 1is elementary cellular
automata (ECA) poposed by Wolfram (1984). Taking a finite VOP
into consideration, a local rule ¢, which has a weak self-
referential property only has a universality over a whole space.
A one-to-many type mapping appears in the form that a rule ¢
having no self-referential property loses its universality.
Therefore, a system in ECA proceeding at a finite VOP is defined
similarly as Eq-(2-19) (Gunji, 1993b) and is expressed as

axit*l=¢la;-1%, a;t, ai+«1t), (3-16a)
axit=¢-(a;i-1*, e (@i-1t, @i, ai+1t), @a+1?), (3-16b)

where ¢- 1s chosen to satisfy that for a;te€Q and a periodic
boundary condition with n-period (a;+nt=a:;t),

Lt - N 4 -
m%n iglla, axit|. (3-16¢)

We have defined ¢~ :Q%->Q by that if d=¢. (a, b, c)z¢(a, b, c)then
¢ (a, d, c)=b'#b. However, we simultaneously recognize ¢.(a, b,
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c)=¢(a, b, c) in the context of the ambiguity of the rule. Then
we can also define ¢~ :Q3-Q by that if d=¢.(a, b, c)=¢(a, b, )
then ¢~ (a, d, ¢)=b'#b. Hence, we recognize there 1is no unique
rule of ¢~ . Therefore we have to choose ¢~ under the condition of
decreasing the metric |¢(n)-<¢>(n)| for n=Q”. The condition (3-
16c) implies that we choose ¢~ to eliminate a paradox while there
exists (a, b, c)ef® such that ¢ (a, ¢ (a, b, ¢), c)#b. Similarly
we define a system proceeding at a finite VOP deduced from a rule
in the rule space (3-12) defined as,

axit=plai-1t"1, ax;*"2, ai+1t°1), (3-17b)

axit*li=¢p(axi-1t, a;t" ', axi+1%), (3-17a)

ax it~ V=¢~(bi-1t, b;t*1, bi+1?), (3-17c)
for i=1 ,.., n with a periodic boundary condition, where

bit*l=¢pc (axi-1%, a;®~1', axi+1?) (3-18a)

bit=ge(ai-1t"1, ax:t~"2, a;+1t°1), (3-18b)

and also ¢~ satisfies the condition (3-16c¢). This formulation
gives a series of three configurations at times of ¢-1, t and t+1
simulataneously. Therefore, before the next step of
computational procedure for the configurations at times of -1,
T, T+1 where 7=t+3, we define the additional procedure

ai ¥V =@o (bi-1t, bitr', bier?). - (3-19)
The formulation (3-17~19) embodies a one-to-many type mapping
a;f“'=<¢>(axi—1”,‘axi‘%'. axi+1i). - (3-20)

t=2, 3, 4... While the time evolution of this system 1is
puctuated by a unit configuration consisting of three time
configurations, a one-to-many type mappig is expressed by (3-20)
whether t mod 3 =0, 1 or 2. If ¢t mod 3=0, ax;?-! is given by the
composition ¢-°¢,. If t mod 3=1, ax:;!*! 1is given by the
composition ¢~ °¢,. Also, if t mod 3=2, ax;-1t 1is given by the
composition ¢ °¢.. We find that if ¢=¢.. the evolution of this
system can be perfectly simulated by the weak self-referential
rule in the rule space (3-12).

We estimate the behavior of a system proceeding at a finite
VOP which is defined by (3-17~19) with respect to the algebraic-
property of ¢, where ¢ 1s defined in the rule space (3-12). As
discused above, the rule space is divined into four sub-spaces.
In each sub-space, 2%/4(=16) rules can be arranged by a matrix
shown in Fig. 5a. The symbol wsp represents the position of a
rule with a weak self-referential property. Each column represnts
the value of (de, d2) by (1, 1), (0, 1), (0, 0) . or (1, ©0) from
the upper to the lower, and each row represents the value of (di,
d:s) by (1, 0), (0, 0), (0, 1) or (1, 1) from the 1left to the
right. Because di=ds, ds=ds and the value of (ds, dv) 1in each
sub-space is given, each lattice represents a specific rule in
the rule space (3-12). For example, if the rule number of a rule
with wsp is given as 22, the corresponding rule number in a sub-
space is determined as shown in Fig. 5b.

That arrangement 1s reasonable with  respect to the
relationship between the behavior of a system proceeding at a
finite VOP and the algebraic property of ¢. At first, we focus on
the algebraic property shown in the columns. In the forth column
(de, d2)=(1, 0), when we denote (de, d2) of a rule with a weak



self-referential property by (dse, ds2), (de, dz2)=(l-dse, 1=
ds2). Because ¢ 1s defined as a rule with a weak self-
referential property, in a system at a finite VOP deduced from a
rule in the forth column of the matrix, we can uniquely determine
¢ (0, 0, 0) and ¢~ (1, 1, 1) such that

da=¢(0, ¢ (0, ¢ (0, 0, 0), 0), 0) (3-21a)
de=¢(1, ¢ (1. & (1, 1, 1), 1), 1), (3-21b)

