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All spaces are assumed to be $T_{1}$ , but compact spaces and paracompact spaces are

assumed to be Hausdorff.
A space $X$ is assumed to be Tychonoff when we consider the product $X\cross\gamma X$ ,

where $\gamma X$ denotes a compactification of $X$ . An infinite cardinal $\kappa$ is assumed to be

no less than $L(X)$ when we consider the product $X\cross 2^{\kappa}$ or the product $X\cross(\kappa+1)$ ,

where $L(X)$ denotes the Lindel\"of number of the space $X$ .
The main purpose of this note is to give some partial answers to Problems A and

$\mathrm{C}$ stated in Section 1.

1. CHARACTERIZATIONS OF COVERING PROPERTIES BY PRODUCTS

Let us begin with a classical result of Dowker [D].

Theorem 1.1 [D]. For a normal $sp$ace $X$ , the following are equivalent.

(a) $X$ is countably paracompact.
(b) $X\cross(\omega+1)$ is normal.
(c) $X\cross[0,1]$ is normal.

Theorem 1.1 is the first result which indicated an important implication between

covering properties and products. Moreover, this led up to a beautiful characterization

of paracompactness in terms of products.

Theorem 1.2 $[\mathrm{T},\mathrm{M}]$ . For a Hausdorff $sp$ace $X$ , the following are equivalent.

(a) $X$ is paracompact.
(b) $X\cross\gamma X$ is normal.
(c) $X\cross 2^{\kappa}$ is normal.
(d) $X\mathrm{x}(\kappa+1)$ is normal.

Remark. The equivalence (a) and (d) in Theorem 1.2 was proved by Kunen. It is

found in [$\mathrm{P}$ , Corollary 3.7].
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An open cover $\mathcal{V}$ of a space $X$ is interior-preserving $\mathrm{i}\mathrm{f}\cap \mathcal{V}’$ is open in $X$ for each
$\mathcal{V}’\subset \mathcal{V}$ . A space $X$ is orthocompact if every open cover of $X$ has an interior-preserving
open refinement.

Subsequently, as a nice analogue of Theorem 1.2, a characterization of metacom-
pactness was obtained as follows.

Theorem 1.3 [Jul, $\mathrm{S}$]. For a $sp$ace $X$ , the following are $eq$uivalent.

(a) $X$ is metacompact.
(b) $X\cross\gamma X$ is orthocompact.
(c) $X\cross 2^{\kappa}$ is orthocompact.

This means that there are some closed relations between normality and ortho-
compactness of products (see $[\mathrm{S},\mathrm{K}\mathrm{Y}]$ ). Moreover, as an analogue of Theorem 1.3, we
proved a characterization of submetacompactness as follows.

Theorem 1.4 [Y1]. For a space $X$ , the following are $eq$uivalent.

(a) $X$ is submetacompact.
(b) $X\cross\gamma X$ is suborthocompact.
(c) $X\mathrm{x}2^{\kappa}$ is suborthocompact.

Seeing Theorems 1.2 and 1.3, it is natural to raise the following problem.

Problem A [Y2]. If $X\cross(\kappa+1)$ is orthocompact, is $X$ metacompact ?

Moreover, it is natural to ask whether there is an analogical characterization of
subparacompactness in terms of products.

Recall that a space $X$ is subnormal [ $\mathrm{C}$ , Kr] (normal) if for any disjoint closed sets
$A$ and $B$ in $X$ , there are disjoint $G_{\delta}$ -sets (open sets) $G$ and $H$ such that $A\subset G$ and
$B\subset H$ . Note that a space $X$ is subnormal (normal) if and only if every binary open
cover of $X$ has a countable (finite) closed refinement.

Problem $\mathrm{B}$ [Ju3]. If $X\cross\gamma X$ is subnormal, is $X$ subparacompact ?

Problem $\mathrm{C}$ [Y2]. If $X\cross 2^{\kappa}$ is subnormal, is $X$ subparacompact ?

Remark. As is shown later, it suffices for these three problems to prove that $X$ is
submetacompact. In fact, this follows from Lemma 2.9 and Theorem 3.3 (or Corollary
3.5) below.

2. METACOMPACTNESS AND SUBMETACOMPACTNESS OF $\beta$-SPACES

In this section, we give an affirmative answer to our Problem A under the assump-
tion of $X$ being a $\beta$-space.
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A space $X$ is called a $\beta$ -space if there is a function $g:X\cross\omegaarrow \mathrm{T}\mathrm{o}\mathrm{p}(X)$ , satisfying

(i) $x \in\bigcap_{n\in\omega}g(X, n)$ ,
(ii) if $x\in g(x_{n}, n)$ for each $n\in\omega$ , then $\{x_{n}\}$ has a cluster point in $X$ .

