Some results on Bochner-type theorems

岡山県立大情報工 高橋泰嗣 (Yasuji Takahashi)

§ 1. Introduction

有限次元空間で知られているBochner の定理は、無限次元空間 (nuclear space)に対し一般化される。

Theorem 1.1. Let E be a nuclear space with the dual E'. Then every continuous cylindrical measure μ on E' is σ -additive (σ (E',E)-Radon.)

この定理は、Eが metrizable のときは Minlos[7]により、また、一般の場合は山崎 (Umemura[16]) によって証明された。ところで、Eが σ-Hilbert space のとき、 Bochnerの定理が成立するためには、 nuclearity が必要となる。したがって、Eが Hilbert space のとき、Bochner の定理が成立するのは有限次元に限る。Hilbert space 上の cylindrical measure については、次の結果が知られている (Sazonov-Minlos theorems [7],[13])。

Theorem 1.2. A cylindrical measure μ on a Hilbert

space H is σ -additive iff it is continuous with respect to the Hilbert-Schmidt topology.

Theorem 1.3. Let H and G be Hilbert spaces and T : H \to G be a continuous linear operator. Then T is of Hilbert-Schmidt type iff for each continuous cylindrical measure μ on H, the image T(μ) is σ -additive on G.

これら3つの定理は密接に関連しているが、小論では、これらの定理の一般化について、すでに知られている結果も含めて、そのいくつかを紹介し、相互の関連について考えたい。

§ 2. p-radonifying operators and p-summing operators

ここでは、定理1.3 の Banach space への一般化として、
Schwartzによる "p-radonifying operator" の理論を紹介し
その結果を用いて、定理1.1 の一般化および関連した結果に
ついて述べる。

E, F を Banach space, E', F' を dual space とする。
(E', F'は Banach space である。) E 上の cylindrical measure (c.m.) μ に対し、その特性関数 (ch.f.) は

 $\widehat{\mu}(x') = \int_{E} \exp(i\langle x, x' \rangle) d\mu(x), \quad x' \in E'$ で定義される。この $\mu(x')$ が E' 上で連続のとき、 μ は連続

な c.m. という。(μ が E' 上の c.m. のときは、その特性関数 μ (x) は E 上で定義される。)ところで、 c.m. μ に対し、対応する random linear functional (r.1.f.)を L: E' \rightarrow Lo(Ω ,P)とするとき、 μ が連続なることと、r.1.f. Lが連続なることは同等である。(r.1.f. に関する詳細は、Dudley[1] を参照。)ここで、 L(E') \subset Lp(Ω ,P), 0<pく ∞ , であれば μ は weak p-th orderという。更に、 L: E' \rightarrow Lp(Ω ,P) が連続であれば、c.m. μ は type p という。(連続な c.m. μ は type 0 ということにする。)

- Definition 2.1. Let $T:E \rightarrow F$ be a linear operator.
- (1) T is p-radonifying, 0 \infty, if for each c.m. μ on E of type p, the image T(μ) is a Radon measure on F.
- (2) T is p-summing, $0 , if for each weakly p-summable sequence <math>\{x_n\}$ in E, the sequence $\{Tx_n\}$ in F is absolutely p-summable. In particular, we say "absolutely summing" instead of "1-summing".

p-radonifying operatorと p-summing operatorの関係について、次の結果がある (Schwartz[14])。

Theorem 2.1. Let $1 . Then <math>T : E \rightarrow F$ is p-summing iff it is p-radonifying.

この定理は、0 く p \leq 1 では成立しない。 p = 1 のとき E' or F が Radon-Nikodym propertをもてば、定理は成立 する。ただし、p-radonifying ならば、常に p-summingである。0 く p く 1 のときは、次の結果がある。

Theorem 2.2. Suppose that E' has the metric approximation property (m.a.p.). If $T: E \to F$ is p-summing, then for each c.m. μ on E of type p, $T(\mu)$ is Radon on σ (F",F'). (In this case, if F is reflexive, then $T(\mu)$ is Radon on F.)