because ¢, which is defined by that if de=¢(0, 0, 0)z¢. (0, 0, 0)
then ¢~ (0, ds, 0)=0, satisfies the condition (3-16c). It implies
that <¢>(0, 0, 0)=¢(0, 0, 0) and <¢>(1, 1, 1)=¢(1, 1, 1) owing to
the operation ¢,, as far as b;i-1t=axi-1%, bit*l=ax;t*! and
bi+1t=ax;+1¢'. Hence, whether <¢>(0, 0, 0)=¢(0, 0, 0) and <¢>(1,
1, 1)=¢(1, 1, 1) or not depends on the configuration at ¢t and t#*1
instants. While the value at the nearest neighboring sites are
sensitive to the relationship between di, k20, 2 and ¢., one can
find at some instants <¢>(0, 0, 0)=¢(0, 0, ©0) and <e¢>(1, 1,
1)=¢(1, 1, 1). Then <¢>(0, 0, 0) and <¢>(1, 1, 1) are
periodically changed due to Eq-(3-18). Hence, <¢>(0, O, 0)=¢(0,
0, 0) and <¢>(1, 1, 1)=¢(1, 1, 1) are destined to be

<¢p>(0, 0, 0)z¢(0, 0, 0) and <¢>(1, 1, 1)=2¢(1, 1, 1). (3-22)

At a site in which there is no proceeding particle, the value of
state variable constitutes a 1local periodic temporal sequence
while that local configuration is shortened by both ends.

In general, if di #dt+2, k=0, 1, both triplets (a, b, <c)
corresponding to d;,=¢(a, b, ¢), j=4a+2b+c, j=k and k+2 can
appear in the form of (axi-1?t, axi®-!', ax:+1?). Therefore, if
(de, d2)=(0, 1), a system behaves as well as a rule with a weak
self-referential property with respect to de and d2. In this
case, because not (de, d2)=(1, O0) but (de, d2)=(0, 1), the
condition (3-22) can no longer .occur.

- On the other hand, when de=d=(e.g. =0), either (0, 0, 0) or
(1, 1, 1) can appear. When one chooses ¢~ such that ¢ (a, . (a,
b, ¢), c)=b if ¢c (a, b, c)=¢(a, b, c), one obtains that ¢ (0,
¢ (0, 0, 0), 0)=0 because ¢ (0, 0, 0)=¢(0, 0, 0) and that ¢ (1,
¢ (1, 1, 1), 1)=0 because ¢- (1, 1, 1)2¢(0, 0, 0). If one chooses
¢~ such that ¢ (a, ¢-(a, b, ¢), c)#b if ¢c (a, b, c)=¢p(a, b, c),
one obtains that ¢~ (0, ¢. (0, 0, 0), 0)=1 because ¢, (0, 0, 0)=¢(0,
0, 0) and that ¢~ (1, ¢.(1, 1, 1), 1)=1 because ¢, (1, 1, 1)z¢(0,
0, 0). While the choice of ¢- dependent on whole configuration,
one can always obtain that

¢- (ov ¢C (o’ on o)’ o)=¢— (1’ ¢0(19 l! 1)9 l)- (3—23)

Therefore, at a site where it is either (ax;/-1?, ax;+1t)=(0, 0)
or (axi-1t, axi+1t)=(1, 1), a;t " t#ax;t-1'. We summarize that the
condition di=d«+2, k=0, 1 differs from the condition di #d:+2 with
respect to the appearance of possible triplets and the change of
value between a;,¢-' and ax,t-1!.

If de=d2=0, the choice of ¢- such that ¢- (0, ¢.(0, 0, 0),
0)=1 leads to the choice of ¢~ such that ¢~ (0, ¢. (0, 0, 0), 0)=0
soon because the former ¢- produces a triplet (0, 0, 0). On the
other hand, if de=d>=1, ¢~ such that ¢~ (1, ¢-(1, 1, 1), 1)=1 |is
stably chosen under the following codition. In these cases, we
have to remark the relationship between di and ds. If di#ds, " as
well as de #d2 , both triplets (0, 0, 1) and (0, 1, 1) can appear
with a;?-'=ax,;%-!'. It implies the appearance of (0, 0, 1) and (O,
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1, 1) cannot effect the appearance of (0, 0, 0) and (1, 1, 1).
Therefore, as far as de=d2, 1f (di, ds)=(1, O0), the particle
found in the original Margolus rule 1is also found, and the
behavior of a system looks like the original Margolus rule. Of
corse, if de=dz=1, O-particle proceeds in 1-backgrounds, and if
de =d2=0, l-particle proceeds in O-backgrounds. If (di, dz:)=(0,
1), the relatinship between ax;**!' and (ax;-1%, ax:®" ', @axi+1?)
are oscillated between the case in which they follows (di,
dz)=(0, 1) or not. Hence, one can find.a perioic particle -with
period 3 (the value of 3 depends on the form (3-17) involving
configurations at a series of three instants).

If de=dz and di=ds, the occurence of {(0, 0, 0), (1, 1, 1)]
and [(0, O, 1) and (0, 1, 1)] are interacted because of the
change of value, a;*-'#ax;t-!'. Hence, at any triplets, one can
find a one-to-many type mapping, and the behaviour of a system is
the most complicated. As discussed later, what we are intersted
in is this type of bahavior.

