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§1. GROUP CHARACTERS AND GRADED LIE ALGEBRAS

Let T’ be an additive abelian semigroup and let V = @, Vo be a I'-graded
vector space such that dimV,, < oo for all @ € I'. Let G be a group, and suppose G
acts on V in such a way that G preserves the I'-gradation on V. That is, g-V,, C V,
forallg € G, o € T'. Then, for each a € T, every element g € G defines an invertible
linear map ¢4 : V, — V, given by ¢,(v) =g-vforall g € G, v € V,,. Let us denote
by T'r(g|Va) the trace of ¢, on V,. We define the generalized character chy(V) of

gonV to be

(1.1) chy (V) = ZTT(gW},)e

a€l

where e are the basis elements of the semigroup algebra C[I'] with the multiplica-
tion e%e? = e*tP for o, € I'. In particular, when ¢ = 1, the identity element of
G, we obtain the usual character of V:

(1.2) ch(V) =) (dimV,)e®

a€l

In this paper, we assume that every element o € I' can be written as a sum
of elements in I' only in finitely many ways. For example, the semigroup Zsgo of
positive integers satisfies our condition, whereas the monoid Z>o of nonnegative
integers doesn’t.

Now we consider a I'-graded Lie algebra
(1.3) L= L.,
. a€l

and suppose that a group G acts on L by automorphisms preserving the I'-gradation
of L. We would like to derive a closed form formula for Tr(g|L,) forallg € G,a € T.

Recall that the homology modules Hy(L) = Hy(L,C) are determined from the

following complex

S AR(L) 25 AFY(L) —

dy

(1.4) )
— ANL) 2 A%(L) = C — 0,

where the differentials dy : A¥(L) — A*~1(L) are defined by

(1.5) dk(a:l/\---/\:z:k)=Z(—1)8+‘[:c3,:ct]/\x1/\---/\@/\---/\:a/\---/\xk
s<t

fork>2,2;€ L, and dy =do = 0.



Each of the terms A¥(L) has the I'-gradation induced by that of L: for a € T,
we define AF(L), to be the subspace of A¥(L) spanned by the vectors of the form
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23 A-+- Azg (z; € L) such that deg(z,) + - - + deg(zx) = a. We define the action

of G on A¥(L) by
L)  ge(@mAAz)=(g ) A A (g or)

for all ¢ € G,z; € L. Since the action of G on L preserves the I'-gradation of
L, the action of G on A¥(L) also preserves the I'-gradation of A*(L). Similarly,
the homology modules H(L) inherits the I-gradation from A*(L), and since G
commutes with the di the group G acts on Hy(L) preserving the I'-gradation.
Thus we can consider the generalized characters for A¥(L) and Hy(L):

(1.7) chyA¥(L) =) Tr(g|A*(L)a)e”,
a€l’

(1.8) chyHy(L) = Y Tr(g|Hi(L)a)e
a€l’

forg e G, a eT.
By the Euler-Poincaré principle, we have

o0 e o]

(1.9) Z )¥chy AF(L) = (—1)*ch, Hi(L).

k=0 k=0

Recall that the alternating direct sum of the vector spaces Y peo(—1)*AF(L) is
naturally isomorphic to exp (— S rey %;\Pk(L)), where ¥ is the k-th Adams oper-
ation ([A]). For ¢ € G and a € T, the Adams operation ¥* on L is defined by
Tr(g|%*(Ls)) = Tr(g*|Ls) and T*(e¥) = e**. It follows that

i(—l)kcth = exp ( Z —ch Tk ( )
: k=0
(1.10) — exp (— Y % Tr(g|\I;k(La))eka) |
k=1 a€l
= exp (— Z %Tr(g |L )
a€l k=1
Let
(1.11) H =3 ()M (D),
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an alternating direct sum of G-modules. For g € G and « € T', we define

oo

(1.12) Tr(g|Ha) = Y (=1)*'Tr(g|Hi(L)a),
k=1
and
(1.13) =Y Tr(g|Ha)e® = (—1)**chy Hi(L).
a€el’ k=1

Combining (1.10) and (1.13), (1.9) can be written as

(1.14) exp (— Z Z %Tr(gk|La)ek°‘> =1-chy(H).