Since the class of $\beta$-spaces contains the classes of $\Sigma$-spaces and semi-stratifiable
spaces, it is very broad as a class of generalized metric spaces.

A well-ordered sequence $\{y_{\alpha} : \alpha\in\kappa\}$ of length $\kappa$ in a space $\mathrm{Y}$ is a free sequence if
$\mathrm{C}1\{y_{\beta} : \beta<\alpha\}\cap \mathrm{C}1\{y_{\gamma} : \alpha\leq\gamma<\kappa\}=\emptyset$ for each $\alpha\in\kappa$ .

Theorem 2.1. Let $X$ be a $\beta- sp$ace and $C$ a corrpact space with a free sequence of
length $\geq L(X)$ . Then $X$ is metacompact if and only if $X\cross C$ is orthocompact.

Since $\kappa+1$ has a free sequence of length $\kappa$ , Theorem 2.1 yields a partial answer to
Problem A.

Corollary 2.2. A $\beta$-space $X$ is metacompact if and only if $X\cross(\kappa+1)$ is orthocom-
pact.

Moreover, Arhangel’skii’s theorem in [A] and Theorem 2.1 yield

Corollary 2.3. Let $X$ be a $\beta$-space and $C$ a compact $sp$ace with tightness $>L(X)$ .
Then $X$ is metacompact if and only if $X\cross C$ is orthocompact.

Now, we will give only a course of the proof of Theorem 2.1. On the way, we will
obtain a characterization of submetacompactness of $\beta$-spaces.

A well-ordered open cover $\{U_{\alpha} : \alpha\in\kappa\}$ of a space $X$ is well-monotone if $\beta<\alpha$

implies $U\rho\subset U_{\alpha}$ .

Lemma 2.4. Let $X$ be a space and $C$ a compact space with a free seq $\mathrm{u}$ence of length
$\geq L(X)$ . If $X\cross C$ is orthocompact, then every well-monotone open cover of $X$ has a
clos $\mathrm{u}\mathrm{r}e$-preserving closed refinement.

By this, it seems to be effective to consider well-monotone open covers and their
closure-preserving closed refinements. So we think of the following Junnila’s theorem.

Theorem 2.5 [Jul, Ju2]. The following are equivalent for a $sp$ace $X$ .
(a) $X$ is metacompact (submetacompact).
(b) Every well-monotone open cover of $Xh$as a poin$i$ -finite open refinement

($\theta$-sequence of open reffiemenis).
(c) Every interior-preserving directed open cover of$Xh$as a $(\sigma-)CloSu\mathrm{r}e$-preserving

closed refinement.

Seeing Lemma 2.4 and Theorem 2.5, we raise the following problem.

Problem D. If every well-monotone open cover of a space $X$ has a a-closure-
preserving closed refinement, when is $X$ submetacompact ?
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Lemma 2.6 [Ji]. Let $X$ be a $\beta$-space and $\mathcal{U}$ a well-monotone open cover of X. If
$\mathcal{H}$ is an open refinement of $\mathcal{U}$ , then there is a sequence $\{\mathcal{G}_{\mathcal{H},s} : s\in\omega^{<\omega}\}$ of partial
refinements by open sets in $X$ , satisfying

(1) $\mathcal{G}_{\mathcal{H},s}\subset \mathcal{G}_{\mathcal{H},s’}$ for $s\subset s’$ ,
(2) if $x\in X$ with $\mathrm{o}\mathrm{r}\mathrm{d}(x, \mathcal{H})\leq n$ , then $x\in\cup \mathcal{G}_{\mathcal{H},s}$ for each $s\in\omega^{n+1}$ ,
(3) for each $x\in X$ , there is some $\sigma\in\omega^{\omega}$ such that $\mathrm{o}\mathrm{r}\mathrm{d}(x, \mathcal{G}\mathcal{H},(\sigma \mathrm{r}n))<\omega$ for each

$n\in\omega$ .

Making use of this, we prove the following lemma. A basic idea for the proof is
also due to Jiang [Ji].

Lemma 2.7 (main). Let $X$ be a $\beta- sp$ace and $\mathcal{U}$ a well-monotone open cover of $X$ .
If $\mathcal{U}h$as a clos$\mathrm{u}re$-preserving closed refinement, then it $h$as a $\theta$ -sequence of open
refinements.

By Lemma 2.7, we can easily obtain an answer to our Problem D.

Theorem 2.8. A $\beta- sp$ace $X$ is $s\mathrm{u}$ bmetacompact if and only if every well-monotone
open cover of $Xh$as a $\sigma$-clos$\mathrm{u}re$-preserving closed refinement.

