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ON CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS
WITH NEGATIVE COEFFICIENTS
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ABSTRACT. The object of the present paper 1s to derive

*
several intevesting properties of the class P (n,q,B3) consisting

of analytic and wunivalent functions with negative coefficients.
Coefficient estimates, distortion theorems and closure theorems of
functions in the class P*(n,a,ﬁ) are determined. Also radii of
close - to- convexity, starlikeness and convexity for the class

* B
P (n,a,R3? are determined. Also modified Hadamard product of sevral

*
functions belonging to the class P (n,a,3) are studied here.
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1. Introduction

Let S denote the class of functions of the form

®
. k
f(z) = z =+ Zd a, = (1.1
k=2
which are analytic and univaient in the unit disc U={z:|z|<1). For
a function f(z) in S, we define
p%fczy =fiz), (1.2
le(z) =DfCz) ==f'(z), 1.2
and
D™ fcz>=D¢d" tecza (neN = {1,2....3). (1.47

The differential opefator D" was introduced by Salagean [3]1. With
the help of the differential operator Dn, we say that a fuanction

f(z) belonging to 5 is in the class S(n,a,3) if and only if

= <3 (ne ND= NULO3 2 (1.53

for O a0 < 1 , 04 B < 1, and for all ze U.

Let T denote the subclass of S consisting of functions of the

form

o)
) = ¢z - z ( > . =
f{z) E: a, (ak o) (1.8

¢ =72
=

.

*
Further, we define the class P (n,o, /3 by
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P¥(n, 0,3 = Sn,a,Mn T. (1.7).

We note that, by specializing the parameters n, o, and 3,
we obtain the following subclasses studied by various authors:
(i) P*(O,a,ﬁ) = Pf(a,ﬂ) {(Srivastava and Owa [&] )j
(ii) P*(l,a,ﬁ) = P*(a,B)v(Gupta and Jain [213);
(iii) P¥(0,0,00 = P*¥ (o0 (Sarangi and Uralegaddi [41 );
* 3

(iv) P*(l,a,l) = T (a2 {Sarangi and Uralegaddi [41 and

Al-Amiri C13 3.

2. Coefficient Estimates

TugoreM 1. Let the function fi{z) be defined by (1.6). Then

% .
f(zle P (n,o,3) if and only if

o
(1+ﬁ)knak < 2B(1-o). (2.1
k=2
The result is sharp.
ProoF. Assume that the inequality (2.1) holds true and let |z|= 1.
Then, we have
n n
D f(z) D fd(z2
| 2R ) p) TR w2l
™ ®
=|- kMa %7 —plzai-eo - Ka, 2571
k k
k=2 k=2
o



Hence, by the maximum modulus theorem, we have

For the converse, assume that

18

*
f(z) € P (n,,3.

a0
) n_ _k-1
D" f(z) Z kiay=z
z -1 =2
= = - < 3. 2.2)
D f(z) . . —
z T 17=e 2(1-0) - Zi{napzk 1
k=2
Since |Re(z)| £ |=| for all =z, we find from (2.2) that
o0
E: kMa zk_l
J K
k=2 - LR
Re - < . (2.3
2¢(1-0) - E: k"a zk—l
k
k=2
D)
Choose values of =z an the real axis so that 7'“' is real. Upon
clearing the denominator in (2.3} and letting z ——1 through real
values, we have
® ol
Z knaP < 2B(1-00- (3 knak , (2.4)
k=2 k=2
which gives the required assertion (2.1).
Finally, we note that the assertion (2.1) of Theorem 1 is
sharp, the extremal function being
2R41 -a) 4
fzy =z - ZLA7A K an, 2.5)
C(1+3k
CororLrLary 1. Let the function f(z) defined by (1.58) be in

*
the class P (o,3,7). Then we have



2301 -a)
1+ k"

(k22).

The equality in (2.6) is attained for the function f(z)
by (2.9).

2. Further Properties of the Class P*(n,a,ﬁi

Theorem 2. Let 0 €< aa < 1, 0 < 3 =<1, and n € N,. Then

1-p+2af3

¥*
PX(n,a,B3) =P tny — 55—

,1).

More generally, if O

1A
Q

*
P (n, o, 3)

i
-
- g
Qﬁ
2

if and only if

pll-o) _ B’ 1-a')
1+13 1+p3* i

<1, 04 @3 =1, and n € N, then
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2.6)

given

(3.12

ProorF. Frist assume that the function f(z) is in the class

* .
P (n,a,3), and let the condition (2.3) holds true. Then, by

the assertion (2.1) of Theorem 1, we readily have

231 =a) 23 (1-a' 2
n
kia, = = y
k 1+73 1+73°

which shows that f(z) e P*(n,a’,ﬂ'), again -with the

Theorem 1.

Reversing the above steps,we can similarly prove the

using

aid of

ather

part of the equivalence (32.2) which, for ['=1, immediately

yields the special case (3.12).

Conversely, the assertion (3.2) can easily be shown to imply

the condition (2.3), and the proof of Theorem 2 is thus completed.



