ON CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

M.NUNOKAWA and M. K. AOUF

布川 護 (群馬大学) M. K. Aouf (Univ. of Mansoura)

ABSTRACT. The object of the present paper is to derive several interesting properties of the class $P^*(n,\alpha,\beta)$ consisting of analytic and univalent functions with negative coefficients. Coefficient estimates, distortion theorems and closure theorems of functions in the class $P^*(n,\alpha,\beta)$ are determined. Also radii of close - to- convexity, starlikeness and convexity for the class $P^*(n,\alpha,\beta)$ are determined. Also modified Hadamard product of sevral functions belonging to the class $P^*(n,\alpha,\beta)$ are studied here.

KEY WORDS - Analytic, modified Hadamard product.

AMS(1991) Subject Classification. 30C45.

1. Introduction

Let S denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
 (1.1)

which are analytic and univalent in the unit disc $U=\{z: |z| < 1\}$. For a function f(z) in S, we define

$$D^{0}f(z) = f(z), \qquad (1.2)$$

$$D^{1}f(z) = Df(z) = zf'(z),$$
 (1.3)

and

$$D^{n}f(z) = D(D^{n-1}f(z))$$
 $(n \in N = \{1, 2, ...\}).$ (1.4)

The differential operator D^n was introduced by Salagean [3]. With the help of the differential operator D^n , we say that a function f(z) belonging to S is in the class $S(n,\alpha,\beta)$ if and only if

$$\left| \frac{\frac{D^{\mathsf{n}} f(z)}{z} - 1}{\frac{D^{\mathsf{n}} f(z)}{z} + 1 - 2\alpha} \right| \leq \beta \qquad (\mathsf{ne} \ \mathsf{N}_{\mathsf{O}} = \mathsf{N} \cup \{\mathsf{O}\})$$
 (1.5)

for $0 \le \alpha < 1$, $0 < \beta \le 1$, and for all $z \in U$.

Let T denote the subclass of S consisting of functions of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k$$
 $(a_k \ge 0).$ (1.6)

Further, we define the class $P^*(n,\alpha,\beta)$ by

$$P^*(n,\alpha,\beta) = S(n,\alpha,\beta) \cap T. \tag{1.7}$$

We note that, by specializing the parameters $n,\ \alpha,\ and\ \beta,$ we obtain the following subclasses studied by various authors:

- (i) $P^*(0,\alpha,\beta) = P^*(\alpha,\beta)$ (Srivastava and Owa [6]);
- (ii) $P^*(1,\alpha,\beta) = P^*(\alpha,\beta)$ (Gupta and Jain [2]);
- (iii) $P^*(0,\alpha,0) = P^{**}(\alpha)$ (Sarangi and Uralegaddi [4]);
- (iv) $P^*(1,\alpha,1) = T^{**}(\alpha)$ (Sarangi and Uralegaddi [4] and Al-Amiri [1]).

2. Coefficient Estimates

THEOREM 1. Let the function f(z) be defined by (1.6). Then $f(z) \in P^*(n,\alpha,\beta)$ if and only if

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} a_{k} \leq 2\beta (1-\alpha). \tag{2.1}$$

The result is sharp.

PROOF. Assume that the inequality (2.1) holds true and let |z|=1. Then, we have

$$\left| \frac{D^{n}f(z)}{z} - 1 \right| - \beta \left| \frac{D^{n}f(z)}{z} + 1 - 2\alpha \right|$$

$$= \left| -\sum_{k=2}^{\infty} k^{n} a_{k}^{2} z^{k-1} \right| - \beta \left| 2(1-\alpha) - \sum_{k=2}^{\infty} k^{n} a_{k}^{2} z^{k-1} \right|$$

$$\leq \sum_{k=2}^{\infty} (1+\beta) k^{n} a_{k}^{2} - 2\beta(1-\alpha) \leq 0.$$

Hence, by the maximum modulus theorem, we have $f(z) \in P^*(n,\alpha,\beta)$.

For the converse, assume that

$$\left| \frac{\frac{D^{n}f(z)}{z} - 1}{\frac{D^{n}f(z)}{z} + 1 - 2\alpha} \right| = \left| \frac{-\sum_{k=2}^{\infty} k^{n} a_{k} z^{k-1}}{2(1-\alpha) - \sum_{k=2}^{\infty} k^{n} a_{k} z^{k-1}} \right| < \beta.$$
 (2.2)

Since $|Re(z)| \le |z|$ for all z, we find from (2.2) that

Re
$$\left\{ \frac{\sum_{k=2}^{\infty} k^{n} a_{k} z^{k-1}}{2(1-\alpha) - \sum_{k=2}^{\infty} k^{n} a_{k} z^{k-1}} \right\} < \beta.$$
 (2.3)

Choose values of z on the real axis so that $\frac{D^n f(z)}{z}$ is real. Upon clearing the denominator in (2.3) and letting $z \longrightarrow 1^-$ through real values, we have

$$\sum_{k=2}^{\infty} k^{n} a_{k}^{2} \leq 2\beta(1-\alpha) - \beta \sum_{k=2}^{\infty} k^{n} a_{k}^{2}, \qquad (2.4)$$

which gives the required assertion (2.1).

