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1 Introduction

The motion of a relativistic perfect fluid in the Minkowski space-time is
governed by

9 (p+p » 3.0 (pP+p

5;('—1’- E_:(’)— 2 _ 2k =0,

9 PC‘+ v 3.0 pc2+p I
af( ) 23” 2 _ S5tk +pby. | =0, i=1,2,3.

Here ¢ denotes the speecl of light, p the pressure, (v, vy, v3) the velocity of the
fluid particle, p the mass-energy density of the fluid (as measured in units of
mass in a reference frame moving with the fluid particle) and v* = v +v3+03.
The fluid is assumed to be bartropic, which means that the equation (1.1) is
to be supplemented with the equation of state

(1.2) p =p(p),

where p(p) is a given function of p only.

For the case of one space dimension, Smoller and Temple [7] constructed
global weak solutions to (1.1) for the isentropic case p(p) = a?p with 0 < a <
¢, and Chen [1] for the case p(p) = a®p” witha >0 and y > 1.

In our previous paper [6], the existence of local smooth solutions was
proved for three space dimensions, with p(p) = a?p, 0 < a < c. Our objective
here is to extend this results to the general equation of state (1.2), under the
sole assumption that

p(p) € C=(ps, p™), ,
p(p) >0, 0<p(p)<c® for p€(pup”),

(1.1

(1.3)



where p. and p* are some constants such that 0 < p. < p* < 2. Note that
if p(p) = a?p7. then p. = 0 while p* = 5¢ if 3 =1 and p* = {?/(ya®)}/0-1
if7>1.

We consider the initial value problem to (1.1) with the initial condition

' /)|t=0 == pU(I)v
(14) { ('i|t=0 = 1!01-(;1,‘), | = 1,2,3.

The main result of this paper is,

Theorem 1.1. Assume (1.3) for p(p). Suppose that the initial data py and
(vo1. o2. vo3) belong to the locally umfm m Sobolev space H:, = H(R3), s
3. ([3]) and that there exist a positive constant 6 sufficiently small so that

pet+ 6 < plx) < pt =6,

'l'g(il‘) = 1’31( ) + 107( r) + 1’03( r) < (1 - 5)(‘2,

hold for all v € R3. Then, the Cauchy problem (1.1), (1.2) and (1.4) has a
unique solution satisfying

(1.5) (p.v1,v9.13) € L=(0,T; HS) N C([0,T): Hy,.) N CH[0,T): HY),
with p. < p(x.t) < p* and v*(x.t) < ¢, and moreover,

(1.6) (p.v1. 9 v3) € C[0,T); HET) N CH[0,T); Hi ey,

ul

for any e > 0. HereT > 0 depends only on 6 and the HS,—norm of the initial
data.

As in [6], we shall prove the theorem by symmetrizing (1.1) and apply-
ing the Friedlichs-Lax-Kato theory [3], [5] of symmetric hyperbolic systems.
According to Godunov [2], a suitable symmetrizer can be constructed if a
strictly convex entropy function exists. In §3, it is shown that such an en-
tropy function exists for (1.1), and in §2, the symmetrizer it induces is dis-
cussed. Finally in §4, the non-relativistic limit of the solutions to (1.1) as
¢ — ¢ is shown to be a solution of the non-relativistic Euler equation with
the same equation of state (1.2).
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2 Symmetrization

Theorem 1.1 can be proved if there is a change of variables

(2.1) 2= (p,v1,09,03)" — w = (ug, wr, uz, uz)",

which reduces the system (1.1) to a system of the form

y 3
(2.2) 40() 2 ZA”(u)—a—u— =0,
— Br(

— +
a o
whose coefficent matrices A*(u), a = 0,1, 2, 3, satisfy the condition

(2.3) (i) they are all real symmetric and smooth in u, and
' (i) A%u) is positive definite.

