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The problem of constructing harmonic maps of two-spheres into spheres, complex

Grassmann manifolds and quaternionic projective spaces is already solved and well under-
$\mathrm{s}\mathrm{t}_{\mathrm{o}\mathrm{O}}\mathrm{d}$(see [Ba-W], [B-W], [Cal], $[\mathrm{C}\mathrm{a}2],[\mathrm{w}\mathrm{o}],$ $[\mathrm{W}]$ ). The next problem is to construct and

understand the harmonic maps of two-tori in spheres, complex Grassmann manifolds and

quaternionic projective spaces.

In contrast with the case of harmonic two-spheres, there is a class of non-conformal

harmonic maps for two-tori. For non-conformal harmonic two-tori in compact symmetric

space of rank one, a beautiful theory is established by [B-F-P-P], which says that they are

obtained by integrating certain commuting Hamiltonian flows. They called the map of this

kind a map of finite type. However, the geometrically interesting class of harmonic maps

is that of conformal ones. The (weakly) conformal harmonic maps are divided into two

subclasses, the class of superminimal ones and the class of non-superminimal ones. The

former class is well understood (see [Cal], [Ca2], [Ch], [E-W], [Ba-W]); its members are

projections of horizontal holomorphic curves in certain generalized flag manifolds, which

are twistor spaces of the underlying symmetric space. The latter class was recently treated

by $\mathrm{H}\mathrm{i}\mathrm{t}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{n}[\mathrm{H}]$ in case of $S^{3}$ as target and by $\mathrm{F}\mathrm{e}\mathrm{r}\mathrm{u}\mathrm{s}- \mathrm{p}_{\mathrm{e}}\mathrm{d}\mathrm{i}\mathrm{t}$ -Pinkall-Sterling $[\mathrm{F}- \mathrm{P}- \mathrm{p}_{- \mathrm{s}}]$ in case

of $S^{4}$ as target.

Recently, $\mathrm{B}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{l}[\mathrm{B}]$ proved that any non-superminimal harmonic tori in a sphere or

a complex projective space is covered by a primitive harmonic map of finite type into a

certain generalized flag manifold (see [B-P-W] for superconformal harmonic two-tori in a
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complex projective space, which is a special case of Burstall’ theorem stated above).

In this paper, we treat and show some results on harmonic two-tori in complex Grass-

mann manifolds and quaternionic projective spaces.

1. Preliminaries and the fundamental facts

Let $\mathrm{C}^{n}$ be an $n$-dimensional complex number space with the standard Hermitian

inner product $<,$ $>$ defined by $<v,$ $w>= \sum_{i=1}^{n}v_{i}\overline{w_{i}}$ , where $v=(v_{1}, v_{2n}, \cdots, v),$ $w=$

$(w_{1}, w_{2}, \cdots, w_{n})$ . Let $G_{k}(\mathrm{C}^{n})$ be the Grassmann manifold of all complex k-dimensional

subspaces of $\mathrm{C}^{n}$ with its standard K\"ahker structure. Let $\varphi$ : $Marrow G_{k}(\mathrm{C}^{n})$ be a smooth

map of a Riemann surface. Let $V(\varphi)$ be the pull-back of universal bundle over $G_{k}(\mathrm{C}^{n})$ by

$\varphi$ . Then, $V(\varphi)$ is a subbundle of the trivial bundle $V(\mathrm{C}^{n})=M\cross \mathrm{C}^{n}$ . We equip $V(\mathrm{C}^{n})$

with the standard Hermitian connected structure compatible with the Hermitian fiber

metric $<,$ $>$ . For any subbundle $F$ of $V(\mathrm{C}^{n})$ , we denote by $F^{\perp}$ the Hermitian orthogonal

complement of $F$ in $V(\mathrm{C}^{n})$ with respect to $<,$ $>$ . Then, $F$ anf $F^{\perp}$ are both equipped with

the Hermitian connected structures induced from that of $V(\mathrm{C}^{n})$ . Moreover, $F$ and $F^{\perp}$ both

have the Koszul- Malgrange holomorphic structures. Let $A_{/}^{F,F^{\perp}}$ be the $(1, 0)$ -part of the

second fundamental form of $F$ in $V(\mathrm{C}^{n})$ . By taking the image of the second fundamental

form, we may define the new subbundle $F_{1}$ of $V(\mathrm{C}^{n})$ , which is defined on $M$ except the