Finally, we can classify the bahavior of a system into five
typs in the table in Fig. 5. Type 1 of a rule is found in dp=d2
and d; =d: . The characteristic behavior of this type is disorder.
Type 2 is found in di#ds, di=ds1, ds=ds3, but not de#dse, de#dsz.
It behaves like the original Margolus rule. Type 4 1is found. in
di #ds, di#ds1, ds#dsz, but not de#dse, dz#ds2. The behavior looks
like the original Margolus rule, but the proceeding particle is
oscillated with periodicity 3. Type 5 is found in de#dse, do #ds2.
It features some periodic property. In di=ds, but neither da=d>
nor {(de, d2)=(1, 0), we find that any initial configuration is
attracted into a stable homogeneous one. We call it type 3. For
example, di=d:=0 in type 3. It is trivial that if ds=d2=0 then
any configuration 1s- attracted into the configuration which
consists of all 0 sites. If dp#d:, both triplets (0, O, O0) and
(1, 1, 1) ‘can appear, while di=ds=0 leads to the increase of a
triplet (0, 0, 0). Hence, it is also attracted into a homogeneous
configuration. The classification is represented as shown in Fig.
5b, where a rule with a weak self-referential property is 22. 1In
other sub-spaces deduced from other rules with a weak self-
referential property, rule 54, 150 and 182, the same
classification is possible.

Fig. 6 shows the time evolution of a system Dbelonging to
different types and time series of the number of particles (i.e.,
the number of sites whose site values are 1's). The boundary
condition is given by ar:?!=ax;+n?! under the system size of a.
Initial conditions (ar:;%, ax;!'), i=1, .., n are given to be well-
defined with respect to the original Margolus rule. It implies
that a rule with a weak self-referential property can behave
similarly as the origianl Margolus rule. In this simulation, we
find that a system proceeding at a finite VOP proceeds to satisfy
a logical consistency and that satisfying the logical consistency
is replaced by the conservation of the number of particles. Type
2 and 4 rules soon reach the configuration in which the number of
particles can be conserved. In type 3 rules the number of
particles is conserved either with 0 or n. In type 5, the number
of particles is oscillated, and it implies that there exists some
conservative law. All of rules of these types can realize
conervation laws. The effort to realize the conservation of the
number of particles can be more or 1less achieved. If one
calculates the time evolution of ¢ under the assumption of an

‘infinite VOP, the patterns of evolution differ from those shown

in Fig. 6. Fig. 7 shows the time evolution of ¢ 1is prepared by
the matrix shown in Fig. 5. Note that one cannot «classify the



pattern by the algebraic properties discussed above.

Fig. 8a represents ¢2 -of the number of particles in 2000
instants for ecah rule. Four matrices sorrespond to four sub-
spaces in the rule space. Each matrix is divided into 16 box
elements, and the length of a black bar in the horizontal axis in
each box represents o2. The (2nd column, 2nd row) box 1in each
matrix corresponds to a rule with a weak self-referential
property. The arrangement of rules in each matrix follows Fig. 5,
where the rule with a weak self-referntial property in the upper
left, wupper right, lower left and lower right matrix is 22, 150,
54 and 182. It is clear that there exists a conservative law
except for type 1 and 5. Fig. 8b represents a mean value of the
Hamming distance defined by (3-16c) in 2000 instants of
evolution, where it is normalized by the system size nr. The
presentaion of this diagram is similarto the one in Fig. 8a. It
shows that there is no paradox (i.e., the Hamming distance is 0)
if the number of particles 1s conserved.

: Fig. 9 represents mean values in the time series of the
spatial metric entropy defined as

3
S(X)=i21pi log2 p; ' (3-24)
where X represents the box size. Fig. 9a and b show the mean
values of S(2) and S(3) respectively. The arrangemnt of these
matrices and boxes are similar to the ones in Fig. 8. The rule
with a weak self-referential property has the value of 1 whether
X=2 or 3. That random initial configurations are conserved in
that rule is reasonable because 1t conserves any configuration
once it is given. It has a universality in the terminology of
computation theory. On the other hand, even in type 1 rules one
finds a high value of S(X). It has no conservation law and it
implies that it loses a universality. The algebraic property of
the rule ¢ in type 1 greatly differs from ¢.. That implies that
type 1 rules are speclalized and more irreversible. Hence, it may
realize an abnormal computation of which both the wuniversality
and high efficiency are achieved to some extent, while there is a
trade-off in the programmable systems. It will be discussed in
the next chapter. )

Type 1 rules cannot achieve the conservation of the number
of particles. Although this type of a rule functions so as to
achieve the conservation law, such efforts is destined to end up
in wvain. The motion for achieving the conservation law
paradoxically 1leads to a drastic change in the number of
particles and then it agaln elicits the motion for achieving the
similar conservation of the number of paritcles. It is
perpetually repeated and is disequilibrated. As a result, complex
patterns are originated with the elapse of time. The difference
between type 1 rules and those of other types are now regarded
as the difference between disequilibrated and near equilibrated
systems. We call the behavior of the type 1 rules