定理1.3 の一般化として、次の結果を得る。

Theorem 2.3. Suppose that E' has the m.a.p. and F is reflexive. Then $T: E \to F$ is p-summing, $0 , iff for each continuous c.m. <math>\mu$ on E, $T(\mu)$ is Radon on F, that is, T is 0-radonifying.

T:E→F が p-summing, 0 0 に対し、 T は r-summingとなる。このような T は completely summing という。 0-radonifying operator は常に completely summing であるが、逆は一般に成立しない。m.a.p.の代わりにtypeを仮定することがある。通常2種類の定義(stable と Rademacher)があるが、ここでは、 stable type の意味で使う。任意の Banach space は、 type p,

0 〈 p 〈 1,であり、 type 1 であれば、ある p 〉 1 があって type p となる。(定義および関連した結果は後述する)
Theorem 2.4. Suppose that E' has type 1 . Then T:
E→ F is completely summing iff it is 0-radonifying.

ここで、定理1.1 の一般化を考える。

Theorem 2.5. Let E, F be locally convex Hausdorff spaces, and T: F \rightarrow E be a continuous linear operator. Suppose that there is a fundamental family {|| ||_{\alpha}} } of continuous seminorms on E such that each associated Banach space E_{α} of $(E, || ||_{\alpha})$ has the m.a.p. Suppose also that for each continuous seminorm || ||_{\alpha} on E, there is a continuous seminorm || ||_{\beta} on F such that $T: F_{\beta} \rightarrow E_{\alpha}$ is dual completely summing. Then for each continuous c.m. μ on E', the image $T'(\mu)$ is Radon on σ (F',F).

Remark. E = F, T = I (identity map) とする。 E が
nuclear space のとき、定理 2.5 の条件は満たされるので、
定理 1.1 が従う。また、定理 2.5 の E に関する条件で、
m.a.p.の代わりに、各 E_o が type 1 をもつとしてもよい。

Okazaki-Takahashi [10]による次の結果は、定理 2.5 より 従う。しかしながら、その証明は本質的に同じである。 Corollary 2.6. Let $T:F\to E$ be a continuous linear operator. Suppose that E satisfies the same assuption as in Theorem 2.5 and F is barrelled. Suppose also that E admits a T(F)-accessible Borel probability measure. Then for each continuous c.m. μ on E', the image $T'(\mu)$ is Radon on $\sigma(F',F)$.

この結果は、 abstract Wiener space と Bochner's theorem の関連を述べた Okazaki [9], Sato [12] の結果を一般化する。詳細は、これらの文献を参照されたい。

また、定理 1.1 の逆問題、つまり nuclearity の必要性については、 Okazaki-Takahashi [11] を参照されたい。

- § 3. p-stable cylindrical measures and Λp-operators

 Schwartzの p-radonifying operator の理論は、 type p

 の c.m. μの Radon extensionに関するものであったが、

 ここでは、p-stable cylindrical measure μの Radon

 extension について紹介する。以下、E は Banach space,

 μは E上の c.m. とする。μの特性関数 (ch.f.) μ(x') は

 E'上で定義された positive definite function である。

 Definition 3.1. Let 0 < p≤ 2.
- (1) μ is p-stable symmetric if there is a linear ope-

rator T from E' into some L_p such that $\exp(-\parallel Tx'\parallel^p)$, $x' \in E'$, is the ch.f. of μ . In particular, if p=2, then μ is called Gaussian.

(2) T : E' \rightarrow L_p is a \land p-operator if exp(- \parallel Tx' \parallel p), x' \in E', is the ch.f. of a Radon measure on E.

以下、p-stable c.m. としては、このようなものを考える。(すなわち、symmetric なものだけを扱う。) p-stable c.m. or Λ_p -operatorについては、非常に多くの結果が知られているが、そのいくつかを紹介する。詳細は、 Linde [4]を参照されたい。(Ω ,P)を probability space, 0 \leq 2 とする。linear operator T : E' \rightarrow L $_p(\Omega$,P)が連続のとき、r.1.f. Tに対応する E上の c.m. を ν とする。 ν はtype pである。

Definition 3.2. T is decomposed if υ is Radon on E. Moreover, υ is Radon of order p, that is,

 $\int_{E} \|x\|^{p} d\nu(x) < \infty$

then T is called p-decomposed.