a€l k=1

Let Py(H) = {a € T| Tr(g|Hqa) # 0} and {7;] ¢ > 1} be an enumeration of
Py(H). Forge G, 7 €T, let

(1.15) Ty(7) = {(n) = (ni)iz1| ni € ZZO,an =7}

Thus the set Ty(7) is the set of all partitions of 7 into a sum of 7;’s. We define a
function '

(1.16) Br)= ¥ (Z”’ D] Tl B2

SO
(n)ET, ()

We now obtain the following closed form formula for Tr(g|Ls) (9 € G,a € T),
which is a generalization of the closed form formula for dimL, obtained in [Ka3].

Theorem 1.1. For g € G, a € T, we have

(117) Tr(glLa) = 3 5p(d) Bya(a/d),
d>0
dla

where p is the classical Mobius function.

Proof. By (1.14), we have

-T k La ko — — .
exp (Z Z A r(9"|La)e ) 1— chy(H) 1— Zzl Tr(g|H,)eT

a€l k=1



Using the formal power series log(l —¢) = — Y72, %, we obtain from the right

hand side
1 oo
lo 5 =—log|1- Tr(g|H;,)e™
emtme) (o

S1 2n<

=1

3=

IIM nMg "

<

3

li

3

Z

(Z Z"' HTrng )

(n)€Ty(7)

s

The left hand side yields

log exp (Z kz_: %:— r(g |La)eka) ZE: z_:

a€l’

r(g*|La)e*e.

Rﬂfﬂ

Hence we have

Therefore, by Mdbius inversion, we obtain

Tr(glla)= Y 2p(d)Bpu(r). D

>0
a=dr

Example. For i > 1, let V; be a complex vector space of dimension d;, and let
V = @;>,; Vi. Consider the free Lie algebra L generated by V. For each 1 > 1, we
let o; = (0,---,0,1,0,- - ), where 1 appears in the i-th place, and define an abelian

semigroup I' = <@i>1 Zzoai) \ {0}. Then the free Lie algebra L is a I'-graded Lie
algebra L = @, cr Lo by defining degv = a; for v € V;.
Let G = [];5; GL(d;) = GL(dy) x GL(dy) X - - -, where GL(d;) = GL(V;). Then

G acts on L by automorphisms preserving the I'-gradation. Thus we can apply our
trace formula (1.17) to this setting.

Recall that, since L is the free Lie algebra generated by V, we have
=V=0DV,
(1.18) i>1
Hi(L) =0 for all k > 2.

122
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Therefore, for ¢ = (gi)i>1 € G with ¢g; € GL(d;), we have H = H(L) = V,
P,(H) = {ai| i > 1}, and H,,; = V;, which implies

def

(1.19) Tr(9|Ha,) = Tr(gilVi) = ti(gi)-

Note that, for 7 = > .5, sia; € ', we have

(120) Ty(T) = {(31’32,337"')}a

since T = S$ya1 + Sz + -+ is the only partition of 7 into a sum of a;’s. It follows
that ‘

(1.21) By(r) = %ﬁ—lﬁnti(gi)“,

and, for a = )., kia;, our trace formula (1.17) yields

(122)  Tr(gll.)= Y %#(d)% T . o
d>0 ! :
d|k; for all i

§2. GENERALIZED KAC-MOODY ALGEBRAS

The generalized Kac-Moody algebras were introduced by Borcherds in his study
of vertex algebras and Monstrous Moonshine ([B1]-[B5], [K]). In this section, we re-
call the basic theory of generalized Kac-Moody algebras and discuss the application
of our trace formula (1.17) to generalized Kac-Moody algebras.

Let I be a countable (possibly infinite) index set. A real matrix A = (aij)i jer
is called a Borcherds-Cartan matriz if it satisfies: (i) a;; = 2 or a;; < 0 for all
¢ €1, (i) a;; <0ifi # j, and a5 € Z if a;; = 2, (iii) a;; = 0 implies aj; = 0.
Let I"® = {i € I| a;; = 2}, I'™ = {i € I| a;; < 0}, and let m = (m;| i € I) be
a collection of positive integers such that m; = 1 for all ¢« € I™. We call m the
charge of the matrix A. A Borcherds-Cartan matrix A is said to be symmetrizable -
if there is a diagonal matrix D = diag(s;| ¢ € I) with s; > 0 (z € I) such that DA
is symmetric. In this paper, we assume that A is symmetrizable.