193

disequilibration. In the next section, we examine the properties

of disequilibration in the context of a language.
3-3. language not as a rule but as a game

A system proceeding at a finite VOP results in a
disequilibration more or less. What is intriguring to the system

proceeding at a finite VOP 1s 1its characteristic of Dbringing.

forth a unity. In any computers in which programmable statements
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can be used, the assumption of an infinite VOP can be replaced by
prohibiting the receipt of another information in the midst of
computation. If this prohibition fails, the computer is destined
to face dead-lock. We are not interseted in such systems. On the
other hand, in any biological system including our language
community, one can find that a 1language game 1is played as
proceeding at a finite VOP. It implies that a game entailing a
unified system proceeds while there exists no rule embodying such

" a game. In general, a language game is believed to be explained

by a .specific rule, and then one intends to find a specific rule.
However, the finiteness of VOP lets us conclude that all what one
can do in terms of finding a rule is to invent a rule by which a
specific game can approximately explained. The relationship
between a language game and its rule is reverse(Gunji, 1993a).

Any communication and interaction must have a 1logical
consistency in terms of measurement and description of which an
observer must assume an infinite VOP. As discussed above, in
computers, once the logical consistency fails as facing a dead-
locking, it cannot be recovered any more. On the other hand, in
biological systems, even if a specific rule 1is broken another
specific rule may look to originate instead. One can regard this
aspect as if there was an aim to maintain a logical consistency.
We can sketch a system prceeding at a finitde VOP as a motion to
maintain logical consistency in spite of the transformation of
the language, if we measure the system. We can here distinguish a
system of which the aim to maintain the logical consistency  can
be achieved from a system of which it cannot be. Finally we
define the former by equilibration and the latter by
disequilibration. Of course, the former case is achieved only if
a system proceeds at an infinite VOP, then in physical phenomena
such a distinction is arbitrary or is possible with respect to
the approximation. However, because VOP of non-biological system
is much 1larger than that of a biological system, we can
distinguish equilibration from disequilibration.

It is clear that communications related to our language,
intelligence and autonomy proceeds at a finite VOP. As discussed
above, the resulting desription approximated by the assumption of
an infinite VOP is destined to be a paradox. Therefore -our
formulation such that a paradox 1is regarded as a motion
essentially differs from the approximated form with an infinite
VOP. That difference is clear in understanding what a language
is. We here call all communicative phenomena langauge games. ITf.
one assumes an infinite VOP, a specific langauge game is reduced
to a speicific rule, and one intends to examine the origin of the
rule. The research in the framework of Artificial Life shows one
of the examples in this trend(e.g., Werner & Dyer, 1991). Various
different rules are originated at random, and they are continued
to be selected by a specific fitness function corresponding to a
specific environment untill a stable rule is achieved. Hence, the
transformation of a rule is reduced by another transformation of
environments. Once a rule is chosen, it is stable as far as it is
not perturbed. A language is regarded as a form of equilibration.

In our framework, a langauge game 1Iis designated as a
disequilibration. One cannot find a wunique rule by which a
language game can be deduced in principle. In other words, one

‘can find a global logic which cannot be reduced to a 1local rule

in disequilibration. Type 1 rules in our system embodies that
aspect. As shown in Fig. 6, the behavior of type 1 rules 1looks
like the disorder and there is no specific pattern. However, a
specific 1initial condition 1leads to -a speicific pattern



propagating regularly (Fig. 10). Given a particle initially, it
propagtes expanding its width and constitutes a gasket-wave. -As
well as a motion of a particle in the original Margolus rule, a
gasket-wave propagates toward either the right or the 1left
direction. This gasket wave has a specific property with respect
to two points, which features disequilibration.

The first point 1s that a gasket-wave has a property of a

particle while ‘it propagates like wave. Fig. 10 shows that two

gasket waves go through after the collision, which is a character
of solitons. The horizontal black bar at each instant(Fig. 10),
which 1is accopanied with the evolution of a gasket-wave,
represents the number of particles at 'each instant. Comparing
the evolution of one gasket-wave with that of two, one can find
that twice the number of particles in one gasket-wave equalsthat
in two gasket-waves. In spite of their collision, the gasket wave
propagates as 1if there were no collisions. The gasket-wave
basically consists of a local check pattern. Therefore, as far as
the two waves are not located in the same position, the number of
particles cannot be decreased by collisions. Indeed, there is no
such case that two waves propagating in two opposite directions
collide in the manner that these particles constituting different
wave-gaskets are located in the same positions.

Fig. 11 shows the relationship between the distance of two
gasket-waves and the direction of their propagation. If the two
gasket-waves are separated over 2n sites (i.e., the seed of the

first wave is located at the i-th site and that of the second.

wave is at the (i+2r)-th site), they propagate in the same
direction. They cannot collide as propagating in the opposite
direction with each other, while they constitute a single
emergent wave as interfering with each other. On the other . hand,
if the two waves are separated over 2n+1 sites, they propagate in
the opposite directions. In this case, the two waves collide. At
the moment of collision, one particle in the one gasket-wave
occupies a hole in the check pattern of the other. gasket-wave.
Therefore, each of the two waves propagating 1in the opposite
directions can pass through the other without interaction. Note
that n>1. Two seeds separated over between two sites yields only
one gasket-wave because one seed is cancelled by the other. This
cancellation at the instant ¢t depends on the value of the state
at the instant t-1 and t-2. Any pair of gasket-waves approaching
with each other are either interfered or superimposed. This
feature is important in the global computation.