Finally, we note that the assertion (2.1) of Theorem 1 is sharp, the extremal function being

$$f(z) = z - \frac{2\beta(1-\alpha)}{(1+\beta)k^{n}} z^{K} \qquad (k\geq 2).$$
 (2.5)

Corollary 1. Let the function f(z) defined by (1.6) be in the class $P^*(\alpha,\beta,\gamma)$. Then we have

$$a_{k} \leq \frac{2\beta(1-\alpha)}{(1+\beta)k^{n}} \qquad (k\geq 2). \tag{2.6}$$

The equality in (2.6) is attained for the function f(z) given by (2.5).

3. Further Properties of the Class $P^*(n,\alpha,\beta)$

Theorem 2. Let $0 \le \alpha < 1$, $0 < \beta \le 1$, and $n \in N_0$. Then

$$P^*(n,\alpha,\beta) = P^*(n,\frac{1-\beta+2\alpha\beta}{1+\beta},1).$$
 (3.1)

More generally, if $0 \le \alpha' < 1$, $0 < \beta' \le 1$, and $n \in \mathbb{N}_0$, then

$$P^*(n,\alpha,\beta) = P^*(n,\alpha',\beta')$$
 (3.2)

if and only if

$$\frac{\beta(1-\alpha)}{1+\beta} = \frac{\beta'(1-\alpha')}{1+\beta'} . \tag{3.3}$$

PROOF. Frist assume that the function f(z) is in the class $P^*(n,\alpha,\beta)$, and let the condition (3.3) holds true. Then, by using the assertion (2.1) of Theorem 1, we readily have

$$\sum_{k=2}^{\infty} k^{\mathsf{n}} a_{k}^{\mathsf{n}} \leq \frac{2\beta(1-\alpha)}{1+\beta} = \frac{2\beta'(1-\alpha')}{1+\beta'},$$

which shows that $f(z) \in P^*(n,\alpha',\beta')$, again with the aid of Theorem 1.

Reversing the above steps, we can similarly prove the other part of the equivalence (3.2) which, for $\beta'=1$, immediately yields the special case (3.1).

Conversely, the assertion (3.2) can easily be shown to imply the condition (3.3), and the proof of Theorem 2 is thus completed.

THEOREM 3. Let $0 \le \alpha_1 \le \alpha_2 \le 1$, $0 \le \beta \le 1$, and $n \in \mathbb{N}_0$. Then $P^*(n,\alpha_2,\beta) \le P^*(n,\alpha_1,\beta). \tag{3.4}$

The proof of Theorem 3 uses Theorem 1 in a straightforward manner. The details may be aomitted .

THEOREM 4. Let $0 \le \alpha < 1$, $0 < \beta_1 \le \beta_2 \le 1$, and $n \in \mathbb{N}_0$. Then $P^*(n,\alpha,\beta_1) \le P^*(n,\alpha,\beta_2)$. (3.5)

Proof. By using Theorem 2, we obtain

$$P^*(n,\alpha,\beta_1) = P_1^*(n, \frac{1-\beta_1+2\alpha\beta_1}{1+\beta_1}, 1)$$
 (3.6)

and

$$P^*(n,\alpha,\beta_2) = P^*(n,\frac{1-\beta_2+2\alpha\beta_2}{1+\beta_2},1)$$
 (3.7)

Furthermore

$$0 \le \frac{1 - \beta_2 + 2\alpha\beta_2}{1 + \beta_2} \le \frac{1 - \beta_1 + 2\alpha\beta_1}{1 + \beta_1} < 1 \tag{3.8}$$

for $0 \le \alpha < 1$ and $0 < \beta_1 \le \beta_2 \le 1$.

Consequently, by using Theorem 3, we arrive at our assertion (3.5).

Corollary 2. Let 0 $\leq \alpha_1^{} \leq \alpha_2^{} \leq 1$, 0 $\leq \beta_1^{} \leq \beta_2^{} \leq 1$, and n $\in \ N_0^{}$. Then

$$P^{*}(n,\alpha_{2},\beta_{1}) \subseteq P^{*}(n,\alpha_{1},\beta_{1}) \subseteq P^{*}(n,\alpha_{1},\beta_{2}).$$

Corollary 3. $P^*(n+1,\alpha,\beta) \subset P^*(n,\alpha,\beta)$

for $0 \le \alpha < 1$, $0 < \beta \le 1$, and $n \in N_0$.

4. Distortion Theorem

THEOREM 5. Let the function f(z) defined by (1.6) be in the

class $P^*(n,\alpha,\beta)$. Then we have

$$|z| - \frac{\beta(1-\alpha)}{2^{n-i-1}(1+\beta)}|z|^2 \le |D^i f(z)| \le |z| + \frac{\beta(1-\alpha)}{2^{n-i-1}(1+\beta)}|z|^2$$
 (4.1)

for $z \in U$, where $0 \le i \le n$. The result is sharp.