Definition 3.3. Let $\{x_n\}$ be any weakly p-summable sequence in E and μ be a p-stable c.m. on E with the ch.f. $\exp(-\sum |\langle x_n, x' \rangle|^p)$, $x' \in E'$, where 0 .

gence of $\Sigma \| x_n \|^p$ is sufficient for μ to be Radon.

(2) E is said to be of (stable) cotype p if the convergence of $\Sigma \parallel x_n \parallel^p$ is necessary for μ to be Radon.

Theorem 3.1. E is of type p iff every p-decomposed operator $T: E' \to L_p(\Omega, P)$ is a Λ_p -operator.

Remark. If $0 , then every <math>\Lambda_p$ -operator is p-decomposed. But for p = 2, this is false; this is true for p = 2 iff E is of cotype 2.

Theorem 3.2. Let 1 $\langle p \langle 2, \text{ and } T : E \rightarrow F \text{ be a}$ linear operator.

- (1) If for each continuous p-stable c.m. μ on E, T(μ) is Radon on F, then T is p-summing.
- (2) Suppose that F is of type p. If T is p-summing, then for each continuous p-stable c.m. μ on E, T(μ) is Radon on F.

Remark. (1)は任意のBanach spaceが cotype p (p < 2) ということから示される。 p = 2のときは、(1) が成立する ための必要十分条件は、E がcotype 2なることである。他方、p = 2 のとき、 Gaussian c.m.は type 2 であるから, (2) は任意のBanach spaceに対して成立する。

Corollary 3.3. If any continuous p-stable c.m. on E

is Radon, 0 , then E is of finite dimension.

Remark. This is true for p = 2 (Linde-Pietsch [5]).

これによって、無限次元 Banach space 上では、 c.m. の class を p-stable c.m. に制限しても、定理1.1 のような 結果を得ることはできない。そこで、 p-stable c.m.のclass に対し、定理1.2 と類似の議論をしたい。この議論は、次の 8 で行う。最後に、Λρ-operatorと 0-Radonifying operator の関係を述べる。

Theorem 3.4. Any Λ_p -operator from E' into L_p is τ_k -continuous and completely summing; where $\tau_k = \tau_k(E',E)$ is the Mackey-topology.

Remark. If $T: E' \to L_p$ is a Λ_p -operator, 1 , then <math>T' is a continuous linear operator from $(L_p)'$ into E. In this case, $\mu = T'(\gamma_p)$ is a p-stable Radon measure on E. Here γ_p denotes the canonical p-stable c.m. on $(L_p)'$ with the ch.f. $\exp(-\parallel f \parallel p)$, $f \in L_p$. (For p = 2, γ_2 is called a canonical Gaussian c.m.

Theorem 3.5. Any $\Lambda_{\, 2}\text{-operator}$ from E' into a Hilbert space H is 0-radonifying.

Theorem 3.6. Suppose that E has the m.a.p. or type 1. Then for 1 \Lambda_{\, p}\text{-operator} from E' into $L_{\, p}$

is 0-radonifying.

Remark. 定理 3.5 は、Gross [2], Okazaki [9], Sato [12]によって、本質的には知られている。定理 3.6 は、定理 2.3, 定理 2.4, 定理 3.4 より従う。ここで、 E の条件 (m.a.p. or type 1) が必要か否かは不明である。 Λ p-operatorと p-summing (or p-nuclear) operator の関連において、様々な Banach spaceの特徴付がなされているが、ここでは省略する。これらの詳細は、 Linde [4], Takahashi-Okazaki [15]等を参照されたい。

§ 4. Sazonov-type topologies

ここでは、定理 1.2 を Banach space に一般化した結果について考察する。以下、E を Banach space, E' を dual space, $\tau_{\kappa} = \tau_{\kappa}(E',E)$ を Mackey-topology を表すものとする。 E' 上の vector topology τ_{1} , τ_{2} に対し、identity map: $(E', \tau_{1}) \rightarrow (E', \tau_{2})$ が連続のとき、 $\tau_{1} \ge \tau_{2}$ で表す。 τ_{1} が τ_{2} より真に強いとき、 $\tau_{1} > \tau_{2}$ で表す。 E 上の τ_{1} と E' 上の vector topology τ_{2} に対し、 τ_{3} が τ_{4} が τ_{5} 一連続なることである。

Definition 4.1. Let τ be a vector topology on E'.