The second point is that a gasket-wave is not reducible to a
specific local rule. In our framework of a system proceeding at
a finite VOP, the procedure (3-17, 18) yields a formal device
for prescribing the aspect that a local rule ¢ 1n a given rule
space is operated, while requiring a finite time interval.
Therefore, the behavior of the system is foundamentaly prescribed
by the algebraic property of a map ¢. Despite this, it also shows
that under the procedure (3-17, 18), the VOP of the system is

expressed by the algebraic property of ¢. If ¢ has a weak self-.

referential property, the behavior of the system with the
procedure (3-17, 18) is the same as that of ¢ without that
procedure. It implies that the system proceeds at an infinite
VOP. On the other hand, type 1 rules such that for any (a, c)eQ?,
&(x, 0, y)=¢(x, 1, y) where x=adb, y=b®c are most far away from
the rule with a weak self-referential property because the latter
is defined in such a manner that for any (a, c)e0?, ¢(x, O,
y)#¢(x, 1, y) where x=a®db, y=b®c. It implies that type 1 rules
under the procedure (3-17, 18) proceeds at the smallest VOP in
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the rule space, which entails that the system realizes perpetual
disequilibration. In other words, type 1 rules under the
procedure (3-17, 18) realize a system proceeding at a finite VOP
while the inter-cellular transition rule looks as if defined in
the form of ¢:0%3Q, a;t*'=¢(a;-1¢, at-', a+1t). In this
context, if one sticks to describing the evolution of type 1
rules in the form of ¢:0%-0, it is destined to be of a one-to-

- many type mapping. For example, in a gasket-wave, one finds both

¢(1, 1, 1)=0 and ¢(1, 1, 1)=1.

With respect to those two points, one can find that a global
pattern appears while it is by no means reducible to local rules.
It is, however, noted that the global or spatial distribution of
a particle is reducible to a local or temporal probability of the
existence of a particle in equilibrium because there 1is no
deterministic rule. It is suggested that a stochastic process may
imply that VOP is zero, and that if VOP is zero, then one can
find a random process featuring ©probabilities instead of a
deterministic rule. On the other hand, if VOP is infinite, the
global pattern is perfectly reducible to a local rule because the
globality is tautologically prescribed by a local rule. In the
sepctrum of VOP except for the extreme-case members(VOP=0 or ),
one comes to face the evolution which cannot be estimated in
terms of either detriminstic or stochastic scheme.  Infinite or
zero VOP features a ideal system in which each of 1locality and
globality are reducible to the other on the one hand. Finite VOP

.suggests an idea of a hierarchical structure because each of

local and global features, which cannot be reducible to the
other, generate and are generated by disequilibration.

The global pattern resulting from disequilibration suggests
the model of a langauge game which cannot be reduced to a rule of
a language. Because each gasket-wave behaves independently and is
regarded as a particle, one can control a stream of a gasket-
wave. In ballistic computations (Toffoli & Margolus, 1987), a
collision of two particles is utilized as AND or NOT gate in a
two dimensional lattice. One can compute any statements in two-
valued logic by a ballistic computation where one regards the
presence of a particle as valued 1 and the absence as valued 0.
For example, a particle that can collide with a given particle
and shifts its orbit can be used as a NOT gate. If an 1input
value is 1 implying the presence of a particle, it collides
another particle which is prepared as a NOT gate and the orbit
is shifted. At this time, if one waits for a particle on the site
where it is expected that a NOT-gate-particle presents, one
cannot find a particle and obtains a value of output as O. On
the other hand, if the value of input is 0 implying the absence
of the particle, one wailting for a NOT-gate particle at the same
site can find it and obtains its value. 1. Therefore, one can
utilize a collision as a NOT gate.

Two gasket-waves can be superimposed, then the collision of
the two gasket-waves can be utilized as an OR gate. If one
represents the presence of a gasket-wave as the value 1, a pair
of input values (4, B)=(0, 1), (1, 0) and (1, 1) are realized by
the presence of one or two gasket-waves and it leads to an output
value 1 on the one hand, and (4, B)=(0, 0) 1leads to O on the
other. However, one may find that it is not practical because the
presence of a particle have two different directions. If the
output of the operation of OR is successively utilized, it is
more useful that the direction of a gasket-wave may be
controlled. When one introduces the cancelation of a particle
such that if there is at least one particle at instant 7 then it



will be set at a specific site at instant 7+1, one can control
the direction of the suceeding gasket-wave (Fig. 12).
Also, we can construct a NOT gate by wusing a specific