PROOF. Note that $f(z) \in P^*(n,\alpha,\beta)$ if and only if $D^if(z) \in P^*(n-i,\alpha,\beta)$, and that

$$p^{i}_{f(z)} = z - \sum_{k=2}^{\infty} k^{i} a_{k}^{z^{k}}.$$
 (4.2)

Using Theorem 1, we know that

$$2^{n-1}(1+\beta)\sum_{k=2}^{\infty}k^{1}a_{k}^{1}\leq\sum_{k=2}^{\infty}(1+\beta)k^{n}a_{k}^{1}\leq2\beta(1-\alpha), \tag{4.3}$$

that is, that

$$\sum_{k=2}^{\infty} k^{i} a_{k} \leq \frac{\beta(1-\alpha)}{2^{n-i-1}(1+\beta)} . \tag{4.4}$$

It follows from (4.2) and (4.4) that

$$\left| p^{i} f(z) \right| \ge |z| - |z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k}$$

$$\ge |z| - \frac{\beta(1-\alpha)}{2^{n-i-1}(1+\beta)} |z|^{2}$$
(4.5)

and

$$\left| p^{i} f(z) \right| \leq \left| z \right| + \left| z \right|^{2} \sum_{k=2}^{\infty} k^{i} a_{k}$$

$$\leq |z| + \frac{\beta(1-\alpha)}{2^{n-1-1}(1+\beta)} |z|^2.$$
 (4.6)

Finally, we note that the equality in (4.1) is attained by the

function

$$D^{i}f(z) = z - \frac{\beta(1-\alpha)}{2^{n-i-1}(1+\beta)}z^{2}$$
 (4.7)

or by

$$f(z) = z - \frac{\beta(1-\alpha)}{2^{n-1}(1+\beta)} z^2.$$
 (4.8)

Corollary 4. Let the function f(z) defined by (1.6) be in the class $P^*(n,\alpha,\beta)$. Then we have

$$|z| - \frac{\beta(1-\alpha)}{2^{n-1}(1+\beta)}|z|^2 \le |f(z)| \le |z| + \frac{\beta(1-\alpha)}{2^{n-1}(1+\beta)}|z|^2$$
 (4.9)

for $z \in U$. The result is sharp for the function f(z) given by (4.8).

Proof. Taking i=0 in Theorem 5, we can easily show (4.9).

COROLLARY 5. let the function f(z) defined by (1.6) be in the class $P^*(n,\alpha,\beta)$. Then we have

$$1 - \frac{\beta(1-\alpha)}{2^{n-1}(1+\beta)} |z| \le |f'(z)| \le 1 + \frac{\beta(1-\alpha)}{2^{n-1}(1+\beta)} |z|$$
 (4.10)

for $z \in U$. The result is sharp for the function f(z) given by (4.8).

Proof. Note that $D^1f(z)=zf'(z)$. Hence, taking i=1 in Theorem 5, we have the corollary.

COROLLARY 6. Let the function f(z) defined by (1.6) be in the class $P^*(n,\alpha,\beta)$. Then f(z) is included in a disc with its center at the origin and radius R_1 given by

$$R_1 = \frac{2^{n-1} (1+\beta) + \beta (1-\alpha)}{2^{n-1} (1+\beta)} . \tag{4.11}$$

Further, f'(z) is included in a disc with its center at the origin and radius R_2 given by

$$R_2 = \frac{2^{n-2}(1+\beta)+\beta(1-\alpha)}{2^{n-2}(1+\beta)}.$$
 (4.12)

The result is sharp with the extremal function f(z) given by (4.8).

5. Closure Theorems

Let the functions $f_j(z)$ be defined, for j=1,2,...,m, by

$$f_j(z) = z - \sum_{k=2}^{\infty} a_{k,j} z^k$$
 $(a_{k,j} \ge 0)$ (5.1)

for $z \in U$.

We shall prove the following results for the closure of functions in the class $P^*(n,\alpha,\beta)$.

THEOREM 6. Let the functions $f_j(z)$ (j=1,2,...,m) defined by (5.1) be in the class $P^*(n,\alpha,\beta)$. Then the function h(z) defined by

$$h(z) = z - \sum_{k=2}^{\infty} b_k z^k$$
 (5.2)

also belongs to the class $P^*(n,\alpha,eta)$, where

$$b_{k} = \frac{1}{m} \sum_{j=1}^{m} a_{k,j} . agen{5.3}$$

Proof. Since $f_j(z) \in P^*(n,\alpha,\beta)$, it follows from Theorem 1, that

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} a_{k,j} \le 2\beta(1-\alpha), \quad j=1,2,...,m.$$
 (5.4)

Therefore,

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} b_{k} = \sum_{k=2}^{\infty} (1+\beta) k^{n} \left(\frac{1}{m} \sum_{j=1}^{m} a_{k,j} \right)$$

$$\leq 2\beta (1-\alpha). \tag{5.5}$$

Hence by Theorem 1, $h(z) \in P^*(n,\alpha,\beta)$. Thus we have the theorem.

