0000000000
9150 1995 0 218-224 218

An Experimental Study of the Starting Values
of the Durand-Kerner-Aberth Iteration

Kazufumi OZAWA (T =)
Education Center for Information Processing
Tohoku University
E-mail: ozawa@dais.is.tohoku.ac.jp

1 Introduction

When solving non-linear equations by iterative methods the number of iterations depends
greatly on the starting values. In this note, we will present some simple procedure to
determine the starting values which reduces the number of iterations of the Durand-
Kerner-Aberth method for solving algebraic equations.

2 Convergence of Durand-Kerner iteration

Let us consider the algebraic equation

p(z) — aozn _+_ alzn—l + o0+ a, = ao(z — al) . e (Z — Oén) = 0‘ (1)
The Durand-Kerner-Aberth (in short D-K-A) iteration [1] for solving the equation (1) is
given by
Z:IZi+Ai, t=1,---,n, (2)
where ,
1—p(z)/p'(2) D (2 — 2)7"
j=1
i

The D-K-A iteration is known to converge with a cubical order of convergence when the
starting values are sufficiently close to the solutions. To derive the procedure for obtaining
“good” starting values of the D-K-A method we investigate the behaviors of z;’s before
they converge with the cubical order of convergence.

We now suppose that after the several iterations many of the approximate solutions
z; (1 = 1,...,n) are in small errors but the remainders are in large errors. To be more
specific, suppose that the set of the indices N = {1,...,n} can be divided into the two
sets Ny and Ny according to the sizes of the errors, i.e., that for the two sets of indices

No={1,---,n—m}, y={n—-m+1,---,n}, N=NyUDMN,

where 0 < m < n, the errors ¢; = 2; — «; (i = 1,...,n) of the approximate solutions
satisfy the condition
_J O(p), i€ N,
€= { O(pl), ’L € N], (4)

where py and p; are the positive constants such that

0<pp<Kp, 0<p <1
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Suppose, moreover, that the minimum distance of the approximate solutions in each group
is relatively large compared with py and py, i.e., that the distances Dy and D, defined by

Dy = min |z, — z;|, D; = min |z — 24
0  ijENg l v ]|’ 1 ijEN] l t Jl
i i#j

satisfy that
0<Cc):[)()l)a1 <1, O<C1:p]D1—1 < 1.

Under these assumptions we have the following result for the errors e} of the next step[3]:

er = O(p}), i € N, -
1] < (m—1) & (1+0(c1)) lesl + O(po), i € Nu. (5)

We can conclude that:
e Each of the approximate solutions belonging to the group NNy converges quadratically.

e On the other hand, if (m — 1)¢? < 1 then the rate of convergence of each member of
the group N; is not quadratic but linear. In particular, if m =1 then the error of
this group reduces up to the same order as that of the group M.

The result above suggests that it is more advantageous to start the D-K-A iteration
with the set of starting values such that the number of starting values with small errors
are large. Consequently, if we specify the starting values on the circle centered at the
average of the roots then it is better to take the circle with a moderate radius.

Thus, the author recommends the following set of the starting values: '

2m(i — 1 3 :
zfo):ﬂ—!-rgmexp[v—l(%——)—k ):|7 i:1,~-,n,, (6)

2n

where (§ is the arithmetic mean of the roots and 7, is the geometric mean of the deviations

o, — Bl (i=1,...,n):
. 1/n

p(B)

- T m
3 g aO

Note that the set of the starting values (6) is much more easily calculable than is the
Aberth’s one.

3 Numerical experiments

3.1 Equation with random coefficients

In order to show the efficiency of our starting values, we solve 50 equations of degree 40
of the following types:

e The equation with random coefficients in the complex region (-5, 5) X (-5, 5), keeping
the leading coefficient ap = 1.

e The equation with the random roots in the complex region (—1,1) x (=1,1).