- (1) τ is said to be sufficient if every τ -continuous c.m. μ on E is Radon; that is, the τ -continuity of μ is sufficient for μ to be Radon.
- (2) τ is said to be necessary if every Radon probability measure μ on E is τ -continuous; that is, τ -continuity is necessary for μ to be Radon.
- (3) τ is said to be an S-topology if it is necessary and sufficient. E is said to be an S-space if there is an S-topology on E'.

Remark. Hilbert space H (H = H')は S-spaceである。実際、 тнs (Hilbert-Schmidt topology) は S-topology である。 Banach space については、E が S-spaceであれば、E は L。の部分空間と同型である (Eがm.a.p.をもてば、逆も成立。)特に、S-space は cotype 2 である。S-space の閉部分空間は S- space であり、 Lp, 1≦ p≦ 2, およびその閉部分空間(Sp-type) は S-spaceである。このような空間についての詳細は、Mushtari[8] を参照されたい。

これより、一般の Banach space 上の sufficient topology について考えたい。次に定義する т н s は、いつでも sufficientである。

Definition 4.2. Let H be a separable Hilbert space.

- (1) An operator $T:(E',\tau_\kappa)\to H$ is said to be of Hilbert-Schmidt type if it is factorizable by a Hilbert-Schmidt operator between Hilbert spaces.
- (2) The Hilbert-Schmidt topology τ_{HS} on E' is the weakest vector topology making all Hilbert-Scmidt operators $T:(E', \tau_K) \to H$ continuous.

Remark. T: $(E', \tau_K) \rightarrow H \quad b^{\sharp} \quad Hilbert-Schmidt \quad type$ であるための必要十分条件は、ある 2-summing operator $S: H \rightarrow E$ が存在して、 T = S' となることである。 また、тнsは locally convex topologyであり、その位相は тк-continuous seminorms {|| T() || н} の familyで 定義 さ れる。もちろん、これらの seminormsはHilbertianである。 (seminorm が Hilbertian とは、associated Banach space が Hilbert spaceということである。) — 般に、associated Banach space が、type p, cotype q, m.a.p.等をもつとき、 seminormがそれらの性質をもつといい、そのようなseminorms の familyで 定義 された locally convex topology ては、 type p, cotype q, m.a.p.等をもつということにする。 Hilbert space H 上の sufficient topology τが Hilbertian 以下で述べる。従って、 T Hsより真に強い H上の sufficient

topologyτを見いだすためには、τの性質を考察する必要が ある。次に定義するτm は、τ нsより真につよい。

Definition 4.3. Let H be a separable Hilbert space, $\| \ \|$ a continuous seminorm on H, and B the associated Banach space.

- (1) || || is said to be measurable (in the sense of
 Gross) if i': B'→ H is a Λ₂-operator, where i : H →
 B is the natural map. In this case, if i is one-to-one
 (|| || is norm), then (i, H, B) is called an abstract
 Wiener space.
- (2) The topology τ_m on H is the weakest vector topology making all measurable seminorms on H continuous.

Remark. すべての measurable seminorms が m.a.p. をもつわけではないが、 τ m は m.a.p. をもつ measurable seminorms の fundamental family によって定義される。従って、 τ m は m.a.p. をもつ。また、Hilbert-Schmidt typeでない Λ 2-operatorが存在するので、 τ m > τ н s である。 τ m より真に強い sufficient topologyは知られていない。次の結果は、sufficient topology であるための必要条件を与える。

Theorem 4.1. Let τ be a locally convex topology on H; τ is defined by the family of continuous seminorms

 $\{\|\ \|_{\not k}\}$. If τ is sufficient, then for each $\|\ \|_{\not d}$, the natural map : $H\to B_{\not k}$ is dual completely summing, whre $B_{\not k}$ is the associated Banach space.