THEOREM 7. Let the functions $f_j(z)$ defined by (5.1) be in the classes $P^*(n,\alpha_j,\beta)$ for each $j=1,2,\ldots,m$. Then the function h(z) defined by

$$h(z) = z - \frac{1}{m} \sum_{k=2}^{\infty} \left(\sum_{j=1}^{m} a_{k,j} \right) z^{k}$$
 (5.6)

is in the class $P^*(n,\alpha,\beta)$, where

$$\alpha = \min \{\alpha_j\}.$$

$$1 \le j \le m$$
(5.7)

Proof. Since $f_j(z) \in P^*(n,\alpha_j,\beta)$ for each $j=1,2,\ldots,m$, we observe that

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} a_{k,j} \le 2\beta (1-\alpha_{j})$$
 (5.8)

with the aid of Theorem 1. Therefore

$$\sum_{k=2}^{\infty} (1+\beta) \, k^n \left(\frac{1}{m} \sum_{j=1}^{m} a_{k,j} \right) = \frac{1}{m} \sum_{j=1}^{m} \left(\sum_{k=2}^{\infty} (1+\beta) \, k^n a_{k,j} \right)$$

$$\leq \frac{1}{m} \sum_{j=1}^{m} 2\beta (1-\alpha_j) \leq 2\beta (1-\alpha). \tag{5.9}$$

Thus

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} \left(\frac{1}{m} \sum_{j=1}^{m} a_{k,j} \right) \leq 2\beta (1-\alpha)$$
 (5.10)

which shows that $h(z) \in P^*(n,\alpha,\beta)$, where α is given by (5.7).

THEOREM 8. Let the functions $f_j(z)$ defined by (5.1) be in the class $P^*(n,\alpha,\beta)$ for every $j=1,2,\ldots,m$. Then the function h(z) defined by

$$h(z) = \sum_{j=1}^{m} c_j f_j(z)$$
 $(c_j \ge 0)$ (5.11)

is in the class $P^*(n,\alpha,\beta)$, where

$$\sum_{j=1}^{m} c_{j} = 1. (5.12)$$

Proof. According to the definition of h(z), we can write

$$h(z) = z - \sum_{k=2}^{\infty} \left(\sum_{j=1}^{m} c_{j} a_{k,j} \right) z^{k}.$$
 (5.13)

Further, since $f_j(z)$ are in $P^*(n,\alpha,\beta)$ for every $j=1,2,\ldots,m$, we get

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} a_{k,j} \le 2\beta (1-\alpha)$$
 (5.14)

for every $j=1,2,\ldots,m$. Hence we can see that

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} \left(\sum_{j=1}^{m} c_{j} a_{k,j} \right) = \sum_{j=1}^{m} c_{j} \left(\sum_{k=2}^{\infty} (1+\beta) k^{n} a_{k,j} \right)$$

$$\leq \left(\sum_{j=1}^{m} c_{j}\right) 2\beta(1-\alpha) = 2\beta(1-\alpha). \tag{5.15}$$

with the aid of (5.12). This proves that the function h(z) is in the class $P^*(n,\alpha,\beta)$ by means of Theorem 1. Thus we have the theorem.

THEOREM 9. The class $P^*(n,\alpha,\beta)$ is closed under convex linear combination.

Proof. Let the functions $f_j(z)$ (j=1,2) defined by (5.1) be in the class $P^*(n,\alpha,\beta)$. It is sufficient to show that the function h(z) defined by

$$h(z) = \mu f_1(z) + (1 - \mu) f_2(z)$$
 $(0 \le \mu \le 1)$ (5.16)

is in the class $P^*(n,\alpha,\beta)$. Since, for $0 \le \mu \le 1$,

$$h(z) = z - \sum_{k=2}^{\infty} [\mu a_{k,1} + (1-\mu)a_{k,2}]z^k, \qquad (5.17)$$

with the aid of Theorem 1, we have

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} [\mu a_{k,1} + (1-\mu) a_{k,2}] \le 2\beta (1-\alpha)$$
 (5.18)

which implies that $h(z) \in P^*(n,\alpha,\beta)$.

As a consequence of Theorem 9, there exists the extreme points of the class $P^*(n,\alpha,\beta)$.

Theorem 10. Let $f_1(z) = z$ and

$$f_k(z) = z - \frac{2\beta(1-\alpha)}{(1+\beta)k^n} z^k \quad (k \ge 2)$$
 (5.19)

for $0 \le \alpha < 1$, $0 < \beta \le 1$, and $n \in N_0$. Then f(z) is in the class

 $P^*(n,\alpha,\beta)$ if and only if it can be expressed in the form

$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z)$$
 (5.20)

where $\mu_k \ge 0$ ($k \ge 1$) and $\sum_{k=1}^{\infty} \mu_k = 1$.

Proof. Suppose that

$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z) = z - \sum_{k=2}^{\infty} \frac{2\beta(1-\alpha)}{(1+\beta)k^n} \mu_k z^k.$$
 (5.21)

Then we get

$$\sum_{k=2}^{\infty} \frac{(1+\beta\gamma)k^{n}}{2\beta(1-\alpha)} \cdot \frac{2\beta(1-\alpha)}{(1+\beta)k^{n}} \mu_{k} = \sum_{k=2}^{\infty} \mu_{k} = 1-\mu_{1} \le 1.$$
 (5.22)

By virtue of Theorem 1, this shows that $f(z) \in P^*(n,\alpha,\beta)$.