Definition 2.1. The generalized Kac-Moody algebra g = g(A,m) with a sym-
metrizable Borcherds-Cartan matrix A of charge m = (m;| i € I) is the Lie algebra
over C generated by the elements h;,d; (1 € I), ejx, fir 1 €I, k=1,--- ,m;) with
the defining relations: 7 ,
[hivhj] = [hi7dj] = [di’dj] - 0;

[Riseji] = asjeji, [Rhi, fi] = —aij f,

[di, e = Sijeju, [di, fji] = —6i;fi,

[eik, fit] = 6:;0kihs,

(adeix)' =" (e;1) = (adfir)' ™4 (fj1) = 0 if aii =2 and i # j,

leik, eji] = [fir, ft] =0 ifa;; =0

(2.1)



fori,jel, k=1,--- ,m;, l=1,---,mj.

The abelian subalgebra § = (;c; Chi) @ (P;e; Cdi) is called the Cartan
subalgebra of g. For each j € I, we define a linear functional a; € h* by

a](hl) = aij7 a](dz) = 5,] fOI' Z,] (S I

Let IT = {e;| i € I} C h* and ITY = {h;| i € I} C h. The elements of II (resp. IIV)
are called the simple roots (resp. simple coroots) of g.

Let Q = @;c; Zai be the free abelian group generated by a’s s (1 € I). We
call Q the root lattzce of g. Set Q4 = > ic;Z>0q;, and Q- = —Q4. We define
a partial ordering < on h* by A < p if and only if A — p € Q-. The generalized
Kac-Moody algebra g = g(A4,m) has the root space decomposition g = P ,eq Has
where go = {z € g| [h,z] = a(h)z for all h € b} is the a-root space. Note that
ga; =Cei1 @ ®Céejm;, and g_o, = Cfi1 @--- ® Cfim;,. We say that o € Q
is a root if & # 0 and gq # 0. The number multo:=dimg, is called the multiplicity
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of the root a. A root a > 0 (resp. o < 0) is called positive (resp. negative). We .

denote by A, AT, and A~ the set of all roots, positive roots, and negative roots,
respectively. Define the subspaces g% = @D.cat 8a- Then we have the triangular

decomposition: g=g~ Ghdg™.

Since A is symmetrizable, there is a symmetric bilinear form (| ) on b* satisfying
a;la;) = s;ai; for 1,5 € I. We say that a root « is real if (a|a) > 0, and imaginar
J J Y

if (a|e) < 0. In particular, the simple root a; is real if a;; = 2, and imaginary if

a;; <0. Note that the imaginary simple roots may have multiplicity > 1. For each
i € I, let r; € GL(h*) be the simple reflection on h* defined by r;(A) = A= A(h;)a;
for A € h*. The subgroup W of GL(h*) generated by the r;’s (2 € I"¢) is called the
Weyl group of g.

Let G be a group and suppose G acts on the generalized Kac-Moody algebra
g = g(A, m) by automorphisms preserving the root space decomposition. We will
apply our trace formula (1.17) to derive a closed form formula for Tr(g|ga) (g €
G,a € Q).

Let S be a finite subset of I, let Ag = AN (Zies Zoz,-), A§ = Ag N A%,
AE(S) = A*\ AL, and let W(S) = {w € W| wA~ N AT C AT(S)}. We also let
(S) =ho (EaeAs o), and gf) = Y aent(s)Ba- Then g(()s) is the Kac-Moody
algebra with Cartan matrix Ag = (a;;); jes (with an extended Cartan subalgebra
), and g’ (resp gy |
modules over g . We denote by Pg‘ = {\ € h*| A(hi) € Zxo for all i € S} the
set of dominant 1ntegral weights for 90 ) and V() the irreducible highest weight
(() )-module with highest weight \ € PZ. To apply our formula (1.17) to the