singularity subset $S$ . If $A_{/}^{F,F^{\perp}}$ is a holomorphic section, $S$ is a discrete set. In this case, the

line bundle $[S]$ defined by the divisor $S$ enables us to extend $F_{1}$ smoothly over $M$ , which

is also a holomorphic subbundle of $F^{\perp}$ and denoted by $F_{1}$ again. Set $V_{0}=V(\varphi)$ . It is

known that $A^{V_{0},V^{\perp}},0$ is a $\mathrm{H}\mathrm{o}\mathrm{m}(V0, V_{0^{\perp}})$ -valued holomorphic differential if and only if $\varphi$ is a

harmonic map. It is also known that $V_{1}$ defines a harmonic map $\varphi_{1}$ : $Marrow G_{k_{1}}(\mathrm{c}^{n})$ with

$k_{1}\leq k$ , where $V_{1}$ is isomorphic to the pull-back of the universal bundle over $G_{k_{1}}(\mathrm{C}^{n})$ by $\varphi_{1}$ .
Now, starting from $V_{0}$ , we may define the harmonic sequence $V_{0}arrow V_{1}arrow\cdots V_{r-1}arrow R$ ,

where $V_{i}={\rm Im} A_{/}V:-1,V_{1}^{\perp}-1$ for $i=1,$ $\cdots,$ $r-1$ and $R=V(\mathrm{C}^{n})\ominus(\oplus_{i=}^{r-1}0Vi)$ . This situation

assumes that each of $V_{0},$ $V_{1},$
$\cdots,$

$V_{r-1}$ and $R$ are orthogonal to each other with respect to

the Hermitian metric on $V(\mathrm{C}^{n})$ . In this case, we say that $\varphi$ has strong isotropy order

$\geq r$ . From the definition of harmonic sequence, it is always true that $r\geq 1$ . In the case
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where we use $(0,1)$-part of the second fundamental form, we denote the corresponding

harmonic sequence by $V_{0}arrow V_{-1}$ $–...arrow V_{-r+1}arrow R’$ , where $V_{-i}={\rm Im} A^{V_{-\cdot+-:}},,1,V\perp+1$ for

$i=1,$ $\cdots,$ $r-1$ and $R’=V(\mathrm{C}^{n})\ominus(\oplus_{i=}^{r-1}0-Vi)$ . It is known that $V_{i}$ and $V_{j}$ is orthogonal to

each other for $0<|i-j|\leq r$ and that each $V_{i}$ defines a harmonic map of $M$ into $G_{s}(\mathrm{c}n)$ ,

where $s=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{\dot{\iota}}$ .
Now, we give the definition of isotropy order of $\varphi$ : We denote by V the pull-back

connection on the pull-back bundle $\varphi^{-1}TG_{k}(\mathrm{c}n)$ , which is extended by complex linearity

to $\varphi^{-1}(\tau Gk(\mathrm{C}^{n}))^{\circ}$ . According as the type decomposition of the complexified cotangent

bundle of $M$ , we set $\nabla=\nabla’+\nabla^{\prime/}$ .
Definition(cf. [E-W], [Er-W]). (1) $\varphi$ is said to have isotropy order $r$ if $r$ is the largest

integer such that the following equation holds:

(1.1) $<\nabla^{\prime\alpha}\varphi,$ $\nabla^{\prime;\rho}\varphi>\equiv 0$ for $2\leq\alpha+\beta\leq r$ ,

where $\nabla’\varphi=\partial\varphi,$ $\nabla’’\varphi=\overline{\partial}\varphi,$ $\nabla^{\prime\alpha}\varphi=\nabla’(\nabla^{\prime\alpha-1}\varphi)$ and $\nabla^{\prime\prime\beta}\varphi=\nabla’’(\nabla’’\rho_{-}1\varphi)$ . In the case

of $r=\infty,$ $\varphi$ is said to be isotropic.

(2) $\varphi$ is said to have strong isotropy order $r$ if $V_{0}\perp V_{i}$ for $i=1,$ $\cdots r$ and $V_{r+1}$ is not

perpendicular to $V_{0}$ with respect to $<,$ $>$ . In the case of $r=\infty,$ $\varphi$ is said to be strongly

isotropic or superminimal.