Now, let us return the proof of Theorem 2.1.
Let $X$ be a space and $\mathcal{F}$ a collection of subsets of $X$ . A collection $\{G(F):F\in \mathcal{F}\}$

of subsets in $X$ is an open expansion (a $G_{\delta^{-expn}}a\mathit{8}ion$) if $G(F)$ is an open set (a
$G_{\delta}$-set) in $X$ such that $F\subset G(F)$ for each $F\in \mathcal{F}$ .

A space $X$ is almost expandable [SK] if every locally finite collection of closed sets
in $X$ has a point-finite open expansin.

A well-ordered sequence $\{y_{\alpha} : \alpha\in\kappa\}$ of length $\kappa$ in a space $\mathrm{Y}$ is right separated if
$y_{\alpha}\not\in \mathrm{C}1\{y_{\delta} : \delta>\alpha\}$ for each $\alpha\in\kappa$ . Note that each free sequence is right sparated.

Lemma 2.9. Let $X$ be a space and $C$ a compact $sp$ace with a right separa$ted$ se-
quence of length $\geq L(X)$ . If $X\cross C$ is orthocompact, then $X$ is almost expandable.

Since submetacompact, almost expandable spaces are metacompact (see [SK]),
Theorem 2.1 follows from Lemmas 2.4 and 2.9, and Theorem 2.8. $\square$

As a similar problem to Problem $\mathrm{D}$ , we raise

Problem $\mathrm{D}’$ . If every well-monotone open cover of an orthocompact space $X$ has a
closure-preserving closed refinement, is $X$ metacompact ?

If problem $\mathrm{D}’$ would be affirmatively solved, it follows from Lemma 2.4 that Prob-
lem A would be affirmative.

Concerning Problem $\mathrm{D}’$ , we get an additional result.
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Lemma 2.10 [$\mathrm{H}\mathrm{V}$ , Theorem 3.1]. For a (an orthocompact) $sp$ace $X$ , the following

are equivalent.

(a) For every well-monotone open cover $\{U_{\alpha} : \alpha\in\kappa\}$ of $X$ , there is a well-

monotone closed cover $\{F_{\alpha} : \alpha\in\kappa\}$ of $X$ such that $F_{\alpha}\subset U_{\alpha}$ for each $\alpha\in\kappa$ .

(b) Every well-monotone open cover of $X$ has a cushioned (closure-preserving)
clos$\mathrm{e}d$ refinement.

(c) Every infini$te$ open cover $\mathcal{U}ofX$ has an open refinement $\mathcal{V}$ with $\mathrm{o}\mathrm{r}\mathrm{d}(x, \mathcal{V})<|\mathcal{U}|$

for each $x\in X$ .

Let $(\lambda+1)_{\lambda}$ denote the space $\lambda+1$ with the topology such that the point $\lambda$ has a

neighborhood base in the usual order topology and that all other points are isolated.

Using Lemma 2.10, we obtain

Theorem 2.11. For an orthocompact space $X$ , every well-monotone open cover of $X$

$h$as a closure-preserving closed refinement if and only if $X\cross(\lambda+1)_{\lambda}$ is orthocompact

for each $\lambda(\leq L(X))$ .

We close this section with the following two unsolved problems, which seem to be

related to Problems $\mathrm{D}$ and $\mathrm{D}’$ .

Problem $\mathrm{E}$ [Ka,Yl]. If every directed open cover of a (suborthocompact) space $X$

has a $\sigma$-cushioned closed refinement, is $X$ submetacompact ?

Problem $\mathrm{E}’$ [Ka,Ju3]. If every directed open cover of a space $X$ has a cushioned
closed refinement, is $X$ metacompact ?

Problem $\mathrm{E}’$ was affirmatively solved under the assumption of $X$ being subortho-
compact (see [Y1]).

3. $\mathrm{c}_{\mathrm{o}\mathrm{U}\mathrm{N}\mathrm{T}\mathrm{A}}\mathrm{B}\mathrm{L}\mathrm{E}$ SUBPARACOMPACTNESS

In this section, we give some partial answers to our Problem C.
A space $X$ is countably subparacompact [Kr] if every countable open cover of $X$

has a countable closeed refinement. Note that countably subparacompact spaces are,

equivalently, countably metacompact and subnormal (see [Kr, Theorem 2.5]).

Recently, a list of analogues of Theorem 1.1 was given in [ $\mathrm{G}\mathrm{T}$ , p.118]. Here we can

add another analogue, answering to Problem $\mathrm{C}$ in the case of $\kappa=\omega$ .

Theorem 3.1. For a space $X$ , the following are equivalent.

