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The three-dimensional configurations of a thin vortex filament embedded in background flows are
investigated, baaed on the localized induction approximation $(LIA)$ . An analogy is found between
trajectories of a charged particle in a magnetic field and steady configurations of a vortex filament in
a flow. This analogy allows us to use the Lagrangian or Hamiltonian formalism of classical mechanics
for calculating the equilibrium shape of a vortex filament. As an example, an analogy associated with
the Kida class is discussed in detail. With this, the left-right duality, that is, the duality between
the spatial and body descriptions, becomes a reality for a heavy symmetrical top. It is revealed that
a geometric phase enters into a formula for the rotation angle of the top axis.

1 Introduction

A vortex filament is an individual entity exhibiting a vigorous bending and twisting
motion owing to self-induction as well as the influence of neighboring vortices and the
background flow. A knowledge of such a behavior may help to gain some insight into
the complicated structure of high-Reynolds-number flows.

In this paper, we tum our attention to the three-dimensional long bending motion
of a concentrated vortex filament. The fluid is assumed to be incompressible and
inviscid. For the sake of simplicity, we employ a certain asymptotic theory for self-
induction, called “the localized induction approximation $(LIA)$”; the size $\delta$ of the
vortex-core is so thin that the self-induced velocity at a point $X$ on the filament is
dominated by the contribution from the neighboring segment of length $L:^{1,2}$

$X_{t}=AX_{s}\cross X_{ss}+V(X, t)$ , (1)
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$A= \frac{\Gamma}{4\pi}\log(\frac{L}{\delta})$ (2)

where $X=X(s, t)$ denotes the filament curve as a function of the arclength $s$ and the
time $t,$ $V$ is the velocity field of a prescribed background flow and $\Gamma$ is the circulation.
The subscripts indicate the partial differentiation of indicated variables.

We present a brief review of the known results in the absence of the external
$flow:V=0$ . Da Riosl transformed (1) into a coupled system of intrinsic equations
for the curvature $\kappa$ and torsion $\tau$ of the filament curve $:^{1,3}$

$\kappa_{t}$ $=$ $-(\kappa\tau)_{s}-\kappa_{s}\tau$ , (3a)
$\tau_{t}$ $=$ $[(\kappa_{ss}-\kappa\tau^{2})/\kappa]_{s}+\kappa_{s}\kappa$ (3b)

In the above, the constant $A$ has been absorbed into a rescaling of the time vari-
able. Hasimoto4 found that (3a) and (3b) combine to yield the nonlinear Schrodinger
equation

$i \psi_{t}+\psi_{ss}+\frac{1}{2}|\psi|^{2}\psi=0$ , (4)

$\psi(s, t)=\kappa\exp\{i\int^{s}\tau ds\}$ (5)

He obtained a localized twist-wave solution of (1), now called the Hasimoto soliton,
via the one-soliton solution of (4).

There are a variety of ways to generalize these findings, among which are attempts
to include axial velocity in the core5)6 and to allow for vortex-line stretching.7 Despite
its importance, the question as to the influence of external flows on the motion of a
vortex filament is addressed by only a few $authors^{8-11}$ and does not seem to be fully
explored.

Our aim is to present a simple recipe for calculating the equlibrium shapes of a vor-
tex filament embedded in background flows. Especially we spotlight the mathematical
structure of the equation by pursuing analogies with classical mechanics, electromag-
netism, elasticity and geometrical acoustics. Although the steady solutions are not
sufficient to have much practical bearings, we believe that they may capture the
leading-order behavior of some of slow bending motions of a vortex filament.

2 Equilibrium Shapes of a Vortex Filament in Background
Flows

Consider the equilibrium shape of a filament in a steady flow $V(x)$ . We assume that
the flow field is unaffected by the presence of the vortex. For an equilibrium filament,
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only the slipping motion along itself is allowed; $X_{t}=-c(s, t)t$ , where $t=X_{s}$ is the
tangential vector of the filament curve and $c(s, t)$ is an arbitrary function. Taking the
vector product with $t,$ (1) is cast intol2

$AX_{ss}=X_{s}\cross V(X)$ (6)