If $\varphi$ has strong isotropy order $r$ , then we define the first return map $A^{FR}$, of $\varphi$ by

$A^{FRV0},=A_{/}V_{r},\mathrm{o}A^{V_{r-1},V_{r_{\mathrm{O}}}},\cdots\circ A^{VV_{1}}/0$
, ,

where $A^{V_{r},V_{0}}$, is the composition of the $(1, 0)$-part of the second fundamental form $A^{V_{r},V^{\perp},}$,
and the holomorphic orthogonal projection $V_{r}^{\perp}arrow V_{0}$ . Therefore, $A^{FR}$, is a holomorphic

differential with values in End$(V_{0})$ .
Example. If $M=S^{2}$ , i.e. a Riemann sphere, then $A^{FR}$, is nilpotent. In particular,

when the target manifold is a complex projective space $\mathrm{C}P^{n-1}$ (the case of $k=1$ ), any

harmonic map $S^{2}arrow \mathrm{C}P^{n-1}$ is superminimal. For $k\geq 2$ , the procedure called the

forward replacement or backward replacement is useful for classifying harmonic maps of $S^{2}$

into $G_{k}(\mathrm{C}^{n})$ (see [B-W], [Wo], [W]). On the other hand, certainly there are some examples

where $A^{FR}$, is not nilpotent. For example, consider a Clifford torus which is total really
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and minimally immersed in $\mathrm{C}P^{2}$ . Then, its harmonic sequence is periodic with strong

isotropy order two.

2. Primitive harmonic maps of finite type

Let $G$ be a compact semisimple Lie group. Let $N=G/K$ be a reductive homogeneous

space. We have the reductive decomposition of Lie algebra $\mathcal{G}$ of $G$ as follows :

$\mathcal{G}=\mathcal{K}+\mathcal{M}$ , $[\mathcal{K}, \mathcal{M}]\subset \mathcal{M}$

where $\mathcal{K}$ is the Lie algebra of $K$ and $\mathcal{M}$ is identified with the tangent space of $N$ at the

base point. Suppose that there is an (inner) automorphism $\tau$ : $\mathcal{G}arrow \mathcal{G}$ of order $k$ with

fixed set $\mathcal{K}$ . Set $\zeta=\exp(2\pi\sqrt{-1}/k)$ . Then, the complexification $\mathcal{G}^{\mathrm{C}}$ of $\mathcal{G}$ is decomposed

as

(2.1)
$\mathcal{G}^{\mathrm{C}}=\sum_{i\in \mathrm{Z}_{k}}\mathcal{G}i$

where $\mathcal{G}_{i}$ is the $\zeta^{i}$ -eigenspace of $\tau$ . Moreover, we have

(2.2) $\mathcal{M}^{\mathrm{C}}=\sum \mathcal{G}ik-1$ , $\mathcal{K}^{\mathrm{C}}=\mathcal{G}0$

$i=1$

$\overline{\mathcal{G}_{i}}=\mathcal{G}_{-i}$ , $[\mathcal{G}i, \mathcal{G}_{j}]\subset \mathcal{G}i+j$

Let $\mathit{0}\in N$ be the base point. Suppose that $\tau$ exponentiates to give an order $k$ automor-

phism of $G$ , which is also denoted by $\tau$ . Define $\hat{\tau}$ : $Narrow N$ by $\hat{\tau}(g\cdot \mathit{0})=\tau(g)\cdot \mathit{0}$ for

$g\in G$ . For $x=g\cdot \mathit{0}$, define $\hat{\tau}_{x}$ : $Narrow N$ by $\hat{\tau}_{x}=g\mathrm{o}\hat{\tau}\mathrm{o}g^{-1}$ . Then, each $\hat{\tau}_{x}$ is a

diffeomorphism of order $k$ of $N$ with isolated fixed point $x$ and we may use the Killing

form of $\mathcal{G}$ to equip $N$ with a biinvariant metric for which each $\hat{\tau}_{x}$ is an isometry. There-

fore, $N$ is a $k$-symmetric space in the sense of $\mathrm{K}\mathrm{o}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{k}\mathrm{i}[\mathrm{K}]$ . The map $\mathcal{G}arrow T_{x}N$ given by

$\xi-\frac{d}{dt}|_{t=0^{\mathrm{e}}}\mathrm{x}\mathrm{p}t\xi\cdot X$ restricts to an isomorphism $Adg\mathcal{M}arrow T_{x}N$ . We denote the inverse

map by $\beta_{x}$ : $T_{x}Narrow Adg\mathcal{M}\subset \mathcal{G}$ and we may regard $\beta$ as a $\mathcal{G}$-valued 1-form on $N$ , which

is called Maurer-Cartan form of $N$ in [B-R]. We define the bundle $[\mathcal{G}_{i}]$ by $[\mathcal{G}_{i}]_{x}=Adg\mathcal{G}_{i}$ .

