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Various types of extremal problems are formulated as an abstract optimization problem
in Banach spaces:
- Minimize  f(z)
sub]ect to g(z) € K, h(z)=0.

where X, V, W are Banach spaces, K is a convex cone in V with non-empty interior,
f:X—>R,9g:X —Vand h: X — W are of C?lass.

One of the authors has been studying second-order necessary optimality conditions for
the abstract problem, and clarified that the genera,lized inequality constraint g(z) € K
often form an envelope and that we have to take into account of the envelope when we
consider second-order optimality conditions.

There are two families of extremal problems which form envelopes. One is a family of
Tchebycheff approximation problems and the other is a family of variational problems with
inequality phase constraints:

(P) Minimize f(z)= /0 CF(, (), 5(2))dt
subject to z(0) = zo, z(1) =z, z € X,
G(t,z(t)) <0 Yt €[0,1].

where 7o and z, are given points in R®, F : R**! — R is of C%class w.r.t. = and z,
G:[0,1] x R* — R™ is of C?%-class w.r.t. z and z. We take

X ={z =(z1,22,---,z,) | z: ; absolutely conti. ||z|| < oo}
equipped with the norm:

z|| = max + esssup ||z(%)]| < oo.
el = g =)+ essup 0]
We assume that the weak minimal solution Z(¢) is piecewise smooth. We use the abbrevi-
ation:

F@) = F@,7,2(t), G@) =G, %)), et.c.
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The aim of this paper is to clarify the effect.of the envelope formed by the phase constraints
on second-order necessary optimality condition (Legendre condition).

Definition The feasible region M of the abstract optimization problem is said to satisfy
the Mangasarian-Fromovitz condition at Z if

(i) A(z) : X - W isonto
(1) Fzo € X, W(Z)zo=0, ¢(F)+g'(%)zo €intK.

The following theorem can be found in many literatures, e.g. Ben-Tal and Zowe [1] and
Kawasaki [12].

Theorem (First-order necessary optimality condition) Let z be a weak minimal solu-
tion of the abstract optimization problem. Assume that the feasible region satisfies the
Mangasarian-Fromovitz condition at z. Then there exist v* € K° and w* € W* such that
L(z) :== f(z)+ < v*,9(z) > + < w*, h(z) >

L'(z) = 0,
| - <vg(e) >=0,
where K° := {v*; < v*,v >< 0 v € K}
Definition A direction y € X is called a critical direction if
f(e)y =0, g'()y € cleone(K — g(2)), W(a)y ="0.

~where clcone(K — g(z)) denotes the closure of the conical hull o f K — g(z). -
Definition For any u, v € V, we define

K(u,v):={w e V; Pu+bv+w+o(l) € K Y9 >0},
K(y) :== K(9(z), g'(z)y)-

Theorem (Second-order necessary optimality condition) (Kawasaki [12]) Let z be a mini-
mal solution of the abstract optimization problem. Assume that the feasible region satisfies
the Mangasarian-Fromovitz condition at z. Then, for each critical direction y € X satisfy-
ing K(y) # ¢, there exist v* € K° and w* € W* such that

L'(z) =0,

L'(z)(y,y) — 26"(v*|K(y)) > 0
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<v*g(z) >=0, <v*,¢(z)y>=0.
where 6*(v*| K (y)) := sup{< v*,v >; v € K(y)}.

For the variational problem (P), the extra term 6*(v*|K(y)) is represented as an inte-
gration, see Kawasaki[13]:

1
6 0IK@W) = - [ @7E,
0
where 9 is a n-dimensional vector-valued nondecreasing function defined on [0, 1] and E(¢)
is defined by :
u(t) = ~Gl(6,2(0)), () = ~Galty2())(1)
sup {limsupﬂt—”lz—' {t.} satisfies (1)} , ifteTy,

4u(tn)’

Et)=1 0 if u(t) = v(t) = 0 and t ¢ T,
—00 otherwise,-
v(t,)
To:=<teT; I, -t st u(t,) >0, — ) — 400} . : (1)
Ulln

Let us now apply the above theorem to the variational problem (P). For this aim, we
need the following notation.

It)={j €{1,2,---,m}| G;(t)=0}
Jp(t) :={j?6 >0, G, <0on (t—61)}
Jr(t) = {j|>6 >0, G, <O0on (t,t+6)}
In (P), the Mangasarian-Fromovitz condition is guaranteed by the following conditions.