Lie algebra L = g(__s), we would like to compute the generalized characters of the

is a direct sum of irreducible highest (resp. lowest) weight

homology modules H (g(,s)). The g(()s)-module structure of Hy (g(_S)) is determined
by the following formula known as Kostant’s formula.
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Proposition 2.2 ([N]). Let p € h* be a linear functional satisfying p(hi) = }ai;
for all + € I, and let T be the set of all imaginary simple roots counted with
multiplicities. Then we have ,
2.2 Hy(g®) = Vs(w(p — s(F)) —
(2.2) k(927) > Vs(w(p—s(F)) - p),
weW(S)
FCT
(w)+]F|=k
where F' runs over all the finite subsets of T' such that any two elements of F are _
mutually perpendicular. We denote by |F| the number of elements in F and s(F)
the sum of the elements in F. 0O

Therefore, the space H is the same as

H = Z k+1H (S))

22 S ) - )
weW(S)
FCT
l(w)+|F|21
and for all ¢ € G and a € @, we have

(2.4) Tr(glHs) = Y (=)' (g[Vs(w(p — s(F)) = p)a)-

weW(S)
- FCT
{w)+|F|2>1

As in Section 1, let P(S)( H) ={a € Q_| Tr(g|Hs) # 0} and {r;] ¢ > 1} be an
enumeration of P(S) (H) compatible with the partial ordering < of Q_. For r € Q_

and g € G, define the set T( )('r) and the funciton B( )( ) by (1.15) and (1.16).
Then, by our trace formula (l 17), we obtain

Proposition 2.3. For g € G and a € A™(S), we have
1
(2.5) Tr(glga) = D Su(d)By2 (o/d).

a>0
d|a

In particular, when g = 1, we recover the closed form root multiplicity formula for
symmetrizable generalized Kac-Moody algebras obtained in [Ka2]. a

-§3. THE THOMPSON SERIES

In this section, we apply our trace formula (2.5) to the Monster Lie algebra
M = ®(m,n)6111,1 M n) to derive some interesting relations among the coefficients

¢g(n) of the Thompson series
(3.1) Ty(a)= D TriglVa)a" = D con)q™.
n>-—1 n>-—1
The main properties of the Monster Lie algebra M are summarized in the following
proposition.



Proposition 3.1 ([B5]). 1) The Monster Lie algebra M is a II 1-graded gen-
eralized Kac-Moody algebra with the real simple root (1,—1) and the imaginary
simple roots (1,1) (¢ > 1) with multiplicity c(i). Therefore, M is a generalized
Kac-Moody algebra with Borcherds-Cartan matrix A = (—(¢ + j))i jer of charge
m = (c(1)| i € I), where I = {—1} U {t| i > 1} is the index set for the simple roots
of M.

2) M is a 11, ;-graded representation of the Monster simple group G acting by
automorphisms of M such that M(,, n) = Viun for (m,n) # (0,0) as G-modules. In
particular,

Tr(g)Mimny) = Tr(g|Vmn) for g € G, (m,n) #(0,0). O

Recall that I = {—1} U {¢] 7 > 1} is the index set for the simple roots of the
Monster Lie algebra M, and M is a generalized I{ac-Moody algebra with Borcherds-
Cartan matrix A = (—(¢ + J))i,jer of charge m = (c(¢)| ¢+ € I). We denote by
e—11 = e—1, eix and fo11 = foq, fir (1 € I,k = 1,2,--+ ,¢(7)) the positive and
negative simple root vectors of M, respectively. Thus we have

M(1,—1) = Ce_y,
M1y = Cf-,

M(l,i) =Cein @O Cei,c(z')7

M1,y =Cfi1® - ®Cficu (1>1).

(3.2)

ith

Consider a basis of M(_;,_; consisting of the eigenvectors v;x of g € G w
> 1) as

eigenvalues Ay (k = 1,2,---,¢(z)). Since My = M1y = Vi (i
representations of the Monster simple group G, we have

c(i)
(3.3) Z)‘i’k =Tr(g|M—1,—i) = Tr(g|Vi) = ¢c4(z) forge G, 1 > 1.
k=1

Moreover, since M(y,—1) = M(_1,1) = V_1, the trivial G-module, we have
(3.4) gre-1=e€_1, g-fo1=f foralgegG.