For each of the equations above, we compare the cpu-time of the D-K-A method with
that of the D-K(2nd order Durand-Kerner)[2] method and those of the other codes. This
experiment is performed on an ACOS 3900 computer using the double precision arithmetic
of FORTRAN 77. The results are shown in Table 1, 2.
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Table 1. Comparison of cpu-times(sec) for the equations with random coefficients.

mean

var (sec?)

max

min

DKA(A)
DKA(G)
DK (A)
DK(G)
DZPOCC
POLEQB

1.3535E-01
3.1951E-02
1.9623E-01
1.0323E-01
3.9729E-02
2.4044E-02

4.6503E-04
3.8267E-06
1.1468E-03
1.0335E-03
4.2467E-06
2.0510E-06

1.7749E-01
3.5896E-02
2.95614E-01
1.8930E-01
4.7141E-02
2.6911E-02

9.4884E-02
2.7601E-02
1.2931E-01
5.2254E-02
3.55602E-02
2.0076E-02

Table 2. Comparison of cpu-times(sec) for

the equations with random roots.

mean

var (sec?)

max

min

DKA(A)
DKA(G)
DK (A)
DK(G)
DZPOCC
POLEQB

1.0198E-01
4.1480E-02
1.4647E-01
5.4503E-01
3.9548E-02
1.9913E-02

1.7735E-04
8.8028E-06
3.9726E-04
1.0053E-01
4.2655E-06
6.6867E-07

1.4346E-01
4.8637E-02
2.0425E-01
1.5402E+00
4.5209E-02
2.1444E-02

8.1446E-02
3.6441E-02
1.1525E-01
2.6291E-01
3.6883E-02
1.8431E-02

DKA(A):

Durand-Kerner-Aberth method started with the Aberth’s initial value.

DKA(G): Durand-Kerner-Aberth method started with the initial values on the
circle centered with 3 radius rg,.
DK(A): Durand-Kerner method started with the Aberth’s initial value.
DK(G): Durand-Kerner method started with the initial values on the
circle centered with 3 radius Tgm-
DZPOCC: IMSL library.
POLEQB: NUMPAC library.

We can see that our procedure for the starting values works well for the Durand-Kerner-
Aberth iteration, but not so well for the Durand-Kerner iteration.

3.2 Costs of iteration

To measure the costs of the iterations we consider the two functions defined by

CAM = Ngo 3 _(ri = 1)%, (7)
i=1
CGM = Ny, Y (logr; —logr)?, (8)

=1

i = |ay — B, i=1,...,n

In Egs. (7) and (8) the constants N, and N, are chosen so that each of the functions
takes 1 as its minimum. One can easily see that the values of r at which these two cost
functions take their minimum are given by 74, and rg4y,, the arithmetic mean and the
geometric mean of r;’s, respectively.

In what is to follow, we solve the equations with given roots starting with the initial
values on various circles, and calculate the values of the cost functions and the number
of iterations for each of the circles.
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3.2.1 Equation with uniformly distributed roots

In this experiment we solve the equation of degree 40 with uniformly distributed ran-
dom roots in (0,1) x (0,1). The radii of the equation are r,, = 0.888, 74, = 0.388 and
Tgm = 0.342.
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3.2.2 Equation with uniformly distributed roots and with several large roots

In this experiment, as before, we solve the equation of degree 40 with uniformly dis-
tributed random roots in (0,1) x (0,1), but two of these are replaced with £100. The
radii of the equation are 74, = 100, 4, = 10.4 and r,,, = 0.461.
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'3.2.3 Equation with real roots

The equation solved in this experiment is the Legendre polynomial of degree 40.

radii of the equation are 74 = 3.73, roy = 0.635 and 74, = 0.949.
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From the experiments above, we can see that the geometric mean rg, approximates
well the radius r which minimizes the iteration for the various type of equations. On
the other hand, the arithmetic mean r,,, and the Aberth’s radius r,, does not necessary
approximate this radius. Therefore our procedure using geometric mean works well for
various types of the equations. A more detailed discussion is found in [3].
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