If we think of $s$ as the time $t,$ $V(x)$ as the magnetic field and $A$ as $m/q$ , then (6)
is identifiable as the equation goveming the motion of a charged particle, with mass
$m$ and charge $q$ , in a magnetic field $V$ . That is to say, the static shape of a vortex
filament in a flow is equivalent to the trajectory of a charged particle moving subject
to the Lorentz force. Otherwise expressed, the static balance of a vortex filament
has a similarity with the diamagnetism, meaning that the flow field induced by the
vortex filament opposes the extemal field. The simpler form (6) has much in its favor,
leading us to the Lagrangian formalism, a powerful tool in classical mechanics, with
its Lagrangian $\hat{L}$ given by

$\hat{L}=\frac{A}{2}\dot{X}^{2}+\dot{X}$ . $\hat{A}$ , (7)

where $\hat{A}$ is the vector potential associated with the magnetic field: $V=$ rot $\hat{A}$ .
In passing, we note that the propagation of sound rays in a steady low-Mach-

number flow $U(X)$ obeys the same equation as (6) $:^{13}$

$\frac{dt}{ds}=-t\cross$ rot $U(X)/c$ (8)

where $t$ is the unit tangential vector along the ray and $c$ is the sound speed. Fermat’s
principle for sound rays in a steadily moving medium is written, up to first order in
Mach number, as13

$\delta\oint\{\sqrt{(c^{2}-U^{2})ds^{2}+(Uds)^{2}}-U\cdot ds\}/(c^{2}-U^{2})$

$\approx\frac{1}{c}\delta\oint(1-\frac{U\cdot t}{c})ds=0$ (9)

The origin of the second term in (9) is traced to the fact that the angular frequency of
sound is shifted in a moving medium to to $=ck+U\cdot k$ with $k$ being the wavenumber
vector. The additional term $\dot{X}\cdot\hat{A}$ in the Lagrangian (7) is reminiscent of the Doppler
effect of sound propagation.

3 Kida Class

A proper example that illustrates the benefit from the use of this analogy is steady
configurations of a vortex filament moving in a fluid at rest.14,15 Kidal5 reasoned that
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such a motion is composed of a translation with velocity $V$ in a certain direction, say
$z$ , a rotation with angular velocity $\Omega$ about the same axis, and a slipping motion with
speed $c_{0}$ :

$AX_{s}\cross X_{ss}=-c_{0}X_{s}+\Omega e_{z}\cross X+Ve_{z}$ , (10)

where $e_{z}$ is the unit vector in the z-direction, and $c_{0},$
$\Omega,$ $V$ are all constants. Com-

paring (6) with (10) and denoting the differentiation in $s$ by a dot, we have

$A\tilde{X}$
$=$ $\dot{X}\cross B(X)$ , (lla)

$B$ $=$ $-\Omega e_{z}\cross X-Ve_{z}$ (llb)

The Lagrangian $\hat{L}$ producing (11) is

$\hat{L}=\frac{A}{2}(\dot{r}^{2}+r^{2}\dot{\theta}^{2}+\dot{z}^{2})-(\frac{V}{2}r^{2}\dot{\theta}-\frac{\Omega}{2}r^{2}\dot{z})$ (12)

where use has been made of cylindrical coordinates $(r, \theta, z)$ . Inspection of (12) con-
vinces us that $\theta$ and $z$ are both cyclic and two first integrals are readily available:

$P_{z}$ $=$ $\partial\hat{L}/\partial\dot{z}=A\dot{z}+\Omega r^{2}/2=$ const. , (13a)
$P_{\theta}$ $=$ $\partial\hat{L}/\partial\dot{\theta}=Ar^{2}\dot{\theta}-Vr^{2}/2=$ const. (13b)

These integrals, augmented by $|\dot{X}|^{2}=\dot{r}^{2}+r^{2}\dot{\theta}^{2}+\dot{z}^{2}=1$ , coincide with the set
of equations handled by Kida.15 The advantage is that our treatment requires less
ingenuity.