Then, $[\mathcal{G}_{i}]$ is a subbundle of the trivial bundle $N\cross \mathcal{G}$ . Note that $[\mathcal{G}_{i}]_{x}$ is a $\zeta^{i}$ -eigenspace of

$d\hat{\tau}_{x}$ at $x$ .
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Let $\psi$ : $Marrow N$ be a smooth map.

Definition$([\mathrm{B}])$ . $\psi$ is said to be a primitive map if $\psi^{*}\beta(\partial/\partial z)$ is $[\mathcal{G}_{1}]$-valued.

In case of $k=2,$ $N$ is a symmetric space and $\mathcal{M}^{\mathrm{C}}=\mathcal{G}_{1}$ , hence any $\psi$ is a primitive

map. In case of $k=3$ , since $\mathcal{M}^{\mathrm{C}}=\mathcal{G}_{1}+\overline{\mathcal{G}_{1}}$ , we may give $N$ an almost complex structure

by declaring that $T^{1,0}N\cong[\mathcal{G}_{1}]$ , hence a primitive map is just an (almost) holomorphic

map.

Let $F:Marrow G$ be a (local) lift of $\psi$ : $Marrow N$ with projection given by $F\mapsto F\cdot \mathit{0}$.
Such $F$ always exists locally and is called a framing of $\psi$ . When $G$ is a matrix group, set
$\alpha=F^{-1}dF$ . Corresponding to the reductive decomposition $\mathcal{G}=\mathcal{K}+\mathcal{M}$ , set $\alpha=\alpha_{\mathcal{M}}+\alpha_{\mathcal{K}}$ ,

and $\alpha_{\mathcal{M}}=\alpha_{\mathcal{M}}’+\alpha_{\mathcal{M}}^{\prime/}$ is a decomposition into $(1,0)$-form and $(0,1)$-form, respectively. Then,

we have

(2.3) $\psi^{*}\beta^{;}=AdF\alpha_{\mathcal{M}}$
;

Using the Maurer-Cartan equation for $\alpha$ , we see that a primitive map is a harmonic map

if $k>2$ , because $\mathcal{G}_{1}\cap \mathcal{G}_{-1}=\{0\}$ holds when $k>2$ , which is an essential part of this

observation (see [B-P]).

We fix an Iwasawa decomposition of $\mathcal{K}^{\mathrm{C}}$ :

$\kappa^{\mathrm{c}}=\mathcal{K}\oplus e$ ,

where $B$ is a solvable subalgebra of $\mathcal{K}^{\mathrm{C}}$ . Such a decomposition exists since $\mathcal{K}$ is compact

so that $\mathcal{K}^{\mathrm{C}}$ is reductive.

Set
$\wedge \mathcal{G}_{r}^{\mathrm{C}}=$ { $\xi:S^{1}arrow \mathcal{G}^{\mathrm{C}}$ $|$ $\xi(\zeta\lambda)=\tau\xi(\lambda)$ for $\lambda\in S^{1}$ }

which is an infinite dimensional Lie algebra. We equip it with the Sobolev $H^{r}$-topology

for some $r>1/2$ . Let $\wedge \mathcal{G}_{\tau}$ be the real form

$\wedge \mathcal{G}_{r}=\{\xi\in\wedge \mathcal{G}_{\mathcal{T}}\mathrm{C} | \xi : S^{1}arrow \mathcal{G}\}$

and define a complementary subalgebra by

$\bigwedge_{+}\mathcal{G}_{\tau}^{\mathrm{C}}=$ { $\xi\in\wedge \mathcal{G}_{\tau}^{\mathrm{C}}$
$|$ $\xi$ extends holomorphically to $\xi$ : $Darrow \mathcal{G}^{\mathrm{C}}$ and $\xi(0)\in B$ } ,

104



where $D$ is a unit disc. Any element $\xi\in\wedge \mathcal{G}_{\tau}$ has a Fourier expansion $\xi=\sum\xi_{n}\lambda^{n}$ . Define

a finite dimensional $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}_{\mathrm{P}^{\mathrm{a}}}\mathrm{c}\mathrm{e}\bigwedge_{d}$ as follows:

$\bigwedge_{d}=$ { $\xi\in\wedge \mathcal{G}_{\tau}$ $|$ $\xi_{n}=0$ for all $|n|>d$}

Let $d\equiv 1$ mod $k$ . Then, $\xi_{d}\in \mathcal{G}_{1}$ and $\xi_{d-1}\in \mathcal{K}^{\mathrm{C}}$ . Let $T$ be the given maximal torus in $\mathcal{K}$

and $N$ the nilpotent subalgebra given by the positive root spaces and set $\mathcal{H}=\mathcal{T}^{\mathrm{C}}$ . Then,

we have
$\mathcal{K}^{\mathrm{C}}=N\oplus \mathcal{H}\oplus\pi$ , $\mathcal{B}=(\sqrt{-1}T)\oplus N$ .

Any element $\eta\in \mathcal{K}^{\mathrm{C}}$ may be written as $\eta=\eta_{N}+\eta_{\mathcal{H}}+\eta_{7}$ . Define a map $r:\mathcal{K}^{\mathrm{C}}arrow \mathcal{K}^{\mathrm{C}}$

by
$r( \eta)=\eta\pi+\frac{1}{2}\eta_{\mathcal{H}}$

(see Section 2.4 in [B-P]). Now, take a $\xi 0\in\bigwedge_{d}$ and solve the differential equation

(2.4) $\frac{\partial\xi}{\partial z}=[\xi, \lambda\xi_{d}+r(\xi d-1)]$ ; $\xi(0)=\xi 0$

Then, there is a primitive harmonic map $\psi$ : $\mathrm{R}^{2}arrow N$ with framing $F$ : $\mathrm{R}^{2}arrow G$

satisfying $F^{-1}\partial F/\partial z=\xi_{d}+r(\xi d-1)$ . Alternatively, define $a:\mathrm{R}^{2}arrow\wedge G_{\tau}$ , $b:\mathrm{R}^{2}arrow$

$\bigwedge_{+r}G^{\mathrm{C}}$ by
$\exp(\overline{z}\lambda d-1\xi_{0})=a(z)b(_{Z})$

Then, $\psi=\pi \mathrm{o}(a|_{\lambda=1})$ is a primitive harmonic map, where $\pi$ : $Garrow N$ is the coset

projection.

Definition. A primitive harmonic map $\psi$ obtained by solving the equation (2.4) is said

to be of finite type.

In this case, it is observed that $\xi_{d}=\alpha_{\mathcal{M}}’(\partial/\partial z)$ takes values in a single $AdK^{\mathrm{C}}$ -orbit

in $\mathcal{G}_{1}$ . For a primitive harmonic map $\psi$ of two-torus, this condition is almost sufficient to

prove that $\psi$ is of finite type. In fact, one needs an additional condition that the orbit is

semisimple. The last condition may be replaced by more useful condition, that is

Theorem 2.1 ( $[\mathrm{B}-\mathrm{F}- \mathrm{p}_{-\mathrm{P}}]$ , [B-P], [B]). Let $\psi$ : $T^{2}arrow N$ be a primitive harmonic map

of a two-torus into a $k$ -symmetric space $(k\geq 2)$ . Suppose that $\psi^{*}\beta(\partial/\partial z)$ is semisimple

on a dense $su$bset of $T^{2}$ . Then, $\psi$ is of finite type.
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Example. Let $\varphi$ : $T^{2}arrow N$ be a non-conformal harmonic map into a rank one

symmetric space of compact type. Then, $\varphi$ is of finite type (see [B-F-P-P]).

Thus, we work on a question ”What kind of harmonic two-tori in complex Grassmann

manifolds and quaternionic projective spaces are covered by primitive harmonic maps
$\psi$ : $T^{2}arrow G/K$ with $\psi^{*}\beta’$ being semisimple ?”.

Let $\varphi$ : $Marrow G_{k}(\mathrm{C}^{n})$ be a non-superminimal harmonic map of a Riemann surface.