Remark. τ が m.a.p. をもつとき、各 natural map: $H \to B_{\alpha}$ が dual completely summing ならば、定理 2.5 より、 τ は sufficient topologyである。同様の結果は、 τ が type 1 を仮定しても言える。すなわち、 τ が m.a.p. or type 1 を仮定すると、 sufficient であるための必要十分条件が得られたことになる。

Corollary 4.2. Let au be a sufficient topology on H. If au has type 2, then $au \le au_m$.

Remark. τ が unconditional basis, local unconditional structure, あるいはもっと一般に、 G.L.P. をもつような場合は、 τ が sufficient で finite cotype (cotype 2)をもてば、 $\tau \leq \tau_m$ ($\tau \leq \tau_{Hs}$) となる。特に、 τ が Sp-type, $1 \leq p \leq 2$, のときは、 τ が sufficient ならば、 $\tau \leq \tau_{Hs}$ となる。

Hilbert space H 上の sufficient topologyについて、最後に、Okazaki [9], Sato [12] による結果を紹介する。 (E,τ) :locally convex Hausdorff space、 $H \subset E$ (dense)、inclusion map $i: H \to (E,\tau)$ は連続とする。 $H \bot o$ 標準

Gaussian c.m. γ_H に対し、 $i(\gamma_H)$ が(E,τ)上の Radon measure であるとき、(i,H,E) は A.W.S. という。このとき、 $\tau \leq \tau_m$ であるから、 τ は sufficient である。

Theorem 4.3. Let (i,H,E) be an abstract Wiener space. Then for each continuous c.m. μ on E', the image i'(μ) is a Radon measure on H.

次に、 Banach space 上の sufficient topologyについて考える。

Theorem 4.4. Let τ be a locally convex topology on E' such that $\tau \leq \tau_{\kappa}$. Suppose that τ is Hilbertian.

- (1) If τ is sufficient, then $\tau \leq \tau_{HS}$.
- (2) If every τ -continuous p-stable c.m., 0 \tau \le \tau_{HS}.
- (3) If E is of cotype 2, and if every τ -continuous Gaussian c.m. on E is Radon, then $\tau \le \tau_{\rm HS}$.
- (4) If τ is an S-topology, then E is isomorphic to a Hilbert space.

Remark. p = 2 のとき、(2) は成立しない。他方、(4) は Mushtari の結果である。(3) に関連しては、次が成立。

Theorem 4.5. E is of cotype 2 iff every Gaussian Radon probability measure on E is $\tau_{\rm HS}$ -continuous.

Theorem 4.6. Suppose that E is of type p, 0 . Then the following assertions are equivalent.

- (1) For each p-stable c.m. μ on E, μ is Radon iff it is $\tau_{\rm Hs}$ -continuous.
- (2) E is isomorhic to a Hilbert space.

Remark. Every Banach space is of type p, 0 .

Theorem 4.7. Let τ be a locally convex topology on E' such that $\tau \leq \tau_{\mathbf{k}}$. Suppose that τ has type p, $0 . Then <math>\tau$ is sufficient iff every τ -continuous p-stable c.m. μ on E is Radon; that is, the τ -continuity is sufficient for μ to be Radon.

Remark. p=2 のときは、 τ が Hilbertian でも成立しない。これに関しては、次が成立。

Theorem 4.8. Let τ be a locally convex topology on E' such that $\tau \le \tau_{\, \mathbf{k}}$. Suppose that E is of cotype 2, and τ has type 2. Then τ is sufficient iff every τ -continuous Gaussian c.m. on E is Radon.

ここで、 Λ_p -operator $T: E' \to L_p, \ 0 定義される <math>E'$ 上の vector topology τ_p を導入する。(これに関しては、 Mushtari [8]、Linde [4] を参照。)

Definition 4.4. au_p is the weakest vector topology

on E' making all Λ_p -operators $T: E' \to L_p$ continuous; τ_p is locally convex if $p \ge 1$.