Hasimoto and Kambel6 noticed that (10) is interpreted as an equation describing
the static balance of the intemal stress and its moment of a thin elastic rod $X(s)$ of
circular cross-section. Suppose that a local coordinate frame is attached at each point
on the central axis of the rod such that the frames are identical with each other when
the rod is unstrained and straight. Let $\Omega$ be the rate of rotation of the coordinate
axes along the rod. The unit tangential vector $t$ along the rod then varies according
to

$\frac{dt}{ds}=\Omega\cross t$ (14)

Taking the vector product with $t,$ (14) becomes

$\Omega=t\cross t_{s}+(t\cdot\sqrt{l})t$ (15)

Under the stipulation that the cross-section is circular, the moment $M(s)$ of internal
stress is given by

$M=A(X_{s}\cross X_{ss})+C\gamma X_{s}$ , (16)
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where $A$ and $C$ are the bending stiffness and torsional rigidity, respectively, and
$\gamma=t\cdot\Omega$ is the torsion angle of the rod per unit length. Putting $c_{0}=C\gamma$ and
$\Omega e_{z}=T,$ (10) reads

$T_{s}$ $=$ $0$ , (17a)
$M_{s}+t\cross T$ $=$ $0$ (17b)

Regarding $T=T(s)$ as the internal stress of rod, (17a) expresses the static balance of
the internal stress in the absence of internal body force. Equation (17b) corresponds
to moment balance. It is an easy task to show that $\gamma$ is a constant, consistently with
Kida’s treatment.

As promised by Kirchhoff’s analogy, the equations for equilibrium shape of an
elastic rod of circular cross-section are known to be identifiable with the equations of
motion for a heavy rigid body, with axial symmetry, fixed at a stationary point, i.e.
Lagrange’s top.17 Below, we give a brief explanation of it.

Let $t(t)$ and $\omega^{(s)}(t)$ be the unit vector along the axis of symmetry and the angular
velocity of the body as functions of time $t$ . By definition,

$i=\omega^{(s)}\cross t$ , (18)

where a dot denotes the time-derivative. Taking the vector product with $t$ , we get

$\omega^{(s)}=t\cross i+(t\cdot\omega^{(s)})t$ , (19)

Because of symmetry, the angular momentum $M(t)$ takes on the form

$M=A(t\cross i)+C\omega_{3}t$ , (20)

where $A$ and $C$ are the moments of inertia at the stationary point, and $\omega_{3}=t\cdot\omega^{(s)}$ is
the angular velocity about the axis of symmetry. We can confirm that (20), coupled
with (19), is equivalent to (16). Identifying as $\Omega e_{z}=mgle_{z}$ , with $g$ being the gravity-
acceleration and $l$ being the length of line segment connecting the stationary point
with the center of mass, (10) reads

$\dot{M}=t\cross(-mgle_{z})$ , (21)

a formula for the rate of change of the angular momentum. Rewriting (21) and $\dot{e}_{z}=0$

$(cf.(17a))$ in the coordinate system rigidly tied to the body, we reproduce the well-
known Euler-Poisson equations for Lagrange’s top. It deserves mention that (18) and
(21), supplemented by (20), con $\sigma titute$ a subset of the system of equations in inertial
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coordinates.18 The remaining equation governs the evolution of the inertial tensor
itself,18-20 but the axial symmetry renders it ignorable.

This exemplifies the left-right duality put forward by Arnol’d, that is, the duality
between the description in spatial coordinate system and that in body coordinate
system.21,22 The salient feature for a heavy symmetrical top is that the counterpart
of the dual pair, the spatial descriptions, is embodied by familiar physical systems.
Altematively speaking, a variety of methods to solve the motion of Lagrange’s top
are at our disposal and each method admits its own physical interpretation. The
description in body coordinates, with the help of Euler angles, is found in standard
textbook of classical mechanics. The equation viewed from inertial coordinates was
written out and directly integrated by Kida.15 Its Lagrangian and.Hamiltonian for-

31



malisms are vividly realized in conjunction with a charged particle or sound rays. In
case we rely on the Hamilton-Jacobi method, the action is linked with wave fronts for
sound propagation in the geometrical-acoustic approximation. An elastic rod makes
visible the relationship between spatial and body frames and thus acts as a mediator
for duality.23 Moreover, there is a purely intrinsic method, independent of choice of
any coordinate frame. This is the approach adopted by Levi-Civital4 and uses (3).
Table 1 summarizes the relationships among the physical systems associated with
Lagrange’s top.

The spinning top whose axis is always vertical and whose angular velocity is con-
stant is called a sleeping top. It is likened to a straight-line vortex. The sleeping top
loses its stability if the rotation speed is slower than a critical value: $\omega_{3}^{2}<4Amgl/C^{2}$ .
When the rotation speed is reduced below this limit owing to friction, the top wakes
up. In the language of a vortex filament, this is what the Hasimoto soliton corresponds
to.