On the other hand, suppose that the function f(z) defined by (1.6) is in the class $P^*(n,\alpha,\beta)$. Again, by using Theorem 1,we can show that

$$a_k \le \frac{2\beta(1-\alpha)}{(1+\beta)k^n}$$
 $(k \ge 2)$. (5.23)

Setting

$$\mu_{k} = \frac{(1+\beta)k^{n}}{2\beta(1-\alpha)} a_{k} \quad (k \ge 2) ,$$
 (5.24)

and

$$\mu_1 = 1 - \sum_{k=1}^{\infty} \mu_k . {(5.25)}$$

Hence, we can see that f(z) can be expressed in the form (5.20). This completes the proof of Theorem 10.

Corollary 7. The extreme points of the class $P^*(n,\alpha,\beta)$ are

the functions $f_k(z)$ ($k \ge 1$) given by Theorem 10.

6. Radii of Close-to-Convexity, Starlikeness and Convexity

THEOREM 11. Let the function f(z) defined by (1.6) be in the classs $P^*(n,\alpha,\beta)$, then f(z) is close-to-convex of order ρ (0 $\leq \rho < 1$) in $|z| < r_1(n,\alpha,\beta,\rho)$, where

$$r_1(n,\alpha,\beta,\rho) = \inf_{k} \left\{ \frac{(1-\rho)(1+\beta)k^{n-1}}{2\beta(1-\alpha)} \right\}^{\frac{1}{k-1}}$$
 (k\ge 2). (6.1)

The result is sharp with the extremal function f(z) given by (2.5).

Proof. We must show that $|f'(z)-1| \le 1-\rho$ for $|z| < r_1(n,\alpha,\beta,\rho)$. We have

$$|f'(z)-1| \le \sum_{k=2}^{\infty} ka_k |z|^{k-1}$$
.

Thus $|f'(z)-1| \le 1-\rho$ if

$$\sum_{k=2}^{\infty} \left(\frac{k}{1-\rho} \right) a_k |z|^{k-1} \le 1.$$
 (6.2)

According to Theorem 1, we have

$$\sum_{k=2}^{\infty} \frac{(1+\beta)k^{n}}{2\beta(1-\alpha)} a_{k} \le 1.$$
 (6.3)

Hence (6.2) will be true if

$$\frac{\left|k\left|z\right|^{k-1}}{(1-\rho)} \leq \frac{(1+\beta)k^{\mathsf{n}}}{2\beta(1-\alpha)}$$

or if

$$|z| \le \left\{ \frac{(1-\rho)(1+\beta)k^{n-1}}{2\beta(1-\alpha)} \right\}^{\frac{1}{k-1}} (k \ge 2).$$
 (6.4)

The theorem follows easily from (6.4).

THEOREM 12. Let the function f(z) defined by (1.6) be in the class $P^*(n,\alpha,\beta)$, then f(z) is starlike of order ρ (0 $\leq \rho \leq 1$) in $|z| \leq r_2(n,\alpha,\beta,\rho)$, where

$$r_2(n,\alpha,\beta,\rho) = \inf_{k} \left\{ \frac{(1-\rho)(1+\beta)k^n}{2(k-\rho)\beta(1-\alpha)} \right\}^{\frac{1}{k-1}} (k \ge 2).$$
 (6.5)

The result is sharp with the extremal function f(z) given by (2.5).

PROOF. It is sufficient to show that $\left|\frac{zf'(z)}{f(z)}-1\right| \le 1-\rho$ for $|z| < r_2(n,\alpha,\beta,\rho)$. We have

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{\sum_{k=2}^{\infty} (k-1)a_k |z|^{k-1}}{1 - \sum_{k=2}^{\infty} a_k |z|^{k-1}}.$$

Thus $\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1-\rho$ if

$$\sum_{k=2}^{\infty} \frac{(k-\rho) a_k |z|^{k-1}}{(1-\rho)} \le 1.$$
 (6.6)

Hence, by using (6.3), (6.6) will be true if

$$\frac{(k-\rho)\left|z\right|^{k-1}}{(1-\rho)} \leq \frac{(1+\beta)k^{\mathsf{n}}}{2\beta(1-\alpha)}$$

or if

$$|z| \le \left\{ \frac{(1-\rho)(1+\beta)k^{\mathsf{n}}}{2(k-\rho)\beta(1-\alpha)} \right\}^{\frac{1}{k-1}} (k \ge 2).$$
 (6.7)

The theorem follows easily from (6.7).

COROLLARY 8. Let the function f(z) defined by (1.6) be in

the class $P^*(n,\alpha,\beta)$, then f(z) is convex of order ρ $(0 \le \rho < 1)$ in $|z| < r_3(n,\alpha,\beta,\rho)$, where

$$r_3(n,\alpha,\beta,\rho) = \inf_{k} \left\{ \frac{(1-\rho)(1+\beta)k^n}{2(k-\rho)\beta(1-\alpha)} \right\}^{\frac{1}{k-1}} (k \ge 2).$$
 (6.8)

The result is sharp with the extremal function f(z) given by (2.5).

