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THE RATE OF CONVERGENCE OF A HOMOGENEOUS MARKOV CHAIN
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1. Introduction. This paper is concerned with the type of random
walks in two dimensions considered by Malyshev [4], which deécribe a
wide‘class of two-queue systems. This type of random walks have
been studied since then in many articles (e.g., [1}, [2}, [3], [5],
8] and [12]). These papers are mainly concerned with necessary
and sufficient conditions for ergodicity, null recurrence and
transience of the random walks. In the present paper, we consider
the rate of convergence of the random walks when they are ergodic.
In order to define this class of random walks for our

convenience, we make use of Baccelli's formulation as follows (see
(11). The state space of the random walks is the lattice in the
positive quarter plane N x N = {x = (xl, xz): xi, i=1, 2, are
nonnegative integers} and has to be subdivided into the following
non-overlapping regions:

D, 1is the origin {0} x {0},

D1 (Dz) denotes the open x-axis N* x {0} (or y-axis {0} x N*),

D denotes the open positive quarter lattice: N* x N*,

3
where N denotes the set of positive integers. There is a
sequence of i.i.d. Z x Z -valued random variables {lel}n21
associated with the region Di: the random variable Y; = (&é s n;)

is an increment to be added at time n + 1 if the current locatin is
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in Di . We restrict the range of the random variables Y; in |

order to keep the random walk in N x N:

the random variables Yg belong to N x N,
the random variables Yi (or Yﬁ) to {-1, 0, 1,...} x N
(or N x {-1, 0, 1,...}),
the random variables Yﬁ to {-1, 0, 1,...} x {-1, 0, 1,...}.
We assume that these random variables are mutually independent. We
now define the random walk {Zn = (zi , zﬁ)} in N x N by
1 2, . 1 2 .
ZO = (z0 , ZO), where Y = (z0 , zo) € N x N 1is an
(1.1) independent initial random variable,
Zn+1 = Zn + Wn+l , n=20, 1, 2,
where wn+1 is given by
3 i
wn+1 = .Z I(Zn € Di) Yn+1
i=0
Here, I(B) denotes the indicator function of a set B. We also

assume that the random walk {Zn} is irreducible and aperiodic.

In the present paper, we shall obtain various rates of
convegence results for the random walk (1.1; by modifying the method
developed by Tweedie [11] and Thorisson [10] for one-dimensional

random walk on Ri (see also [9] for some extension).

2. Preliminaries. First of all, we give necessary definitions on
various rates of convergence for Markov chains. Let {Xn} be a
temporally homogeneous Markov chain on a countable state space S.
We write

(2.1) PU(x, A) = P(X € AlX, = x), x €S, AcsS

for the n-step transition probabilities of {Xn}. Throughout the
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paper, we suppose that {Xn} is irreducible and aperiodic.
We defiﬁe {Xn} to be ergodic if, for some probability measure
n, and every Xx € S,
(2.2) P (x, +) -l — o, n — o,
where |l |l déno£es total variation of signed measures. Next, we

define {Xn} to be geometrically ergodic if there exists a p < 1

such that

(2.3) o MiIPM(x, -) -l — o0, n — o,

for every x € S. We define sub-geometric rates of convergence as
follows, which are our main concern in this paper. Let A denote

0
the class of sequences VY:N — R+ which satisfy

(i) ¥ is nonQdecreasing, with ¥(j) =2 2 for all j > 0.
(ii) {log ¥(j)}/j 1is non-increasing and tends to 0 as j — o,
" We denote by A the class of sequences ¥:N - R, for which there
-exists some wo € A0 such that
lim inf ¥(Jj)/¥,(j) > 0, Lim sup ¥ (j)/¥,(j) < =.
Joe joe
Examples of sequences ¢ € A are
(2.4) ¥(3) = %o Dlexpri®) v 2
for 0 <38 <1 and either v >0 or v =0 and o > 0. For ¢ €
A, we call {Xn} ergodic of order ¢ if
(2.5) ()P (x, ) - nll — o, n— o
for every x € S.
We recall convenient criteria for sub-geometric rate of
convergence in the following proposition, which is adapfed from a

" more general case to the countable one.
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Proposition 1 (Theorem 2.7 of [7] and Theorem 1 (iii) of [111]).
If B 1is a finite subset of S and for some ¢ € A, Ex[wo(tB)] < @
for x € B where ¢°(n) = nglw(j). and Ey[W(tB)] < o for all vy,
then {Xn} is ergodic of order . ‘Here, we denote by T the

first hitting time on a set B for the Markov chain {Xn}.

From now on, for our convenience, we also denote by AO the

class of functions tlf:R+ — R+ which satisfy both (i) and (ii) for
any t =2 0 instead of j € N in the above requirements for ¢:N —
R+ of AO . We also make use of the similar convention for ¢ € A.

We now introduce subclasses of functions of AO due to Thorisson

[{10] since we follow his approach in order to show sub-geometric rate

of convergence results. The functions V¥:[0, ]} — [0, «]
considered below are measurable, locally bounded and Y¥(«) = o (i.e.,
t
limtqmw(t) = o), Let ¥ be defined by ¥ (t) = I V(s)ds. Two
: 0

functions ¢ and 0 are of the same order if

1im sup ¥(t)/6(t) < o, lim sup 6(t)/¥(t) < o,

tow tow

This implies that E[¢(Y)] < o if and only if E[6(Y)] < «» for any
nonnegative random variable Y.