Further, taking the vector product of (21) with $t$ , we obtain

$Ai=-mgl[e_{z}-(t\cdot e_{z})t]-A(i\cdot i)t-C\omega_{3}i\cross t$ , (22a)

with the constraint that
$t\cdot t=1$ (22b)

This equation is interpreted as an equation describing the motion of a spheiical pen-
dulum with charge subjected to a magnetic field. In this case, the gravity-acceleration
is $mgl/A$ , being directed in the negative z-axis. The magnetic field $B$ is that produced
by a magnetic monopole located at the origin $t=0$ :

$(q/m)B=-C\omega_{3}t/|t|^{3}$ , (23)

because of (22b). The first term on the RHS of (22a) implies that the particle is
exerted by the gravity force but constrained to the surface of a unit sphere. The
second one is the centrifugal force produced by the tension of a string connecting the
particle with the origin. It is interesting to note that a similar analogy is discovered
between Lagrange’s top and a spherical pendulum by Berry&Robbins 24 in a different
context.

The configuration space for Lagrange’s top is all possible rotations, that is, the
rotation group SO(3). The parametrization of SO(3) requires three variabls. The
traditional way is the use of the Euler angles $(\theta, \varphi, \psi)$ that express the relationship
between space and body coordinates. On the other hand, for the motion of a spherical
pendulum governed by (22), it is sufficient merely to specify the position of the tip
of the vector $t$ , that is, to specify $\theta$ and $\varphi$ . It follows that reduction of freedom is
achieved in the passage from (21) to (22). The origin of the reduction is traced to
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the rotational symmetry about the top axis $t$ , reflecting the fact that the parameter
$\psi$ is irrelevant in (21).The emergence of a Lorentz force in the reduced system (22) is
not accidental, but is well captured in the general framework of the cotangent bundle
reduction or the Lagrangian reduction, as formulated by Marsden.25 This fact, in tum,
may help to find out the reason why there exists a close analogy between a vortex
filament and a charged particle.

As a reverse process, we can reconstruct the solution of (21) from that of the
reduced system (22) by quadrature. It is through the reconstruction process that the
anholonomy enters.2526 In the next section, we illustrate that the geometric phase
manifest itself in the rotation angle of the axis of Lagrange’s top.

4 How much does a heavy symmetrical top rotate ?

The same question was addressed to the rotation of Euler’s top, that is, a free rigid
body by Montgomery et $al^{26,27}$ and Levi.28 The formula for the spatial rotation during
one period $T$ of its body angular momentum vector consists of a geometric and a
dynamical part. By the geometric part, we mean that it depends only on the geometry
of the closed orbit and is independent of the speed with which the orbit is traversed.
In the following, we show that the same is true of the spatial rotation of the axis of
Lagrange’s top.

Using the Euler angles, the angular velocity $\omega_{3}$ about the top axis is expressed as
$\omega_{3}=\dot{\psi}+\dot{\phi}\cos\theta$ (24)

By virtue of the axial symmetry, the axial component $M_{3}$ of the angular momentum
$M$ is conserved:

$M_{3}=C(\dot{\psi}+\dot{\phi}\cos\theta)=\mu$ , (25)

where $\mu$ is a constant. Let us assume that the top axis executes a periodic motion
with period $T$ , though this is not always the case. The rotation angle $\triangle\psi$ of the axis
in one period is then

$\triangle\psi$ $=$ $\frac{\mu}{C}T-\int_{0}^{T}\dot{\phi}cos\theta dt$

$=$ $\frac{\mu}{C}T+\Omega$ , (26a)

where
$\Omega=\int\sin\theta d\theta\wedge d\psi$ (26b)

and use has been made of Stokes’ theorem. Since the top axis is expressed as $t$

$=(\sin\theta\sin\phi, -\sin\theta\cos\phi, \cos\theta),$ $(26b)$ stands for the solid angle swept out by the
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axis, when viewed from the inertial frame. The first term of (26a) is the dynamic
phase, and $\Omega$ is the geometric phase. The expression (26b) has resemblance with
that for the rotation of a free rigid body.2627 In the latter case, it occurs for the
rotation angle of the angular momentum vector viewed from the body frame. Note
that the above procedure is equivalent to the reconstruction of the solution of (21)
from that of the reduced system (22). In general, the geometric phase is formulated
as the holonomy of some connection on a principal G-bundle. In the following, we
give a brief explanation of this from the standpoint of the Lagrangian reduction. Its
prescription is detailed in Ref.(25).