(a) $X$ is countably $su$bparacompact.
(b) $X\cross 2^{\omega}$ is $s\mathrm{u}$ bnormal.
(c) $X\cross[0,1]$ is subnormal.
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Remark 1. The equivalence of (a) and (c) in Theorem 3.1 was stated in [ $\mathrm{G}\mathrm{T}$ , p.127]
without proof. However, at the 10th Summer Conference on General Topology and
Application (Amsterdam, August 1994), Good and Tree kindly informed the author
that this equivalence had not been proved yet, because they misunderstood the proof.

Theorem 3.1 immediately yields a generalization of Theorem 1.1.

Corollary 3.2. For a normal space $X$ , the following are $eq$uivalent.
(a) $X$ is countably paracompact.
(b) $X\cross(\omega+1)$ is normal.
(c) $X\cross[0,1]$ is $s\mathrm{u}$ bnormal.

Remark 2. It should be noticed that Theorem 3.1 and Corollary 3.2 are essentially
different from all the analogues in the list of [ $\mathrm{G}\mathrm{T}$ , p.118]. Because we can replace
$[0,1]$ with $\omega+1$ in all of them, but we cannot do in Theorem 3.1 and Corollary 3.2.
In fact, consider a Dowker space $\mathrm{Y}$ , whose existence is assured by Rudin [R1]. Since
the product of a subnormal space and a countable space is subnormal, $\mathrm{Y}\cross(\omega+1)$ is
subnormal. On the other hand, $\mathrm{Y}$ is normal, but not countably metacompact.

A space $X$ is collectionwise $\delta$ -normal [Ju3] if every discrete collection of closed sets
in $X$ has a disjoint $G_{\delta}$-expansion.

Theorem 3.3 [R2]. Let $X$ be a $sp$ace and $C$ a compact space with weight $\geq L(X)$ .
If $X\cross C$ is $s\mathrm{u}$ bnormal, then $X$ is collectionwise $\delta$-normal.

A space $X$ is collectionwise subnormal [ $\mathrm{C}$ , Kr] if for each discrete collection $\mathcal{F}$ of
closed sets in $X$ , there is a sequence $\{\mathcal{U}_{n}\}$ of open expansions of $\mathcal{F}$ such that for each
$x\in X$ , there is some $n\in\omega$ such that at most one member of $\mathcal{U}_{n}$ contains $x$ . Note

“
$\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}\mathrm{a}\mathrm{C}\mathrm{t}\Rightarrow \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{w}\mathrm{i}_{\mathrm{S}\mathrm{e}\mathrm{S}}\mathrm{u}\mathrm{b}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}1\Rightarrow \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\delta$-normal”.

Now, we get another partial answer to Problem C.

Theorem 3.4. If $X\cross 2^{\kappa}$ is subnormal, then $X$ is collectionwise $s\mathrm{u}$bnormal.

Since collectionwise $\delta$-normal and submetacompact spaces are subparacompact
[Ju3], Theorems 1.4 and 3.3 yields a partial answer to Problems $\mathrm{B}$ and C.

Corollary 3.5. For a space $X$ , the following are equivalent.

(a) $X$ is subparacompact.
(b) $X\cross\gamma X$ is subnormal and suborthocompact.
(c) $X\cross 2^{\kappa}$ is subnormal and suborthocompact.

4. LINDEL\"OF SPACES

Recall that a space $X$ is $\omega_{1}$ -compact if every closed discrete subset in $X$ is at most
countable. Note that Lindel\"of spaces are $\omega_{1}$ -compact.
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Lemma 4.1. Let $C$ be a $co$unta$\mathrm{b}ly$ compact $\epsilon p$ace and $X$ a $su$bspace of C. If the

subspace $(X\cross C)\cup(C\cross X)$ of the square $C^{2}$ is subnormal, then $X$ is $\omega_{1}$ -compact.

Using this, we can obtain an analoguou characterization of Lindel\"of spaces to

Tamano’s theorem for paracompactness (see Theorem 1.2).

Theorem 4.2. For a Tychonoff $sp$ace $X$ , the following are $e\mathrm{q}$ uivalent.

(a) $X$ is $Linde\iota_{\ddot{o}f}$.
(b) The subspace (X $\cross\gamma X$ ) $\cup(\gamma X\cross X)$ of the square $(\gamma X)^{2}$ is normal.
(c) $X$ is submetacompact and the subspace (X $\cross\gamma X$ ) $\cup(\gamma X\cross X)$ of the $s\mathrm{q}u$are

$(\gamma X)^{2}$ is subnormal.

In Theorem 4.2, we can find a kind of similarity to the form of Corollary 3.2.
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