7. Integral Operators

THEOREM 13. Let the function f(z) defined by (1.6) be in the class $P^*(n,\alpha,\beta)$, and let c be a real number such that c >-1. Then the function F(z) defined by β

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt$$
 (7.1)

also belongs to the class $P^*(n,\alpha,\beta)$.

PROOF. From the representation of F(z), it follows that

$$F(z) = z - \sum_{k=2}^{\infty} b_k z^k,$$
 (7.2)

where

$$b_{k} = \left(\frac{c+1}{c+k}\right) a_{k} . \tag{7.3}$$

Therefore,

$$\sum_{k=2}^{\infty} (1+\beta) k^{n} b_{k} = \sum_{k=2}^{\infty} (1+\beta) k^{n} \left(\frac{c+1}{c+k} \right) a_{k}$$

$$\leq \sum_{k=2}^{\infty} (1+\beta) k^{n} a_{k} \leq 2\beta (1-\alpha) , \qquad (7.4)$$

since $f(z) \in P^*(n,\alpha,\beta)$. Hence, by Theorem 1, $F(z) \in P^*(n,\alpha,\beta)$.

THEOREM 14. Let c be a real number such that c>-1. If $F(z) \in P^*(n,\alpha,\beta)$, then the function defined by (7.1) is univalent in $|z| < R^*$, where

$$R^* = \inf_{k} \left[\frac{(1+\beta)k^{n-1}(c+1)}{2\beta(1-\alpha)(c+k)} \right]^{\frac{1}{k-1}} (k \ge 2).$$
 (7.5)

The result is sharp.

PROOF. Let
$$F(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
 ($a_k \ge 0$). It follows from (7.1)

that

$$f(z) = \frac{z^{1-c} [z^{c} F(z)]'}{(c+1)} \qquad (c>-1)$$

$$= z - \sum_{k=2}^{\infty} (\frac{c+k}{c+1}) a_{k} z^{k}. \qquad (7.6)$$

In order to obtain the required result it suffices to show that

$$|f'(z)-1| < 1$$
 in $|z| < R^*$.

Now

$$|f'(z)-1| \le 1$$
 if

$$\sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1)} a_k |z|^{k-1} \le 1 .$$
 (7.7)

Hence by using (6.3), (7.7) will be satisfied if

$$\frac{k(c+k)|z|^{k-1}}{(c+1)} < \frac{(1+\beta)k^n}{2\beta(1-\alpha)} \qquad (k \ge 2)$$

or if

$$|z| < \left[\frac{(1+\beta)k^{n-1}(c+1)}{2\beta(1-\alpha)(c+k)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$
 (7.8)

Therefore f(z) is univalent in $|z| < R^*$. Sharpness follows if we

take

$$f(z) = z - \frac{2\beta(1-\alpha)(c+k)}{(1+\beta)(c+1)k^{\Pi}} z^{k} \quad (k \ge 2).$$
 (7.9)

8. Modified Hadamard Products

Let the function $f_j(z)$ (j=1,2) defined by (5.1) The modified Hadamard product of $f_j(z)$ and $f_2(z)$ is defined by

$$f_1*f_2(z) = z - \sum_{k=2}^{\infty} a_{k,1} a_{k,2} z^k$$
 (8.1)

THEOREM 15. Let the functions $f_j(z)$ (j=1,2) defined by (5.1) be in the class $P^*(n,\alpha,\beta)$. Then $f_1*f_2(z)$ belongs to the class $P^*(n,\gamma(n,\alpha,\beta),\beta)$, where

$$\gamma(n,\alpha,\beta) = 1 - \frac{\beta(1-\alpha)^2}{2^{n-1}(1+\beta)}$$
 (8.2)

The result is sharp.

<u>Proof.</u> Employing the technique used earlier by Schild and Silverman [5], we need to find the largest $\gamma = \gamma(n,\alpha,\beta)$ such that

$$\sum_{k=2}^{\infty} \frac{(1+\beta)k^{n}}{2\beta(1-\gamma)} a_{k,1} a_{k,2} \le 1.$$
 (8.3)

Since

$$\sum_{k=2}^{\infty} \frac{(1+\beta)k^{n}}{2\beta(1-\alpha)} a_{k,1} \le 1$$
 (8.4)

$$\sum_{k=2}^{\infty} \frac{(1+\beta)k^{n}}{2\beta(1-\alpha)} a_{k,2} \le 1$$
 (8.5)

by the Cauchy-Schwarz we have

$$\sum_{k=2}^{\infty} \frac{(1+\beta)k^{n}}{2\beta(1-\alpha)} \sqrt{a_{k,1}a_{k,2}} \le 1.$$
 (8.6)

Thus it is sufficient to show that

$$\frac{(1+\beta)k^{n}}{2\beta(1-\gamma)} a_{k,1} a_{k,2} \le \frac{(1+\beta)k^{n}}{2\beta(1-\alpha)} \sqrt{a_{k,1} a_{k,2}} \qquad (k \ge 2), \tag{8.7}$$

that is, that

$$\sqrt{a_{k,1}^{a_{k,2}}} \le \frac{1-\alpha}{1-\gamma}$$
 (8.8)

