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REPRESENTATIONS OF MAPPING CLASS GROUPS
OBTAINED FROM THE MODULAR INVARIANCE
PROPERTY OF CYCLIC GROUP ASSOCIATION SCHEMES

ETSUKO BANNAI
KyYUsSHU UNIVERSITY

§0. Introduction

The concept of the modular invariance property of fusion algebra is very important in
conformal field theory. Since Eiichi Bannai found relations between Bose-Mesner algebras
of association schemes and the fusion algebras([1]), many people started to pay attention to
the modular invariance property of association schemes also. It is known that the modular
invariance property of association schemes and generalized spin models have some kind of
relations([3],[5],[9]) and many examples of generalized spin models are constructed using
the modular invariance property of association schemes([2],[4], etc.). It is also known that
‘the spin models give invariants of links (see [10]). In this paper we consider another use
of the modular invariance property.

T. Kohno constructed topological invariant of 3-manifold using the modular invariance
property of the truncated representations of sl(2,C) (see [11], [12]). He first constructed
projective linear representations of the mapping class groups of Riemann surfaces and
then using Heegaard decompositions of 3-manifolds obtained invariants of 3-manifolds.
Motivated by his work, in this paper we construct some kind of representations of the
mapping class groups using the modular invariance property of association schemes on finite
cyclic groups. Using the Kohno’s technique we can construct invariants of 3-manifold from
those representations. The invariants seem to coincide with the ones obtained by Gocho
([8]), however I am not ready to discuss in detail right now so I just give the representations
of mapping class groups only(see Theorem 2 in §4).

§1. Modular invariance property of association schemes

First we introduce the definition of the modular invariance property of association
schemes. Let X = (X, {Ri}o<i<a) be a self-dual association scheme and let P and Q be the
first and second eigenmatrices of X respectively (note that P =Q). Foranyi € {0,1,...,d}
we define ¢/ by A; = A;/, where A; is the adjacency matrix with respect to the relation
R;.

Definition 1 (see [3], [5]) Let X be a self-dual association scheme. We say that X has the
modular invariance property if there exists a diagonal matrix T = diag(to, t1,... ,t4) with
to # 0 which satisfies one of the following mutually equivalent conditions:
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(1) PTQTPT' = to D3I,

(2) PTQTQT = toDP?,

(3) (PT)3 =ty D3I,

(4) (QT)% = toD?I,

(5) (PU)® = to~' D?I,
where D? = | X|, T’ = diag(to, t1/,... ,tar) and U = diag(to 1,17}, ... ,ta™1).

Let X(G,) = (Gn, {Ri}o<i<n—1) be the association scheme defined on the finite cyclic
group G, of order n. It is known that X¥(G,) is self-dual and the character table (first
eigen matrix) is given by P = (¢*) with a primitive n-th root of unity. The modular
invariance property of ¥(G,,) is completely determined (see [2], [6]). '
Theorem 1(see [2]) (-\/1~7=1PT)3 = I with a diagonal matrix T = diag(Ao, A1, ... , An—1) if
and only if the following conditions are satisfied:

n—1
M=Vt ) S,
1=0
A= 0t2))\, forie {0,1,... ,n—1},
where n = C‘%l for n odd andvn2 =(fornevenand u € {0,1,... ,n—1} .

§3. Mapping class groups

Let ¥, be an orientable surface of genus g and $, be the set of all the orientation
preserving homeomorphisms of ¥,. The mapping class group 91, of £, is the group
consists of all the isotopy classes in $,. As for the following fact the reader is referred to
[7], [11], [13]. It is known that 91, is generated by the isotopy classes a;, s, 6i,€:,1 <1 < g,
of the Dehn twists about the circles a;, b;, d;, e;,1 <4 < g, respectively as shown in Fig. 1.

The generating relations are given by
1) (51 =€ = Ct],(sg = €y,
2) Let o and B in the generating set.
If the corresponding circles do not intersect, then

aff = Pa
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If the corresponding circles intersect at one point, then
afa = faf.
3) If g = 2, then (62820261012 B1028262)% = 1.
4) (1fro2)? = €203,
5) badab; = ajanasés,
where b1 = (B2020302) 162 (B2020:302) and by = (Bra12f1) " b1 (Brarasf),
6) Sks1 = Jibh—1Jk~,2< k< g—1and e = Ge&Gx ™, 1< k < g,

where Ji = Brt10k+1(Brbk Bk ) 0t 18k-+18k—1 0k (Brbk it1 8k ) i Br—1

and Gg = Brak -+ 11281 - - - Pk

84. Representations of the mapping class group

Let V be a vector space over the complex number field C with a basis {vg, v1,... ,Un—1}.
We define linear isomorphisms S,A'and T,,,0 <u<n—1of Vand W,,0<u<n-1, of
V ® V in the following manner:

Rty
S(vi) = 7 ?;S ¢,
A(Ui) = Vi = Un—i
Ty(vi) = )\Oni(iwu);
Wu(u; ® v;) = Ao~ I~ 0790042y, 0 4,

for4,7=0,1,... ,n— 1, where ( and n are given in Theorem 1. Then we have
(ST,)®> =1 foranyue{0,1,...,n—1}.

Now we define the linear isomorphisms @;, 5;, 6;, &, 1 <i<g,on V®- --®V by the-

‘g times
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following equations:

=TI &I

. g—1 times
—Od_z=I®-(-®I®W(_1):u®f®“-®f forz=2,3,...,9,
S———r N—
r—2 times g—zx times

B, =A®'--®A®T(_1)z—1u ST(_1)1~1U®A®"-®A forz=1,2,... ’g"
z—1 times g—x times '

F =I®-~®I®{T(_1)I_xu}~1®I®-~®I forz =1,2,...,g, (note that 6; = @),
N — —_———

x—1 times g—x times .
G=1® - QIXT(_1)u} '®I® - ®I forz=23,...,9—1,
N——_—— N e’ . .
r—1 times g—zx times .
=6 =a1, &=20,
A=A® - ®A
N’

g times :
K;,:(Uil®"'®’Uz’z®"-®Uig)=c2mmvil®"‘®'Uix®-"®’vig forx=1,2,...,g9,
Pr(viy ® - ®vi, ® - @i,) =15, @ QUiy—2.® - Qu;, forzx=12...,g

We have the following theorem.

Theorem 2 (1) Let G and I be the groups generated by {@z, 8., 65, € ] r=12,...,9}
and {\oid, A, K., P, ] x =1,2,...,9} respectively, where id is the identity map of
V®:---®V. Then I is a normal subgroup of G.

s, s’

g times

(2) If we define a map p from M, to the group G/T by plas) = @I, p(b:) =
8., p(6z) = 6., plex) = &I and homomorphically for other elements in 9, then p
is a well defined group homomorphism.

These representations are neither usual representations of groups nor projective linear
representations. Actually p is a homomorphism from the mapping class group 9, onto a
factor group of a subgroup in a linear group of finite dimension. It would be interesting if
we could find out the relation with the symmplectic group Sp(2g, Z).
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