Suppose that the strong isotropy order of $\varphi$ is $r$ . Then, we have a harmonic sequence

$V_{0}arrow V_{1}arrow\cdotsarrow V_{r-1}arrow R$ . For notational simplicity, set $V_{r}=R$ . Let $k_{i}$ be tha rank of
$V_{i}$ for $i=0,1,$ $\cdots,$ $r-1$ , where $k_{0}=k$ . Set $G=SU(n)$ . Let $N=SU(n)/S(U(k_{0})\mathrm{X}$ ‘ $\cdot\cdot\cross$

$U(k_{r-1}) \cross U(n-\sum_{i}^{r-1}=0i)k)$ be the flag manifold. Any point $x$ of $N$ may be expressed as

$x=(w_{0}, w_{1,r}\ldots, w)$ , where $w_{i}$ is a $k_{i}$-plane for $i=0,1,$ $\cdots,r-1$ and $w_{r}$ is a $(n- \sum_{i^{-1}}^{r}=0)k_{i}-$

plane. Let $p$ : $Narrow G_{k}(\mathrm{C}^{n})$ be the projection map which assigns to the flag its first

element ; $p(w_{0}, w_{1}, \cdots, w_{r})=w_{0}$ .

Fix any point $x=(w0, w_{1}, \cdots, wr)\in N$ and define $Q\in G$ by

$Q=\zeta^{i}$ on $w_{i}$ for $i=0,$ $\cdots,$ $r$

where $\zeta=\exp(2\pi\sqrt{-1}/r+1)$ . Then, $\tau=AdQ$ is an order $(r+1)$-automorphism of $G$

and the identity component of its fixed set is $S(U(k_{0}) \cross\cdot\cdots\cross U(k_{r-1})\cross U(n-\sum_{i^{-}}^{r}=0)1)k_{i}$ ,

which we denote by $K$ . Thus, $N=G/K$ becomes an $(r+1)$-symmetric space. We define

a map $\psi:Marrow N=G/K$ by

$\psi(x)=((V_{0})_{x}, (V_{1})_{x},$ $\cdots,$ $(V_{r})_{x})$ , for $x\in M$

Then, $\varphi=p\mathrm{o}\psi$ . We have the following :

Proposition 2.1 $([\mathrm{U}1])$ . $A^{V\cdot,V^{\perp}},$ is $[\mathcal{G}_{1}]$ -valued for $i=0,$ $\cdots,$ $r$ . Moreover, $\psi$ is a primitive

harmonic $\mathrm{m}ap$ .

In fact, take $\psi(x)(x\in M)$ as the base point of $N$ . Then, we see that $AdQ(A_{/}^{V_{1},V^{\perp}})=$

$\zeta A_{/}^{V:,V^{\perp}}:$ . Moreover, since

$\psi^{*}\beta(\partial/\partial_{Z})=\sum_{=i0}^{r}A/Vi,V_{i}\perp$ ,
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we find that $\psi$ is a primitive harmonic map. Therefore, it remains to know the answer to

the question ”When is $\psi^{*}\beta’\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}_{\mathrm{S}}\mathrm{i}\mathrm{m}\mathrm{P}^{\mathrm{l}\mathrm{e}}$ ?”.

3. Statement of results

Let $\varphi$ : $Marrow G_{k}(\mathrm{C}^{n})$ be a non-superminimal harmonic map with strong isotropy

order $r$ . Let $\psi$ : $Marrow N=G/K$ be a primitive harmonic map obtained by lifting $\varphi$

to an $(r+1)$-symmetric space $G/K$ as in Section 2. We define the first return map $A^{FR}$,
of $\varphi$ as in Section 1. Then, our idea to settle down the question raised at the end of the

previous section is to link the semisimplicity of $A^{FR}$, with the semisimplicity of $\psi^{*}\beta’$ . In

fact, we have a following answer :

Lemma 3.1 $([\mathrm{U}1])$ . If $A^{FR}$, is semisimple and invertible, then $\psi^{*}\beta(\partial/\partial z)$ is semisimple.

By Theorem 2.1, Proposition 2.1 and Lemma 3.1, we have the following theorem:

Theorem 3.1 $([\mathrm{U}1])$ . Let $\varphi$ : $T^{2}arrow G_{k}(\mathrm{C}^{n})$ be a harmonic map. If the first $ret$urn
$m\mathrm{a}pA^{FR}$, for $\varphi$ is semisimple and invertible on a dense subset of $T^{2}$ , then $\varphi$ is covered by

a primitive harmonic map of finite type into $SU(n)/S(U(k)\cross\cdots\cross U(k)\cross U(n-rk))$,

where $r$ is the strong isotropy order of $\varphi$ .