The configuration space is $Q=SO(3)$ , and $G=S^{1}$ acts on $Q$ by rotation about
the top axis. The Lagrangian $L$ ,

$L= \frac{A}{2}(\dot{\theta}^{2}+\dot{\phi}^{2}\sin^{2}\theta)+\frac{C}{2}(\dot{\psi}+\dot{\phi}\cos\theta)^{2}-mgl\cos\theta$ (27)

is invariant under the left action by $S^{1}$ . The Lie algebra $\mathcal{G}$ of $S^{1}$ is identified with the
axial component $\omega_{3}$ of the angular velocity and its dual $\mathcal{G}^{*}$ is identified with the axial
component $M_{3}$ of the angular momentum. The mechanical connection $\alpha$ : $TQarrow \mathcal{G}$

takes on the form:
$\alpha=M_{3}/C=\cos\theta\dot{\phi}+\dot{\psi}$ (28)

The general statement of the remaining procedure is as follows. For each $\mu\in \mathcal{G}^{*}$ ,
define l-form $\alpha_{\mu}$ on $Q$ by

$<\alpha_{\mu}(q),$ $v>=<\mu,$ $\alpha(q, v)>$ , (29)

where $(q, v)\in TQ$ , and $<,$ $>$ are natural pairings between spaces and their duals.
The Routhian $R^{\mu}$ : $TQarrow R$ is defined by

$R^{\mu}(q, v)=L(q, v)-<\alpha(q, v),$ $\mu>$ (30)

Notice that this form is slightly different from the well-known one. The reduced
Lagrangian variational principle states that the solution on $Q/G_{\mu}$ , with $G_{\mu}$ being the
isotropy subgroup at $\mu\in \mathcal{G}^{*}$ , satisfies the Euler-Lagrange equations with gyroscopic
forcing:

$\frac{d}{dt}\frac{\partial R^{\mu}}{\partial\dot{q}^{i}}-\frac{\partial R^{\mu}}{\partial q^{i}}=\dot{q}^{j}\beta_{ij}$ (31)

Here $\beta_{ij}$ are components of a two-form $\beta=d\alpha_{\mu}$ on $Q$ that drops to $Q/G_{\mu}$ . For
$\alpha_{\mu}=\alpha_{i}dq^{i}$ ,

$\beta_{ij}=\frac{\partial\alpha_{j}}{\partial q^{i}}-\frac{\partial\alpha_{i}}{\partial q^{j}}$ (32)
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In the context of Lagrange’s top, $G_{\mu}\cong S^{1}$ itself, and

$\alpha_{\mu}=\mu(\cos\theta d\phi+d\psi)$ (33)

The Routhian on $T(Q/S^{1})$ is,

$R^{\mu}= \frac{A}{2}(\dot{\theta}^{2}+\dot{\phi}^{2}\sin^{2}\theta)-(\frac{\mu^{2}}{2C}+mgl\cos\theta)$ (34)

The Euler-Lagrange equation (31) on the reduced space then reproduces (22). Note
that the vector form of $\alpha_{\mu}$ , dropped to SO(3) $/S^{1}$ , is written, in terms of spherical
coordinates $(r_{7}\theta, \varphi)$ , as

$A=(0,0,$ $\mu\frac{\cos\theta}{\sin\theta})$ , (35)

where the restriction to the surface $r=1$ is to be understood. It represents, up to
gauge transformations, a vector potential for a monopole field whose source is placed
at the origin. We observe that this field is exactly that given by (23).

In accordance with the formula due to Marsden et $al^{25,26}$ the geometrical part $\Omega$

of the rotation angle $\triangle\psi$ , represented by (26b), is $\log$ of the holonomy, that is, the
integration of the mechanical connection $\alpha$ along the closed solution curve $c(t)$ on
SO(3) $/S^{1}$ :

$- \oint_{c(t)}\alpha=-\frac{1}{\mu}\int_{S}$ rot $A\cdot dS$ (36)

where the last integral is taken over the domain on the surface of a unit sphere
$S^{2}\cong SO(3)/S^{1}$ whose boundary is $c(t)$ .
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