Remark. $\tau_p \leq \tau_k$ 、 $\tau_p = \tau_q$ for 0 < p, q < 1、等は知られている。明らかに、 τ_p は type q $(q は Hilbertianである。<math>\tau_2$ -連続な任意のGaussian c.m. はRadonであることが知られている。次の結果はMushtariによる。

Theorem 4.9. E is of cotype 2 iff τ_2 is sufficient. Definition 4.5. Let $0 < p, q \le 2$.

- (1) E is said to be of M-cotype p (in the sense of Mushtari) if τ p is sufficient.
- (2) E is said to be of cotype (q,p) (in the sense of Mathe) if every τ_{p} -continuous q-stable c.m. on E is Radon.

Remark. 容易に分かることは、 τ_p (p<1) は necessary、 従って、 Eが S-spaceであることと、 M-cotype p (p<1) で あることは同等である。定理 4.9. は、cotype 2と M-cotype 2 が同等であるということである。次の結果は知られているが (Linde [4])、定理 4.7 からも従う。

Corollary 4.10. E is of M-cotype p iff it is of cotype (q,p) with q < p.

最後に、p-stable c.m. の class に対する S-topology

- をもつ Banach space を考える。これについて、次が成立。 Theorem 4.11. Let 0 . Then the following assertions for E are equivalent.
- (1) There exists a vector topology τ on E' such that for each p-stable c.m. μ on E, the τ -continuity of μ is necessary and sufficient for μ to be Radon.
- (2) E is of cotype (p,p).

Remark. Every Banach space is of cotype (2,2).

M-cotype p, cotype(q,p) の Banach space について、多くの結果が知られている。また、 type p の classに対するS-topologyも考えられるが、それらは別の機会にふれたい。

References

- [1] R.M.Dudley: Random linear functionals, Trans. Amer.

 Math. Soc. 136 (1969), 1-24.
- [2] L.Gross: Harmonic analysis on Hilbert space,

 Mem. Amer. Math. Soc. 46 (1963).
- [3] H.H.Kuo: Gaussian measures in Banach spaces,

 Lecture Notes in Math. 463, Springer-Verlag, 1975.
- [4] W. Linde: Infinitely divisible and stable measures on Banach spaces, Tubner-Texte zur Math. 58,

- Leipzig, 1983.
- [5] W. Linde and A. Pietsch: Mappings of Gaussian cylindrical measures in Banach spaces, Theory Prob.
 Appl. 19 (1974), 445-460.
- [6] P. Mathé: A note on classes of Banach spaces related to stable measures, Math. Nachr. 115 (1984), 189-200
- [7] R.A.Minlos: Generalized random processes and their extension to measures, Trudy Moskov. Obsc. 8 (1959), 497-518.
- [8] D.Kh. Mushtari : Spaces of cotype p, 0 Prob. Appl. 25 (1980), 105-117.
- [9] Y.Okazaki : Bochner's theorem on measurable linear functionals of a Gaussian measure, Ann. Prob. 9
 (1981),663-664.
- [10] Y. Okazaki and Y. Takahashi : Accessible cylindrical measure and Bochner's theorem, J. Functional Anal. 67 (1986), 115-125.
- [11] Y.Okazaki and Y.Takahashi : The converse of Minlos' theorem, Publ. RIMS, Kyoto Univ. (to appear).
- [12] H. Sato: Gaussian measurable dual and Bochner's theorem, Ann. Prob. 9 (1981), 656-662.

- [13] V. Sazonov: A remark on characteristic functionals,

 Teor. Veroj. i. Prim. 3 (1958), 201-205.
- [14] L. Schwartz: Geometry and probability in Banach spaces, Lecture Notes in Math. 852, Springer-Verlag, 1981.
- [15] Y. Takahashi and Y. Okazaki : On the relationship between γ_p-radonifying operators and other operator ideals in Banach spaces of stable type p, Math. Ann. 281 (1988), 145-156.
- [16] Y. Umemura: Measures on infinite dimensional vector spaces, Publ. RIMS, Kyoto Univ. 1 (1965), 1-47.