The system (2.2) satisfying (2.3) is called a symmetric hyperbolic systém,

see [3], [5]. We claim that for (1.1), one of such changes of variables is given

by

ALK e?P 5
2.4 ] T Th@ep@-oir T
( ¢ ) C-I\—e¢(p)
u; = 5 s——anlie J =123,
(pc + p)( = v?)1/2
where .
(2.5) o) = [ —r—dp. K=+ 0p)
5 =[] —5———dp, Kk = ,
o0 = | m ™ p+p(p

p being an arbitrarily fixed number in (p., p*). The derivation of (2.4), based
on the idea of Godunov [2], will be presented in §3. Here we shall check the
condition (2.3). To this end, we shall find the matrices A%, a = 0,1,2, 3.
explicitly. First, note from (2.4) that

4
2 ¢ 2 2 2 2 2
U = ————=u", U = uj + u;5 + us.
((_2 _ 1(0)2 ’ 1 2 3

Substituting this into the first equation of (2.4) and putting

Kedr)

2. ®(p) = ——,
(20) () pct + plp)
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we get
1 . . 5 91
(2.7) B(p) = S((* = up)? = u?)'/2

Since ®'(p) = —LKp/'(p)e®” [(pc* 4+ p)? < 0 from (2.5) and (2.6), (2.7) can be
solved uniquely for p € (p., p*) provided

(2.8) <I>(p*—0)'2<(1—'l(f+§)2—"(f;<<I>(p*+0)'2.
Thus, the map (2.1) defined with (2.4) is a diffeomorphism from
(2.9) Q.= {p.<p<p v’ <c?

onto

(2.10) Q. = {ug <, (2.8) holds.}.

After a straight but tedious computation, we find the coefficients A%(u) =
(43, ). a,p,7=0,1,2,3, as follows :

A%, p), Al =A% = A, T(p);,

p)’l’,'Uj + .44\11([))6,7', .

p), Al = Al = A3¥(p)vive + AsU(p)die,
)

pvivive + AgP(p)(vibje + vi0i + vebyj),

S
0ol

4,9(
. Ajj A3 (
(2.11) M 4,0
4,

for ¢,5,( =1,2,3, where
1

U(p) = —(pc* + p)’e™*7),
K
and . . .
4 = At + 3p'v? A, = 420+ pl?
LT B — 2P T By (= 232
. A+ 3y 1
(2.12) Ay = (e — 232’ A= (2 — v/’

T oo(p + )@ = )
These coefficents can be calculated by the chain rule and the formula
A 0 A
9 _ Zy(p) p _ A4

= 2= g,
dug Yo Bu iV (),
i awipy 2 C 2agup)e, ij=1,2.3
8'110 - 6 p i auj - <16 p ijo ’a.} — L1, 4,9,
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with
. (¢ — v2)1/2

— Ap +p)’

It is clear from (2.11) that the matrices .A%(u) are all real symmetric and
smooth in ., and hence in Q,. To see that .A%w) is positive definite, let
= = (&.€)T € R* be a 4-vector with £ € R3?. We should calculate the inner
product

(A%u)Z | Z) = U(p){ A1€3 + 2A:60(v]€) + Az(v]€)? +A4§ )

A; being those in (2.12). In the same Way as in [6], we can get an estimate

(2.13) (A°Z|2) > =(ro&] + KE?).

N =

with
(= o)1 (c = ) ¥ p)
A(Av? + 2(’- v + )
(¢ = v*)'2(c* = p'v*)¥(p)
A3(ct + 3v%)

which implies that (2.3)(ii) is also satisfied in 2, since (1.3) is fulfilled. Thus,
(2.2) with (2.11) for the elements of the matrices A%(u) is a symmetric hyper-
bolic system, which entails the existence of smooth local solutions to (2.2),
thanks to the Friedrichs-Lax-I{ato theory [3],[5]. Since (2.4) is a diffeomor-
phism, we can go back from(2.2) to the original system (1.1) to conclude
Theorem 1.1.

Ro =

k)

3 Strictly convex entropy function

In this section, we shall follow Godunov [2] and explain how to find out the
change of variables (2.4). First of all, we rewrite (1.1) in the form of the
conservation laws,

(3.1) wy; + Z (w) 0,
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where w = (wg, wy. we, w3)T and fF(w) = (wi, fF, f5, f5)7T are defined by

Y o N S e B
(3.2) ’ ek C AN R
) " ¢+ p
' fi= ——/:2 — 1]2 Uit + phin.

A scalar fuction n = n(w) is called an entropy function to (3.1) if there
exist scalar functions, ¢* = ¢*(w), k = 1,2,3, satisfying

(3.3) Doi(w)Dy f¥(w) = DygF.
Then, the symmetrizing variable u can he given by
(3.4) u=(D.n)7.

For the detail, see Godunov [2] or Kawashima-Shizuta [4].