To apply our trace formula (2.5), we take S = {—1}. Then Més) ~ 5l(2,C)+C?
and W(S) = {1}. Hence by Kostant’s formula we obtain

Hi(M®) =" c(i)Vs(~1,-i),
(3.5) i>1
He(M®) =0 for k > 2,

where Vs(—1,—1) is an i-dimensional irreducible representation of the Lie alge-
bra sl(2,C) generated by e_;, f-1, h—;. Since the weights of Vg(—1,—1) are
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(—-1,-4),(-2,—t + 1), -+ ,(—%,—1), the space H = Hl(M_(_S)) has the decomposi-
tion
(3.6) H= (P H_i-j

i,5>0

Note that each f;r generates an i-dimensional irreducible represntation of the Lie
algebra sl(2, C) generated by e_1, f—1, h—1, and hence so does each v; x (i>1, k=
1,2,--- ,¢(2)). Therefore we have '

c(i+j—1) A .
H_i—p= P Cadf1) " (firj-1,4)
k=1
(3.7) e(it+j—1)

= @ C(adf-1)" " (vigj—1,k)-
k=1

It follows from (3.4) that
g (adf_1)' " (vigj14) = (ad(g - f-1))" (g Vit jm1,k)
= Xitj—1,k(adf-1)"" (Vi j-1,)
for all g € G, 1,7 € Z>o. Hence, by (3.3), we obtain

e(itj—1)
(3.8) Tr(g|H—i-p) = Y Airj—re =cgli+j—1)

k=1

for all g € G, 1,7 € Z~¢. Therefore, for g € G and k,l > 0, we have

(3.9) -~ PPOH) = {(=i, =)l i, € Zxo},
(3.10)  T(D(k,1) = {b= (bij)ii>1l bij € Zx0, Y bij(3,5) = (K, 1)},
i,j>1

the set of all partitions of (k,!) into a sum of ordered pairs of positive integers, and ‘

bij — 1)! o g
(3.11) BO®H= Y %Hcg(z—kj—l)b”.

bETy(k,1) v
Now our trace formula (2.5) yields
1

(3.12) Tr(g|Mmm) = > Fu(d)B2 (k1.

d>0

(m,n)=d(k,l)

Since Tr(g|M(m,ny) = TT(9|Vimn) = c4(mn), we obtain the following interesting re-

lations among the coefficients ¢, (n) of the Thompson series Tg(q) = Y.~ _; ¢g(n)q™.
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Theorem 3.2. For g € G and m,n € Zo, we have

319) qlmn)= ¥ qud) > g euivi- . o

d>0 bETG(m/d,n/d)

Remark. When g = 1, we recover the relations for the coefficients ¢(n) of the elliptic
modular function j(g)—744 obtained in [Ju2] and [Ka2]. Recently, we were informed
that the relations (3.13) were obtained independently by Jurisich, Lepowsky, and
Wilson ([JLW]). It is pointed out in [JLW] that these relations completely determine
the coefficients ¢4 (n) if the values of ¢4(1), cx(2), cx(3), and cx(5) are known for all
h € G. Hence, in this sense, our relations (3.13) are as good as Borcherds’ relations
(9.1) in [B5]. In particular, by taking (m,n) = (2,2k) and (m,n) = (2,2k + 1), we
recover the relations for c,(n) (n even) in [B3]:

k—1
1
cg(4k) = cg(2k +1) + Y cg(5)eg(2k — j) + §(cg(k)2 — cg2(k)),
(3.14) =
co(4k +2) = ¢g(2k +2) + Y _ cq(j)eg(2k +1—j).
j=1

Moreover, by taking other factorizations of n (n even), we obtain more relations
for ¢4(n) other than Borcherds’ relations.

For n odd, we get different relations than Borcherds’. For example, for n = 9 =

32, our relation (3.13) implies

Cg(g):cg(5)+cg(2) +cg(L)eg(3) + 7 (cy() _cg"‘(l))7

whereas Borcherds’ relation yields

)(9) = () + 5 (e (47 + eg2(4)) + 5(e5(3)7 — cg2(3)) + ¢ (1)ey (5)
+ ¢q2(1)eq(4) = cg(1)eg(T) + ¢4(2)eg(6) — ¢4(3)cy(5).
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