Monoids with finite (regular) complete presentation

東邦大理 小林美治 (Yuji Kobayashi)

京都産業大理 勝良昌司 (Masashi Katura)

If a monoid is defined by a finite complete rewriting system, then it has some good properties such as solvability of the word problem (see [1]). So, it is an important problem to find good conditions for monoids to have finite complete presentation.

A rewriting system over a (finite) alphabet Σ is a subset R of $\Sigma^* \times \Sigma^*$. An element (u, v) of R is called a rule and written u \rightarrow v. A word x $\in \Sigma^*$ is rewritten to y $\in \Sigma^*$ under R, if x = x_1ux_2 , y = x_1vx_2 for some x_1 , $x_2 \in \Sigma^*$ and some u \rightarrow v \in R. In this case we write x \rightarrow_R y. The reflexive transitive closure and the reflexive symmetric transitive closure of the relation \rightarrow_R is denoted by \rightarrow_R^* and \leftrightarrow_R^* , respectively. The quotient monoid M = $\Sigma^*/\leftrightarrow_R^*$ is a monoid presented by (Σ , R).

A subset S of Σ^* is called <u>s-closed</u>, if any subword of an element of S is also in S, equivalently, if the complement of S forms an ideal of Σ^* . S is s-closed if and only if S is expressed as

$$S = \Sigma^* - \Sigma^* T \Sigma^*$$
 (1)

with a subset T of Σ^* . A set S is <u>finitely s-closed</u> if S is expressed as (1) with a finite set T, or equivalently, S is the complement of a finitely generated ideal.

Proposition 1. For an s-closed subset S of Σ^{\bigstar} the following are equivalent.

- (1) S is finitely s-closed.
- (2) There is a positive n such that any subword of length \leq n of x \in Σ^* is in S, then x is in S.

Corollary. A finite s-closed set is finitely s-closed.

Let $R \subset \Sigma^* \times \Sigma^*$ and let $M = M(\Sigma, R)$ be the monoid presented by (Σ, R) . A subset S of Σ^* is a <u>transversal</u> for M (or for (Σ, R)), if S forms a complete set of representatives for M, that is, for any $x \in \Sigma^*$ there is a unique $\hat{x} \in S$ with $x \leftrightarrow \hat{x}$.

M has a <u>complete presentation</u>, if M is presented by (Σ, R) such that R is a complete (i.e. noetherian and confluent) rewriting system.

Proposition 2. If a monoid has a finite complete presentation, then it has a finitely s-closed transversal.

We are interested in the converse problem of this results.

Problem 1. If a monoid has a finitely s-closed transversal, does it admit a finite complete presentation ?

Proposition 3. Let $S = \Sigma^* - \Sigma^*T\Sigma^*$ be an s-closed transversal for M, and let $R(T) = \{u \to \hat{u} | u \in T\}$. If R(T) is noetherian, then R is a complete system defining M.

Unfortunately, the system R(T) given above is not always noetherian even when S is finitely s-closed and T is chosen minimally.

Example 1. Let $\Sigma = \{a, b\}$ and $M = M(\Sigma, E)$, where

 $E = \{(baab, aba)\} \cup \{(x, y) \in \Sigma^* \times \Sigma^* | |x| = |y| = 4\}.$

Then M is a finite monoid with finite s-closed transversal

 $S = \{x \in \Sigma^* | |x| \leq 3, x \neq aba\} \cup \{baab\}.$

A set T with which S is expressed as (1) must contain the rule

aba. Hence, R = R(T) contains the rule aba \rightarrow baab. Thus $abaa \rightarrow_R baaba \rightarrow_R babaab \rightarrow_R bbaabab \rightarrow_R bbaabab \rightarrow_R \cdots,$ and R is not noetherian.

If M has a transversal $S = \Sigma^* - \Sigma^* T^*$ with T a singleton, then we expect that the system R(T) would be noetherian, and M would admit a complete one-rule system.

Problem 2. Suppose M has a transversal S of the form $S = \Sigma^* - \Sigma^* v \Sigma^*, \ v \in \Sigma^*.$ Is the one-rule system $\{v \to \hat{v}\}$ noetherian ?

A system R is $\underline{\text{regular}}$, if the left hand sides of the rules from R forms a regular set (see [2]).

Theorem 1. Suppose M is presented by a regular complete system (Σ , R). Then,

- (1) M has a regular sets of representative.
- (2) Irr(R) grows either exponentially or polynomially.
- (3) If Irr(R) grows exponentially, then the monoid M = $M(\Sigma, R)$ also grows exponentially and contains a free submonoid of rank 2.

Problem 3. Does M have a regular complete presentation, provided M has a regular s-closed transversal?

A system (Σ, R) is <u>polynomially mild</u>, if there is a polynomial f such that $|y| \le f(|x|)$ for any $x \in \Sigma^*$ and y such that $x \to y$.

Theorem 2. If (Σ, R) is a polynomially mild regular complete system such that Irr(R) grows polynomially, then the monoid M = M(Σ , R) grows polynomially.

In theorem 2, the mildness of R cannot be removed. In fact, M can grows exponentially in general, even if Irr(R)

grows polynomially.

Example 2. Let Σ = {a, b} and R₁ ={abb \rightarrow ba}, R₂ = {ba \rightarrow abb}. Then, the both R₁ and R₂ are complete and define the same monoid. However, $Irr(R_1)$ grows exponentially, while $Irr(R_2)$ grows polynomially. So, the system R₂ is not mild.

There is a monoid with a very simple presentation which never admits a finite complete presentation.

Example 3. Let Σ = {a, b} and R = {b²a \rightarrow ab², ab³ \rightarrow b³, b³a \rightarrow b³}, then M = M(Σ , R) has no finitely s-closed transversal. So, M has no finite complete presentation.

References

- [1] K. Madlener and F. Otto, About the descriptive power of certain classes of finite string-rewriting systems,
 Theoret. Comp. Sci. 67, (1989), 143-172.
- [2] Y. Kobayashi, A finitely presented monoid which has solvable word problem but has no regular complete presentation, to appear in Theoret. Comp. Sci.