Now, we shall solve (3.3). To this end, it is convenient to employ z =
(p, 1, U2, v3), instead of w of (3.2), as the independent variables in (3.3). This
is possible since D.w is regular;

(pc +p)(c! = v*p))

det D.w = (@ — 09 > 0,
which comes by noting
o _p I _p.
Op 8'0,- /
(3.5) ow; ow;
P Bsu;, 0, Byv;v; + Bybyj,
where 5y 2pc® 4 p)
_c+p p _ 2(pct+p
e A
2+ pt +p
Bs = 2 — 2 B, = 2 — 2

Thus the mapping : — w is a difffomorphism in a neighbourhood of each
point of Q.. Moreover, using (3.5), we get

(3.6) (D.w)™ = (€a3)as=0123



as

€op = C (C v® )El, €o; = —2(_2E117j,

€io = — 2(( +]) )E]E)l,, €ij = 2])’E1E2'27,jl’j + Egé,qu
with

£ 1 E 2 —?
PTE ey TP p 4y
In view of (3.2) and (3.6), (3.3) can now be rewritten as

(3.7) D.nC* = D.¢*, k=1,2,3,
where

Ct = (D.w)™'D. f* = »3)01 3=0,1.2.35

are given by

ko = ECroy, oy = —CCyviv + Cabyj,
ki = Cabiy  ¢f; = Cavibyy + vidiy,
with ) i
€= ¢ —pv_ C2_1>(C~+)")
(3.8) . p}’ D o ’(’c_ Z,Q).
' ('4 -2 A — o2

Let us solve (3.7) for (1,¢". ¢%,¢®). A quick count shows that (3.7) cos-
titutes 12 equations for 4 unknowns, that is, it forms an over-determined

system. We shall look for the solution of the form

(3.9) n=H(p,y), ¢ =Qpyv,

where
.) D < b
y=uv-= 'uf + 175 + ’U'%.

This ansatz reduces (3.7) to the following system of first order linear partial

differential equations;
(3.10) H,=Q,,

(3.11) czCal+2C2(—C1y+1)Hy ’—‘Qp,
(3.12) C3H, — 2C4yH, = Q,
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C; being as in (3.8). Seemingly, we have still an over--determined system.
However, making (3.11) x (pc + p) — (3.12) x (¢ — p') and using (3.10), we
get a single equation for Q:

(3.13) 2~ YpQy = (0 +0)Q, — (¢ = 1)Q.

On the other hand, it follows from (3.10) that there should exist a function
G = G(p) of p only such that

H = Q(p,y) +G(p).

 Substitution of this into (3.11), together with (3.13), then yields

2 2
A-y  E-y
.pG”ZpC'2+pQ— 2 Q@
or putting ¢ = (¢ — )@,
1 1
3.14 T, = - —=(,-
( ) p pC‘Z +pq 2 Qv

Since the left hand side of (3.14) is a function of p only, ¢ must be of the
form

(3.15) ¢ = e*?[g(p) + h(y)],

where ¢(p) is as in (2.5) while g and h are arbitrary functions. Substituting
(3.15) into (3.13) and separating the variables, we have

dh

2
pc+pdg o — constar
o dp g=2(c"— y)—(E + h = constant,
which can be easily solved as
q = e*P[R (- y)/2 + Ret)

(3.16) = Ki(2 —y) 2P + Ky(pc® + p),

where R;’s are integration constants and

, r Pp)
wip) = [ ———dp
(3.17) 0 =, f""z+p(”)(~p+ (0)
_ pet +plp
o(p) + log 3T o)

I
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p being as in (2.5). Now, (3.14) combined with (3.16) gives G' = —Kyp'/c?,
so that

. K:
(3.18) G= ——%}1)—}-[{3,
L3 being also an integration constant. In view of (3.16) a11(1v(3.18‘), we get
— — I‘—l é(p) P(’ +]) ])
(3.19) n=H= CEDE + K 22 + I3,
: — Ky é(p) L 2
(3.20) Q= @ 11’2)1/26 + o U_Z(pc + p).