Let VY be the class of all concave non-decreasing ¢ with

0
v(0) = 0 ; ¢0 the class of all convex ¥ satisfying ¢¥(2t) < cy¥(t)
for some ¢ <<« and ¢ = 0 where 6(0) = 0 and 6(t) * « as t -
©, Throughout the paper, let ¢ be a function of the same order

as t — tmwo(t) where m 1is a nonnegative integer and % € WO
In this case, we write o¢(t) = tmwo(t). If we define wj

recursively by ¢ = Gj—l , j =21, then ¢ 1is also of the same
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order as . (see Lemma 1 (b) of [101]).

A R | i i_ el i_ i i
Let Yn = (Hn , nn), a E(sn) and b E(nn) for i 1,
2, 3. Throughout the paper, we make use of the following
assumptions with no explicit mention of them. Malyshev [4]

introduced Assumption 2, under which he proved ergodicity of the

Markov chain (1.1) in the case of bounded jumps (see also [12]).
Assumption 1. E(lYil) < ® for i =0, 1, 2, 3.

Assumption 2. Suppose that (a + (bY)® > 0 and one of the

following conditions hold:

(2.6) a2 >0, b3 <o, a%l-nbpdal <o

and (a2, b%) = (0, b%) with bZ > 0,
(2.7) a3 < 0, b3 > 0, b3a2 - a3b2 < 0

and (al, bl) = (al, 0) with a1 > 0,

(2.8) a° <0, b3S <o, abt-bdal <o and b3a? - a%? <o.

We write EX and PY for expectation and probability

conditional on XO = X respectively. For the inner product between

the vectors x and v in N x N, we make use of the notation x-v.
The next proposition obtained by Vaninskii and Lazareva {12] is the

most important tool for our rate of convergence results.

Proposition 2 (Vaninskii and Lazareva [12]). Under Assumptions 1

and 2, there exist a finite subset K of N x N, a vector v = (Vl,'

V2) with V1 > 0 and V2 > 0, and an N*-valued function n(x) of

x € N x N such that n(x) = n, for x € D, and the inequality
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(2.9) EY{V;(Z X))} £ -g for any x € (N x N)\K

n(x)
holds for some € > 0.

3. The rate of convergence. 1In this section, we obtain the rate. of
convergence results under Assumptions 1 and 2. For this purpose,
we make use of an embedded chain {Zn} which will be constructed as
in §19.1.1 of [86]. Let s(k) be defined by s(0) = 0 and

(3.1) s(k+1) = s(k) + n(ZS(k)),

Then, by virtue of the strong Markov property, we obtain that

(3.2) Zk 1= Zs(k) R k =0, 1, 2,

is a Markov chain with transition law P, where

(3.3) Pix, A) = PP (x, Ay, x € Nx N, AcNxN.

We let =t (résp. t.) denote the first hitting time on a set A for

A A
the Markov chain {Zn} (resp. {Zn}).

When ZO = X, we denote by U‘ the increment of {Zn} to be

added at time 1:

(3.4) U, = Z, - x = 2o (x) 1 € D) Y§
Then, the inequality (2.9) can be rewritten in the following form:
For some é > 0,

(3.5) E.(v-u ) < -g for any x € (N x N)\K

holds. We define the positive integer n by 1n = max{n n n

o’ "1
s n3}. Making use of (3.5), we can show ergodicity and geometric

2

ergodicity as follows.

Theorem 1. (1)(Vaninskii and Lazareva [12]) {Zn} is ergodic.

(2) If, for some x > O, E[EXD(A|Yi|)] <o, i =20,1, 2, 3, then



44

{Zn} ié also geometrically ergodic.

Remark 1. When Assumption 2 holds, the conclusion of kl) was
proved by several authors: e.g., Malyshev [4], Malyshev and Menshikov
[5], Rosenkrantz [8] and Fayolle [2] under various stronger
assumptions than Assumption 1. The conclusion of (2) was proved by

Malyshev and Menshikov [5] in the case of bounded jumps.

We now turn to discuss sub-geometric rates of convergence of
{Zn} by making use of the approach developed by Tweedie [11] and
Thorisson [10]. The next lemma readily follows from definiton of

UY and Assumption 1.

1
e
-
P
@

Lemma 1. If ¢ € ¥, U ¢, and E[W(IYiI)] <o, i

then sup E‘[W(IU‘I)] < o,
o 0 3

The next lemma is adapted for the random walk (1.1) from Lemma 4

of [10] for the one-dimensional random walk on Ri

Lemma 2. Suppose that ¢ € ¥, U o, , E{IY%I ¢(lYil)} <o, i =0,
1, 2, 3, and that there exist ¢ > 0 and a finite set K > K such
that
(3.86) Ex{w(iK)} < ¢ ¢(v-x) for all large enough x.
Then the inequality (3.6) holds with % replaced by ¥ and K

replaced by a finite set K o K.
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Proposition 8. If E{w(IYiI)} < e, i=0, 1, 2, 3, then there

exists a finite set L 2 K such that

(3.7) Ex{w(fL)} < ¢y e(v-x), x € (N x N)\L
holds for some c1 > 0, and hence
(3.8) EX{w(tL)} < c, w(v-x),/ x € (N x N)\L

holds for some Cy > 0.
By virtue of Proposition 3, we can easily obtain the following

main result.

Theorem 2. If E{G(IYil)} <w, 1=0,1,2, 3, then {z} Iis

ergodic of order .
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