(4;) The matrix (G}, (t));es() has full rank for all t € [0, 1]
(4;) G(0)<0, G(1) <0

Theorem 1 Let #(t) be a weak minimal solution for (P). Assume that (4;) and (A;) are
satisfied at Z, then

(1) € Fu(t—0)20 Y€ R satisfying (Gja(t))jereonsof =0
(Z'l) fTch(t + O)f _>_ 0 vf € Rn satisfying (sz(t))jej(t)\JR(t)f = 0.

When we consider the one-sided phase constraint:
s(t) < z(t) Wt,

we get Corollary 1 from Theorem 1.
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Corollary 1 (One-sided phase constraint) Let Z(¢) be a weak minimal solution for (P).
Assume that s(0) < z(0), s(1) < z(1), then

(i) EFu(t—0)6>0 YE€ R st. §=0 Vj¢ Ji(t)
(1) ETF:(t+0)E>0 YE€ R sit. & =0 Y5 ¢ Jp(t).

Neither Theorem 1 nor Corollary 1 does touch on any interval where some phase con-
straint is active. The following theorem and corollary touch on such intervals.

Theorem 2 Under the assumption of Theorem 1, let E;(¢) denote the set of indices
i € Jr(t) such that the Euler equation w.r.t. z;:

d

_A.‘t_h . —_

holds a.e. on (¢t — §,t) for some § > 0. Then we may replace (ij(t))jej(t)\JL(t)g =0, in (i)
of Theorem 1, by

(Gjzi(t))iereniwe), ieBre)(&)ieryy <0
(Gini(®))serenue, igrse(&igrne = 0.

If the Euler equation w.r.t. z; holds a.e. on (¢, +§) for some § > 0, then we may snmlarly
replace £ in (ii) of Theorem 1

Corollary 2 (One-sided phase constraint) Under the assumption of Corollary 1, let E(t)
denote the set of indices ¢ € J.(t) such that the Euler equation w.r.t. z;:

d - .
EFL(t) - Fl‘i(t) =0
holds a.e. on (t — §,t) for some § > 0. Then we may replace £ = 0, in (i) of Corollary 1,
by .

fj >0forj e EL(t), fj =0for j € JL(t)\EL(t).
If the Euler equation w.r.t. z; holds a.e. on (¢,¢+ ) for some § > 0, then we may similarly
replace & = 0, in (ii) of Corollary 1, by & > 0. '

Example 1 In this example, an non-optimal solution is excluded by Corollary 2, though
Corollary 1 can not exclude it.

2
minimize / (t? — 1)z%(t)dt
-2
subject to  z(t) > s(t),z(-2) = 1,2(2) =1,
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where
—t(t+2) —2<t< -1
s(t) = 1 —1<t<1
—t(t—2) 1<t<?2

Take z(t) = 1. Then, from the Euler-Lagrange equation, we get
D(t) = 23(t)(1 - ) + C = C.

Hence Z satisfies the Euler equation on [—2,2]. Since f, = 0 and f; = 2%(¢)(t* — 1), we

have . . ‘

/ Fo(s)ds + F.(t) = / 0ds + (2 — 1)3(t) = 0 on [~2,2].
t t

Since

Fas) >0 on [-2,—1]U[1,2],

T satisfies all the conditions in Corollary 1. However, since
f::(0) = -2 <0,

we see from Corollary 2 that Z is not a weak minimal solution.

By the way, no extra term appear in Theorem 1, Theorem 2, Corollary 1 and Corollary
2. As was shown in Kawasaki [12] [13], the extra term appears only when an envelope is
formed by the constraints. Hence the authors once guessed that no envelope was formed in
the variational problem (P). But it was not correct. In the following example, an envelope
is formed by the one-sided phase constraint.

Example 2
minimize / {z(t) + 2(t)}dt
-1
. 1
subject to  z(—1) = z(1) = 7 z(t) > 1—|t| on [-1,1]
Take ,
_ E+t+1 —1<t<0
.',U(t) = 2
2_t+1 0<t<1
For sufficiently small r» < 0, put
rt L<t<0

y) =4 r(r—1t) r<t<3
0 otherwise
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Then it is easily seen that y is a critical direction. Computing E(t), we get

r? t=0

E(t):{ —oc0 t#0

Hence
5 (IKW) = - [ dp®BR) = 4° >0,

which implies that an envelope is formed.
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