For the later purpose, we wish to choose the constants K, j = 1,2,3,
so that (3.19) converges, as ¢ — 00, to the entropy function for the non-
relativistic case,

(3.21) n'>) = —pv + /p @ _

which can be obtained exactly in the same way as (3.19). In view of (3.17),
®(p) of (2.6) equals e~¥(”) g0 that it can be expanded for large ¢ as

for each fixed p € (p., p*). Insert this into (3.19) to deduce

,0‘+'P/C {CI\l IX’Z

(1 —v2/c2)\/? —v2/c2)\/2
fn/'izz é_l () !:2£+1\
ck p K 5

w hele K is as in (2.5). Therefore, the right choice is found to l)e
K, = —clk, K, = (."', I\g =0,

with which (3.19) becomes

: ,
(3.22) pe - B o 2 (pc +p_ g)_

(2 — p2)1/2 2 —12 2
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The change of variables (2.4) was derived from (3.22) via the formula (3.4)
or
u = ((-D:'u’)T)_l(l):n)Tq

combined with (3.6). Since the matrix A%(u) is positive definite in 2, as was
shown in the preceding section, the entropy function (3.22) is strictly convex
there.

4 Non-relativistic limit

In order to study the limit ¢ — oo, we consider ¢ > ¢ with a fixed ¢g
sufficiently large and assume, without loss of generality, that (1.3) is satisfied
for all ¢ > ¢p with the same constants p,. and p*. For the sake of simplicity,
we discuss only the case p* < oc. The case p* = oo can be treated similarly.
Given 6 > 0 sufficiently small, define

(4.1) Q.(8,c0) = {pa+6<p<p =06, 0® <(1-8)cG)
Firstly, note that (2.4) is a diffeomorphism from the domain (4.1) onto
2
. (R u
Qu(b.co,0)= {up<c? (1—=)P = —5———2>0,

(4.2) ’ o -2 (1 - 6)

: . ug., U -

Dp =8 < (1= 5)° — 5 < @(p. + 67},

cf. (2.9) and (2.10). Secondly, the matrices A%(u«) and all of their derivatives
are uniformly bounded in the domain (4.2). Moreover, r¢ and ~ in (2.13) are
bounded away from zero uniformly there, as seen from

N 4 —2
M=y + O™,
k=p+0(c?).

This means that the Friedlichs-Kato-Lax theory applies for (2.2) uniformly
for all ¢ > ¢y. Go back to (1.1), which is possible due to the diffeomorphism
(2.4), to conclude

Theorem 4.1. Let s > 3. For any fized My, co > 0 sufficiently large and
bo > 0 sufficiently small, there exist positive constants M and T such that
for any initial =9 = (po, Vo1, Vo2, Yo3) € HY, satisfying

zollms, < Mo, zo(x) € Q(bo, o) for any z € R?,
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and for any ¢ > co. the Cauchy problem (1.1).(1.2) and (1.4) possesses a

unique solution = = (p, vy, ve, v3) belonging to the class (1.5),(1.6) and satis-

fying _ '
l=()llas, < M, =(t, ) € Q.(80/2, o) for any z € R?,

for almost all t € [0,T).

Let us show that the solutions = thus obtained converge as ¢ — 0o to the
solution of the non-relativistic Euler equation,

0 3.0
£+Zakm”_0
(4.3) 3
pz' Z m'z'k +pbin) =0, i=1,2,3,

with the same intial z;.
The symmetrizing variables for (4.3) associated with the entropy function

(3.21) are given by ‘
1. P dp
(o0) __ 2
u = —=0"+ / -,
0 2 pop
=y, §=1,2,3,
and the resulting system is

(4.4)

(4.5) ’_100)0( (00) (°°)+ZA(00)( (00)) (JC;G) =0,
=1
with p P
R
D i
(50)0 ﬁ

= —uv; +p6u,
i

for the matrix elements of A% and so on. Between the transformations
(2.4) and (4.4), it holds that

u(z) = ul™(z) + O(c™?),
A% (u(2)) = A (W =)(2)) + O(c=2), a=0,1,2,3,

uniformly for ¢ > ¢y and =z € Q.(6y/2, ¢o), which implies, together with the

- uniform properties stated before Theorem 4.1 and by the arguments in [6],
the uniform convergence of the solutions u of (2.2) to the solution of (4.5).
Again we can go back to (1.1) and conclude
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Theorem 4.2. Let s > 3. Then, as ¢ — >c, the solution = of (1.1),(1.2)
and(1.4) given in Theorem 4.1 converges to the solution =\ to (4.3) with
the same initial data. umfmmly on the time interval [0,T] with T s’pemﬁed
in Theorem 4.1, strongly in H.; ¢ for any € > 0.
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