boundary condition, called a wall. The wall consists of the,

primary-wall prescribed by (ars¥, axs?*!, ars**2,.., axs**®) such
that for the state of axs**%, k=0, 1, .., m, the state of the
neighboring site 1is defined by axs+17*%=axs-17*%, and the
secondary-wall axs+17=1, such that the state of the neighboring
site for the state ax,;***%, j=s+1, s+2, .., N, is defined by (ax;-
17k, ax;+17*%). Therefore, if a gasket-wave proceeds from the
left side area (i.e. i<s) and collides with the wall, it is
reflected and proceeds in the reverse direction. If there 1is no
gasket-wave approaching .the wall from the left side, the
secondary-wall plays a role of yielding a seed of a gasket-wave
to be emerged. As far as one sets the timing 7 at which a gasket-
wave reaches the wall if it exists, the seed in the secondary-
wall is cancelled only if the gasket-wave reaches the wall.
‘Finally, given a gasket wave approaching the wall which implies
the input value 1, one waiting for a gasket-wave at the opposite
side of the wall obtains no gasket-wave, which implies the output
value O on the one hand. If there is no gasket wave (i.e. 1input
value is 0), one obtains the output value 1 which results from
the seed in the secondary-wall. Hence, we can utilize the wall as
a NOT gate.

Because we construct both NOT and OR gate in the pattern
consistsing of a gasket-wave, other operations of Boolean logic
in this system also follow the suit. The gate AND is made of both
NOT and OR gates, because AAB=7((74)V(7B)). The gate IMPLICATION
is also possible because A4+B=(74)VB. Finally, all operations in
Boolean logic can be expressed by utilizing the interaction of
gasket-waves, because any other operations can be expressed only
by NOT and/or OR. In other words, one can construct Boolean logic
in a system of type 1 rules, and it 1s proven to be capable of
supporting universal computations. However, it is remarkable that
we introduce some interactive device between a system and a user
like the wall. In spite of that introduction, is it possible to
say that the very system is capable of universal computations in
its own right? To answer this question we have to reestimate the
idea of universality and/or computation..

We here estimate the relationship between universality and
efficinecy. When one describes reversible and irreversible
systems in the state space, the reversible system is described as
a bijective map on the one hand and the irreversible system as a
many to one type mapping. Comparing the reversible system to the
universal computation, one understands that the universal
computation trades off its high efficeincy, which is called the
trade-off principle (Conrad, 1987). While any configuration can
be reached from a specific initial configuration and the
resulting specific configuration is regarded as an output, it
takes a long time to compute the output as 1letting it Dbe
dependent on the initial configuration. One who uses 'such a
universal computer has to wait for a specific configuration and
has to grasp it successfully. If one misses a configuration in
the form of an output, he has to wait twice the time. On the
other hand, initial states in a highly irreversible system are
expected to be attracted into a speicific stable fixed point.
Hence, computation 1is highly effective as for a specific
configuration, though it 1s not available for a universal
computation.

In the previous works (Gunji & Konno, 1991; Konno & Gunji,
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1991; Nakamura & Gunji, 1993), we classify the rules of ECA into
two types, reversible and irreversible, while the rules of ECA
are essentially irreversible because of the form P:0%-0.
Reversible rules in ECA implies that for any (a, ¢(a, b, <¢), c¢)
there exists a map ¢ :03-0 such that b=¢ (a, ¢(a, b, ¢c), c). Ito
& Gunji (1992) and Gunji & Ito (1992) extended the idea of
reversibility in cellular automata as featuring the interaction
with the next-nearest neighboring sites, and confirmed that
reversible system shows the feature of the edge of chaos proposed
by Kaufmann & Johnsen (1991). Especially, the game of 1life
(Gardner, 1970) is a unique reversible rule in the rule space
{¢:05Q} in two-dimensional lattice. If one assigns a speicific
boundary condition, initial configuration can be obtained from

‘the final configuration computed by the game of life. Hence, the

game of 1life is located in the edge of a universal system, and it
has the features of both of reversible and irreversible system.
In fact, the game of life can construct a Boolean logic by the
speicific configuration called glider gun (Berlekamp et al.,
1982). In this context, the universal computation is a character
of reversible system.

Langton (1991a, b) emphasized that a system featuring the
edge of chaos is capable of a universal computation in spite of
its irreversibility, and that the system exhibits a foundamental
feature of +the phenomenon of 1life. His argument is that
biological communications related to the intelligence are at the
edge of chaos. This idea is related to the computation thoery in
which computation is necessarily irreversible, because extracting
an output is realized by halting the computer. In this context,
chaotic dynamics embodies indeterminacy because it involves the
haliting problem of which there 1is no algorithm to .determine
whether a computer halts or not. The indeteminacy 1is originated
from that the domain of dynamics, V, consists of a Cantor set and
accumulating points (Devaney, 1986). The aspect that at the edge
of chaos it 1is capable of computation for removing the
indeteminacy may be regarded as something suitable for
intelligence. However, the ability of computation exhibited in
organisms may not be as the same as that in a system featuring
the edge of chaos. There are two reasons. First, as discussed
above, 1t is reasonble that a system featuring the edge of
reversibility 1is capable of a universal computation and
constructs a Boolean logic. The universal computation results
from reversibility, and not from the edge of  chaos, while

.the system at the edge of chaos can be reversible 1in the above

sense. The original Margolus rule and type 2 rules in our
Margolus system can also construct a Boolean logic in the context
of ballistic computaion (Toffoli & Margolus, 1987), though it is
not at the edge of chaos. Also, the edge of reversibility is
expected to show the intermediate pattern in the - spectrum
covering from order through disorder.