Using Theorem 3.1, we may obtain some answers to the problems of constructing

harmonic two-tori in complex Grassmann manifolds and quaternionic projective spaces.

Before stating our resuls, we give some definitions:

Definition. Let $\varphi$ be a harmonic map with harmonic sequence $\{V_{i}\}$ of the bundles,

where $V_{0}=V(\varphi)$ .
(1) If $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{1}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{0}$, then $V_{0}$ is obtained from $V_{1}$ by $V_{0}={\rm Im} A^{V_{1},V_{1}},,\perp$ In general,

if $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{i}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{0}$ , then $V_{0}$ is obtained from $V_{i}$ by the successive applications of this

procedure. In this case, we say that $V_{0}$ is obtained from $V_{i}$ by the fiag transforms.
(2) If $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{1}<\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{0}$ , then there is a rank $s$ anti-holomorphic subbundle $F$ of $(V_{1}\oplus$

${\rm Im} A_{/}^{VV^{\perp}},1)1)\perp$ , where $s=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{0}-\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{1}$ , such that $V_{0}=F\oplus{\rm Im} A^{V_{1},V_{1}},,\perp$ Conversely,

any harmonic map $\varphi$ with reducible $A^{V_{0},V_{0^{\perp}}}$, is constructed from a harmonic map $\psi$ with

$V_{1}=V(\psi)$ in this way. In this case, we say that $\varphi$ is obtained from $\psi$ by the extension.
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For example, if there is a positive integer $k$ such that $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{i}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{0}$ for $i=$

$1,$ $\cdots,$ $k-1$ and $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{k}<\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}V_{0}$, then $V_{k-1}$ is obtained from $V_{k}$ by the extension and $V_{0}$

is obtained from $V_{k-1}$ by the $(k-1)$-times flag transforms.

Theorem 3.2 $([\mathrm{U}1]).$ L.et $\varphi$ : $T^{2}arrow G_{2}(\mathrm{C}^{4})$ be a weakly $co\mathrm{n}$

.
formal non-supermi-

nimal hamonic map. Then, either $\varphi$ is constructed from a harmonic map into $\mathrm{C}P^{3}$ by

extension and flag transforms or $\varphi$ is of finite type.

Theorem 3.3 $([\mathrm{U}1])$ . Let $\varphi$ : $T^{2}arrow G_{2}(\mathrm{C}^{2}n)$ be a harmonic map with sirong isotropy

order $n-1$ . If $\varphi$ has isotropy order $\geq n$ , then either $\varphi$ is constructed from a haxmonic

map into $\mathrm{C}P^{2n-1}$ by extension and flag transforms or $\varphi$ is of finite type.

Example. Suppose that $d=1$ and $\xi_{0}=\lambda^{-1}\eta_{-1}+\lambda\eta_{1}$ , where $\eta_{1}=$ ( $\mathrm{o}_{2}J$ ) with

$J=$ ( $-\sqrt{-1}0$). Then, $\eta_{-1}={}^{t}\eta_{1}$ and $[\eta_{1}, \eta_{-1}]=0$ .
$\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s},.F=\exp(z\eta 1)\exp(\overline{Z}\eta-1)$

and $\varphi=\pi \mathrm{o}F$ is a weakly conformal non-superminimal harmonlc map of a square torus

into $G_{2}(\mathrm{C}^{4})$ .

Next, let $\eta_{1}=$ ( $\sqrt{-1}I2$ $\sqrt{-1}I_{2}0_{2}0_{2}$ $0_{2}0_{2}J$ ). Then, $\eta_{-1}={}^{t}\eta_{1}$ and $[\eta 1, \eta_{-1}]=0$ . Thus,

$F=\exp(z\eta 1)\exp(\overline{z}\eta_{-1})$ and $\varphi=p\mathrm{o}\pi \mathrm{o}F$ is a non-superminimal harmonic map of a

square torus into $G_{2}(\mathrm{C}^{6})$ which has strong isotropy order 2 and isotropy order $\geq 3$ .