Note that

$$\sqrt{a_{k,1}a_{k,2}} \le \frac{2\beta(1-\alpha)}{k^{n}(1+\beta)}$$
 $(k \ge 2)$. (8.9)

Consequently, we need only to prove that

$$\frac{2\beta(1-\alpha)}{k^{\mathsf{n}}(1+\beta)} \le \frac{1-\alpha}{1-\gamma} \quad (k \ge 2), \tag{8.10}$$

or, equivalently, that

$$\gamma \le 1 - \frac{2\beta(1-\alpha)^2}{k^n(1+\beta)}$$
 (k \ge 2). (8.11)

Since

$$A(k) = 1 - \frac{2\beta(1-\alpha)^2}{k^n(1+\beta)}$$
 (8.12)

is an increasing function of k ($k \ge 2$), letting k=2 in (8.12), we obtain

$$\gamma \le A(2) = 1 - \frac{\beta(1-\alpha)^2}{2^{n-1}(1+\beta)}$$
, (8.13)

which completes the proof of Theorem 15.

Finally, by taking the functions $f_j(z)$ given by

$$f_j(z) = z - \frac{\beta(1-\alpha)}{2^{n-1}(1+\beta)}z^2$$
 (j=1,2), (8.14)

we can see that the result is sharp.

Corollary 9. For $f_1(z)$ and $f_2(z)$ as in Theorem 15, we have

$$h(z) = z - \sum_{k=2}^{\infty} \sqrt{a_{k,1} a_{k,2}} z^k$$
 (8.15)

belongs to the class $P^*(n,\alpha,\beta)$.

This result follows from the Cauchy- inequality (8.6). It is sharp for the same functions $f_j(z)$ (j=1,2) as in Theorem 15.

THEOREM 16. Let the function $f_1(z)$ defined by (5.1) be in the class $P^*(n,\alpha,\beta)$ and the function $f_2(z)$ defined by (5.1) be in the class $P^*(n,\tau,\beta)$. Then $f_1*f_2(z)$ belongs to the class $P^*(n,\zeta(n,\alpha,\beta,\tau),\beta)$, where

$$\zeta(n,\alpha,\beta,\tau) = 1 - \frac{\beta(1-\alpha)(1-\tau)}{2^{n-1}(1+\beta)}$$
 (8.16)

The result is sharp.

Proof. Proceeding as in the proof of Theorem 15, we get

$$\zeta \le B(k) = 1 - \frac{2\beta(1-\alpha)(1-\tau)}{k^n(1+\beta)} \quad (k \ge 2).$$
 (8.17)

Since the function B(k) is an increasing function of $k \ (k \ge 2)$, letting k=2 in (8.17), we obtain

$$\zeta \le B(2) = 1 - \frac{\beta(1-\alpha)(1-\tau)}{2^{n-1}(1+\beta)},$$
 (8.18)

which evidently proves Theorem 16.

Finally, the result is best possible for the functions

$$f_1(z) = z - \frac{\beta(1-\alpha)}{2^{n-1}(1+\beta)} z^2$$
 (8.19)

and

$$f_2(z) = z - \frac{\beta(1-\tau)}{2^{n-1}(1+\beta)} z^2$$
 (8.20)

Corollary 10. Let the functions $f_j(z)=(j=1,2,3)$ defined by (5.1) be in the class $P_j^*(n,\alpha,\beta)$. Then $f_1*f_2*f_3(z)$ belongs to the class $P^*(n,\eta(n,\alpha,\beta),\beta)$, where

$$\eta(n,\alpha,\beta) = 1 - \frac{\beta^2(1-\alpha)^3}{2^{2(n-1)}(1+\beta)^2}.$$
(8.21)

The result is best possible for the functions

$$f_j(z) = z - \frac{\beta(1-\alpha)}{2^{n-1}(1+\beta)}z^2$$
 (j=1,2,3). (8.22)

<u>Proof.</u> From Theorem 15 , we have $f_1*f_2(z)\in P^*(n,\gamma(n,\alpha,\beta),\beta)$, where γ is given by (8.2) . We now use Theorem 16, we get $f_1*f_2*f_3(z)\in P^*(n,\eta(n,\alpha,\beta),\beta)$, where

$$\eta(n,\alpha,\beta) = 1 - \frac{\beta(1-\alpha)(1-\gamma)}{2^{n-1}(1+\beta)}$$
$$= 1 - \frac{\beta^2(1-\alpha)^3}{2^{2(n-1)}(1+\beta)^2}.$$

This completes the proof of Corollary 10.

THEOREM 17. Let the functions $f_j(z)$ (j=1,2) defined by (5.1) be in the class $P^*(n,\alpha,\beta)$. Then the function

$$h(z) = z - \sum_{k=2}^{\infty} [a_{k,1}^2 + a_{k,2}^2] z^k,$$
 (8.23)

belongs to the class $P^*(n,\phi(n,\alpha,\beta),\beta)$, where

$$\phi(n,\alpha,\beta) = 1 - \frac{\beta(1-\alpha)^2}{2^{n-2}(1+\beta)}.$$
 (8.24)

The result is sharp for the functions $f_j(z)$ (j=1,2) defined by (8.14).