The second reason is more serious. The computation in the
game of life at the edge of chaos is expressed in a programmable
system, while biological systems are unprogrammable due to the
finiteness of VOP. Therefore, 1t 1is possible that resulting
universality cannot be reduced to a local rule which is
programmable. If biological computations can be expressed in the
form of a formal programming, they cannot be beyond the trade-off
principle. However, 1if unprogrammable in principle, all
programmbale computations one can find in biological behaviors
are destined to be restricted as anapproximation. High efficient
computation is possible, while universality can only be a matter



of approximation.

Type 1 rules is capable of a universal computation, while
one has to introduce the cancellation device and the wall for a
NOT gate. It shows that the universality may not be perfect on
the one hand, but also shows the essential aspect of computation.
If one says that a system shows a universal computation, one will
be to forget that no computation is possible without its wuser.
One can use a computer, not because the computatin theory is
defined as being separated from its user or from the measurement
procedure of 1its wuser, but because the user measures the
resulting output and the computer is fabricated and constructed
so as to yield the output which is measurebale by the user. The
measurement and fabriacation of the computer brings forth the
process of self-reference, and accordingly, one cannot prescribe
the measurability as a metter of principle (Gunji & Nakamura,
1993). In other words, computation 1is well-defined only if
semantics is defined and if the semantics is replaced by metrics
in the state sapce. Therefore, it always implies the existence
of an observer or user who can observe the system at an infinite
VOP.

Even in reversible and programmable system, the ability of
computation is estimated by an observer who observes the global
space. In the game of 1life, for given values of the inputs for a
specific timing and location of a glider, one has to know both
the specific timing and the 1location of the resulting glider
colliding with the glider of the gate which determines the value
of the output (Berlekamp, 1982). Also in a ballistic computation,
one has to know the expected orbit of a particle (Toffoli &
Margolus, 1987). Although prescribing a specific timing and
location is just a matter of measurement, we have here confirmed
that the measurement is not distinguished from a system.

Therefore, we cannot distinguish measurement and/or prescribing
" the resulting configuration as an output from the device of the
wall in the computation in a system of type 1 rules in a Margolus
system. Note that as far as one ignores the measurement involved
in computation which entails separation of the computer from
the measurement, one can regard the computation theory as a real
objective and can define both universality and efficiency 1in
programming.

Therefore, we emphasize that the trade-off principle is
right in the programmable system in which we believe that
probrammability is proved while a true criterion of
programmability is not attainable. The trade-off principle is
the end member in the spectrum of computation which involves an
unprogrammbale computation (Conrad, 1987). One cannot separate
between boundary conditions and the process of measurement. This
inseparability applies even to a a specific interface with
boundary conditions. It is of course possible that one can
define the criterion of a programmable system and define a
universality such that the observer does not interact with the
system except at the time of measuring the output. That criterion
is recognized as being objective 1in general, but is still
arbitrary. We can extend the idea of computation in the manner
that the definition of universality 1is extended so that a
specific interaction between the system and the user can be
allowed. Consequently one can find that a wuniversal but high
efficient system becomes possible while the criterion of
efficiency and universality has already been modified.

Does it mean that any programmable system that is capable of
high efficient computation can be regarded as a universal
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processor? The answer would be yes if it 1is proved that any
interaction is possible in any system or if one can move a
particle without moving other particles. The answer 1is no,
however, because we have extended the concept of computation so
as to include computations in unprogrammable systems. We admit
that a system proceeding at a finite VOP can realize a
computation. Therefore, answering yes to that question is
destined to fail. If one defines an arbitrary criterion: of -

_universality only in the programmable system, the trade-off

principle can be modified but remains isomorphic to the original
trade-off principle. A highly efficient but universal computation
found in a system proceeding at a finite VOP is outside from the
category of programmable computation. We cannot evaluate it in
terms of the trade-off principle in programmable systems.

In fact, universal computation found in a system of type 1
rules has a high efficiency. To see this, one can compare it  to
be a ballistic computation. Imagine a value of 1 of a ballistic
computation in the orginal Margolus CA consisting of n-lattices
and with a periodic boundary condition. One can obtain a value of
1 when one finds a particle proceeding along a specific orbit in
any site of one-dimensional space. Therefore, given a proceeding
particle, the number of possible configurations yielding a value
of 1 is n. Next, imagine the same situation in a system of type 1
rules. A value of 1 is obtained when one finds a gasket-wave.
Because the gasket-wave propagates as expanding and changing 1its
own pattern, the number of possible cofigurations which is
observed by its user is 27-1>p. It implies that one can choose a
site in which one measures a value of a particle more roughly in.
a system of type 1 rules. If one loses sight of a gasket-wave at
a spcific site, one does not have to waste the time. If one
takes an uncertainty in measurement into consideration, that
system will turn out to have a high efficinecy. It is reasonable
because the system proceeding at a finite VOP 1is always
accompanied by an uncertainty.