For harmonic tori in quaternionic projective space $\mathrm{H}P^{n}$ , we may apply Theorem 3.1

and obtain some results. Let $J$ : $\mathrm{C}^{2n}arrow \mathrm{C}^{2n}$ be the conjugate linear map given by left

multiplication by a unit quaternion, where we use an identification $\mathrm{C}^{2n}\cong \mathrm{H}^{n}$ . We regard
$\mathrm{H}P^{n-1}$ as the totally geodesic submanifold of $G_{2}(\mathrm{C}^{2n})$ as follows :

$\mathrm{H}P^{n-1}=\{V\in G_{2}(\mathrm{C}^{2n})|V=JV\}$ ,

that is, the set of all complex 2-dimensional subspaces of $\mathrm{C}^{2n}$ which are closed under the

action $J$ .

Definition. Let $\varphi$ : $Marrow \mathrm{H}P^{n-1}\subset G_{2}(\mathrm{C}^{2n})$ be a harmonic map. We say that $\varphi$ is a

quaternionic pair by the fiag transforms of $\psi$ if there is a harmonic map $\psi$ : $Marrow \mathrm{C}P^{2n-1}$
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and an integer $k$ such that
$V(\varphi)=V_{k}(\psi)\oplus JV_{k}(\psi)$ .

Now, our results are the following:

Theorem 3.4 $([\mathrm{U}2])$ . Let $\varphi$ : $T^{2}arrow \mathrm{H}P^{2}\subset G_{2}(\mathrm{C}^{6})$ be a non-superminimal $h$armonic

map of a two-torus. Then, either $\varphi$ is a quaternionic pair by the flag transforms of a

harmonic map into $\mathrm{C}P^{5}$ , or $\varphi$ is covered by a primitive harmonic $m\mathrm{a}p$ of finite type into
$\mathrm{H}P^{2}$ or $Sp(3)/Sp(1)\cross U(2)$ according as the isotropy order of $\varphi$ is one or two, respectively,

where $U(2)$ is embedded in $Sp(2)$ by $Aarrow(_{0}^{A}$ $\frac{0}{A})$ .

Theorem 3.5 $([\mathrm{U}2])$ . Let $\varphi$ : $T^{2}arrow \mathrm{H}P^{3}\subset G_{2}(\mathrm{C}^{8})$ be a non-superminimal $h$armoni$c$

map of a two-torus. If the strong isotropy order of $\varphi$ is odd, then $\varphi$ is covered by a primitive

harmonic map of finite type into $\mathrm{H}P^{3}$ or $Sp(4)/Sp(1)\cross Sp(1)\cross U(2)$ according as the

strong isotropy order of $\varphi$ is one or three. If the strong isotropy order of $\varphi$ is even, then $\varphi$

is obtained by either of the following methods :

(1) If $\det(A^{FR})\neq 0$ , then $\varphi$ is covered by a primitive harmonic map of finite type into

$Sp(4)/Sp(1)\cross Sp(1)\cross U(2)$ .
(2) If $\det(A^{FR})\equiv 0$ , then either $\varphi$ is a quaternionic pair by the flag transforms of a

harmonic map into $\mathrm{C}P^{7}$ , or $\varphi$ is obtained from $\varphi_{1}$ : $T^{2}arrow G_{2}(\mathrm{C}^{8})$ , which has strong

isotropy order 3 and satisfies $V_{-1}(\varphi_{1})=JV(\varphi_{1})$ , by the backward replacement. Moreover,

$\varphi_{1}$ is obtained by either of the following methods : (2-1) $\varphi_{1}$ is covered by a primitive

harmonic map offinite type into $SU(8)/S(U(2)\cross U(2)\cross U(2)\cross U(2)),$ $(\mathit{2}- \mathit{2})\varphi_{1}$ is obtained

by the forward replacement from some $\varphi_{2}$ , which is quaternionic and $\Lambda$as strong isotropy

order 3 and is covered by a primitive harmonic $m\mathrm{a}p$ into $Sp(4)/Sp(1)\cross s_{p}(1)\cross U(2),$ $(\mathit{2}- \mathit{3})$

$\varphi_{1}$ is obtained from a harmonic $m\mathrm{a}p$ into $\mathrm{C}P^{7}$ by the extension and Bag transforms.

Remark. Any non-superminimal harmonic map $\varphi$ : $T^{2}arrow \mathrm{H}P^{n-1}$ with odd isotropy

order has the first return map of the following form : $A^{FR},=aI_{2}$ with $a$ non-zero on a

dense subset of $T^{2}$ . Hence, Theorem 3.1 implies that $\varphi$ is of finite type.
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