PROOF. By virtue of Theorem 1, we obtain

$$\sum_{k=2}^{\infty} \left[\frac{(1+\beta)k^{n}}{2\beta(1-\gamma)} \right]^{2} a_{k,1} \leq \left[\sum_{k=2}^{\infty} \frac{(1+\beta)k^{n}}{2\beta(1-\alpha)} a_{k,1} \right]^{2} \leq 1$$
 (8.25)

and

$$\sum_{k=2}^{\infty} \left[\frac{(1+\beta)k^{n}}{2\beta(1-\gamma)} \right]^{2} a_{k,2} \leq \left[\sum_{k=2}^{\infty} \frac{(1+\beta)k^{n}}{2\beta(1-\alpha)} a_{k,2} \right]^{2} \leq 1.$$
 (8.26)

It follows from (8.25) and (8.26) that

$$\sum_{k=2}^{\infty} \frac{1}{2} \left[\frac{(1+\beta)k^{n}}{2\beta(1-\gamma)} \right]^{2} (a_{k,1}^{2} + a_{k,2}^{2}) \le 1.$$
 (8.27)

Therefore, we need to find the largest $\phi = \phi(n, \alpha, \beta)$ such that

$$\frac{(1+\beta)k^{\mathsf{n}}}{2\beta(1-\phi)} \le \frac{1}{2} \left[\frac{(1+\beta)k^{\mathsf{n}}}{2\beta(1-\gamma)} \right]^2 \quad (k \ge 2)$$
 (8.28)

that is,

$$\phi \le 1^{-4} \frac{4\beta(1-\alpha)^2}{k^{(1+\beta)}} \quad (k \ge 2) . \tag{8.29}$$

Since

$$D(k) = 1 - \frac{4\beta(1-\alpha)^2}{k^n(1+\beta)}$$

is an increasing function of $k (k \ge 2)$, we readily have

$$\phi \leq D(2) = 1 - \frac{\beta(1-\alpha)^2}{2^{n-2}(1+\beta)} ,$$

and Theorem 17 follows at once.

THEOREM 18. Let the functions $f_1(z)$ defined by (5.1) be in the class $P^*(n_1,\alpha,\beta)$ and the functions $f_2(z)$ defined by (5.1) be in the class $P^*(n_2,\alpha,\beta)$. Then $f_1*f_2(z)\in P^*(n_1,\alpha,\beta)\cap P^*(n_2,\alpha,\beta)$.

Proof. Since $f_2(z) \in P^*(n_2, \alpha, \beta)$, we have

$$a_{k,2} \le \frac{2\beta(1-\alpha)}{c_{2,2}},$$
 (8.30)

where

$$c_{k,j} = (1+\beta)k^{n_{j}}$$
 (j=1,2) (8.31)

From Theorem 1, since $f_1(z) \in P^*(n_1, \alpha, \beta)$, we have

$$\sum_{k=2}^{\infty} c_{k,1} a_{k,1} \le 2\beta(1-\alpha). \tag{8.32}$$

Now, from (8.30) and (8.32), we have

$$\sum_{k=2}^{\infty} c_{k,1} a_{k,1} a_{k,2} \le \frac{2\beta(1-\alpha)}{c_{2,2}} \sum_{k=2}^{\infty} c_{k,1} a_{k,1}$$

$$\leq \frac{\left\lceil 2\beta(1-\alpha)\right\rceil^2}{\left\lceil 2,2\right\rceil} \leq 2\beta(1-\alpha).$$

Since $\frac{2\beta(1-\alpha)}{c_{2,2}} \le 1$. Hence $f_1*f_2(z) \in P^*(n_1,\alpha,\beta)$. Interchanging n_1 and n_2 by each other in the above, we get $f_1*f_2(z) \in P^*(n_2,\alpha,\beta)$. Hence the theorem.

References

- [1] H. S. Al-Amiri, On a subclass of close-to-convex functions with negative coefficients, Mathematica (Cluj) , 31 (54)(1989), no. 1, 1-7.
- [2] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients.II, Bull. Austral.

 Math. Soc. 15(1976),467-473.
- [3] G. Salagean, Subclasses of univalent functions, Lecture notes in Math. (Springer-Verlag) 1013 (1983), 362-372.
- [4] S. M. Sarangi and B. A. Uralegaddi, The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients.I, Rend. Acad. Naz. Lincei 65 (1978), 38-42.
- [5] A. Schild and H. Silverman, Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Seet. A 29 (1975), 99-106.
- [6] H. M. Srivastava and S. Owa, A new class of analytic functions with negative coefficients, Comment. Math.

Univ. St. Paul, 35 (1986), 175-188.

M. NUNOKAWA

Faculty of Education Gunma University 4-2, Aramaki-machi, Maebashi, Gunma 371, Japan

M. K. AOUF

Department of Mathematics Faciliaty of Science University of Mansoura Mansoura, Egypt