We emphasize a biological computation resulting from
disequilibration. When one sticks to a programmable computation,
a biological system would have to realize "computation" while it
finds itself whithin the realm of the halting problem. In other
words, we can find an occurence of computation in biologically
disequilibrated proccesses and also find information generation.
It looks as if we would interpret an arbitrary biological process

" as a computation. This interpretation is, however, not correct.

No computations including programmable ones can be possible
without the observer or the involvement of measurement.
Computations in disequilibration require user's intervening with
the computer more often than programmable computations do. As a
result, information generation is a consequence of thetrading off
in programmablity.

4. Conclusion

The idea of a system proceeding at a finite VOP 1leads to
disequilibration process. If one attempts to describe the
process, a self-referential form or a paradox will follow
because the description of interaction involves the metric
featuring the wholeness that assumes the idea of a system
proceeding at a infinite VOP. With respect to the indeterminacy

‘in the self-reference, chaotic dynamics can be a model for such a

disequilibrated process. However, we find that the identification
of a chaotic attractor with a one-to-many mapping (i.e. the



assimilation of a bundle of‘trajectriesbto a single trajectory)
is a paradox in its own right. It leads the asepct that one has
to admit the meaning(value)-change as time proceeds, 1if one

claims the identification of the meaning a priori. It does not

imply that b’=f(a) where f needs a finite time iInterval from t to
t+At instants, but that -after the identification of b’=f(a) one
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can find a’#a as the value of the state at the t-th instant. This -

is the idenfification occured a posteriori.

To demonstrate what the identification a -posteriori 1is all
about, we proposed the model called a self-referential system
that consists of both forward- and backward-time dynamics, and
replace the identification of local meanings consistent with the
global meaning by conservation law of the number of particles.
Corresponding to the algebraic property of the forward-dynamics
in the self-referential system indicating the level at which the
consistency is satisfied, the behaviors of the self-referential
system in the rule space called the Margolus rule are classified
-into five types. The self-referential system positioned most far
away from the conservative system exhibits a disequilibration, in
which the system paradoxically realizes non-conservation due to
the conservation law. Even if there is a logic to conserve the
number of particles, it cannot be realized because the
semantical value of the very 1logic propagates at a finite
velocity. Therefore, the disequilibration process embodies an
indeterminacy as a matter of principle, and then it cannot be
regarded as a computation 1in the standard framework of
programmable computation.

We can, however, find a computation in disequilibration in
the sense of trading-off programmable computation. Though it may
look as . if the computation results from an arbitrary
interpretation of the observer participating in -the context of
"finding", it rather shows that no computation proceeds without
observation and that a computer cannot be separated from its
user. This aspect is easy to forget. Even in the programmable
computation, the computer is constructed so as to yield an output
that can be used as an input to subsequent computation, while one
often misunderstands that there would exist a reality yielding
the foundation of the usage. That misunderstanding takes one from
"to use" to "to be able to wuse", and 1leads to the idea of
control.

Biological computation gives rise to the aspect that the
measurement which is hidden 1in the programmable computation
explicitly comes to the surface. Hence, we as users of a computer
positively intervene with the computational process. In our self-
refererential system in the Margolus rule space, one can find a
mode of computation in a system featuring disequilibration
through introducing a specific boundary condition. The resulting
computation or the computation found in this case, however, is a
Boolean logic consisting of a gasket-wave pattern. We emphasize
the following two points. First, biological computation implies
neither the computation theory differing from that for
programmable computation nor a form of an inconsistent language.
It 1implies a consistent langauge as well as a programmable
computation theory. Second, the user of a biological processor
~ has to positively intervene with the processor, while the results
of intervention must be uncontrollable. The intervention 1is
always accompanied by an indeterminacy. When we wish to fabricate
a biological processor in the future, it will not be expected
that the processor may arise independently of heuristic ideas on
the part of users. Rather, the user manages how to use the
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‘processor with the much greater effort than to use the ©processor.

to extract only its output.The situation is similar to a mnatural
language. Undestanding disequilibration glves rise to
understanding both the phenomenon of life and a natural language
that cannot be reduced to the rule of a specific languague. Our
self-referential system can serve as a model for understanding
disequilibration.
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type the expression of ¢
1<0123> a;tti=a:t
- 2<0213> ct"‘-(ulot'A7CI"‘)V((al"‘*alo\‘)Anl-g‘)
3<0312> dl""(’((ll"‘OGIol"‘)oaIOIt)A7(dl~l"’°dl‘)
w(ai-1t0at))V((7((a;t-1@a +1¢ 71 )BW 1t)
A et 18@t))Aaiett)
4<0132> at+i=(7a/-1t Aart)V((ar-1¢Vast YA7art-1)
7<1302> artti=(a;t-VAQie1t W((ast-tVai+1t)A7a;i-1%)
8<1032> at*i=7a; ¢t .
9<3120> art*=7(art-t Va1t JA(Z (@it Aar o1t ) A7as -1 t)
10<3210> atti=7a;t
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2 0213 L P4 I
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L,_j13°2>
! I 6 I i

<2310>——<3201> <2130>—<3021> <203IQ

<2301 9 31203 10 592103
F i? 4

8 |_)——_|<1032?

PARADOX=ONE-TO-MANY l i I
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