20

TaeoreM 2. Let 0O =< als a2< i1, 0< 3 =<1, and n NO. Then

¥*
P (n,a
Y 27(

*
B S P in,ay, @, (3. 4)

The proof of Theorem 2 wuses Theorem 1 in a straightforward

nanner. The details may be aomitted .
TueoreEM 4. let 0 £ aa < 1, O < Ry = 0B, =1, and n « Nj. Then

27 0

P*(n,a,ﬁl) < P n,o,0,) - (2.5)

ProorF. By using Theorem 2, we obtain

1-3, +2043
* * i i .
P (I’I,O(,Bl) = P;< (.n, ———i—_’:—ﬁi‘-———-,l) (3-6)
and
* * I—BE+EQBE
P (nyo,3,)2 =P Ln,——T¢§-~—11) - (3.7
Furthermore
1-3,+2a83,, 1—B1+2aﬂl
< = i < -« (3.
0= 1+B? - 1+(31 - 1 (3-8

for 0 £ aa < 1 and O £ By S Bs = 1.

Consequently, by using Theorem 3, we arrvive at our assertion (3.5).

CoroLLARY 2. Let 0O < aIS oy €1, O < Bl =3, =1, and n e NO'
Then

* ) * ) * .
P (n,a?,ﬂl)g P (n,a*,ﬁl)g P (n,al,ﬂﬁ).

* *
CororLrAry 3. P (n+l,o,R3) <« P (n,o, )

for 0 £ a< 1, 0O R <1, and n « NO'

4. Distortion Theorem

Tueorem 5. let the function f(z) defined by (1.6) be in the
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class P (n,a,3). Then we have

i, .
< |DTf(z2

21

BCl-0) 2
|z

zl- 2 < 1+
=] 2" =]

“for z < U, where 0 £ i€ n. The result is sharp.
*
Proor. Note that f(z) €« P (n,a,3) if and

P* (n-i,o,3), and that

(B -a) pe:
-1l P

NeRIE))

anly if D f(z) <

(4.2)
k=2
Using Theorem 1, we know that
a0 (o8]
2“’1c1+ﬁ>§: klaP;s 2: (1+B)knak < 2BR01-00, 4.
k=2 k=2
that is, that
a0
. 1
E: kra, < f:fla) . (4.4)
£, 5 2" asm
It follows from (4.2) and (4.4) that
[0 0]
i 2 i
=3l =z {z1 - |= <
phec 1 1z] - |=] }: kia,
k=2
(1-o = .
> |z] - ﬁfl i z (4.5)
~Nn-1-1 ]
z (14732
and
o
i 2 i
D f(z)‘ < |z| + |=] E: k'a,
k=2
) z )
< |z + 31— = <. (4.6)
~Nn-i-1 ;
2 (14732

Finally, we note that the equality in (4.1D is

attained by the
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function
. . ( — > .
D fez) = z ML _— 4.7)
2 C1+03)
or by
f(z) =z - O 2 (4.8)
: ?n—i

2 (143>
CoroLLARY 4. Let +the function f(z) defined by (1.6) be in

the class P*(n,a,ﬁ). Then we have

i
<

- lz|” = |fez0] = =] + -
2" L eram | | | 1] 2" yam

w

for ze U. The result is sharp for the function f(z) given by

(4.8).

Proor. Taking 1i=0 in -Theorem 5, we can easily show
(4.9).

CoroLLARY 3. let the fuhction f(z) defined by (1.6) be in the
class P*(n,a,ﬁ). Then we have

pC1-00

A lz] <|f ] 1+ Ll
>

(1+73) 207 (e
for ze U. The result is sharp for the function f(z2) given by (4.8).
Proor. Note that le(z)=zf’iz). Hence, taking i=1 in Theorem

S5, we have the corallary.

CoroLLARY K. Let the function f(z) defined by (1.6) be in

*
the class P (n,a,3). Then f(z) 1is included 1in a disc with
its center at the origin and radius Rl given by
2" ey epcl -0
R1= -n—l' ~ . (4.113
2 1+
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Further, f°(z) is included in a disc with its center at the origin

and radius R, given by

N2 (e +pCl —o

2 Y+3(1 -

R,= n_g pllzew (4.12)
2" (e

The result is sharp with the extremal functicn f(z) given by (4.8).

5. Closure Theorems

Let the functions fj(z) be defined, for j=1,2,...,m, hy

for = e U.

We shall prove the following results for the closure of
*
functions in the class P (n,o,3).
THEOREM . Let the functions fj(z) (j=1,2,...,ﬁ) defined by

*
(5.1) be in the class P (n,a,B?. Then the function h(z) defined by

¢ o} .
hiz) = z - E: bsz (5.2)

b= 1Y a .. (5.3
m

* ,
Proor. Since ijz) e P (n,o,3), it follows from Theorem 1,

that
©

Ez (1+ﬁ)knak’j < 21 -a, G=1,2, e, me (5.4)

k=2
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Therefore,
0 1o ) m
n n( 1
< = ( ‘ e
Y iy, =Y (LY s, ]
k=2 =2 =1
< 2R01-o00. (5.5

) *
Hence by Theorem 1, h(z) « P (n,a,R3). Thus we have the theorem.

TueoreM 7. Let the functions ijz) defined by (5.1) be in the

ctlasses P*(n,aj,ﬁ) for each j=1,2,...,m. Then the function hiz)

defined by

*
is in the class P (n,o,3?, where

Proor. Since fj(:) P (n,aj,ﬂ)' for each j=1,2,...,m, we

observe that

1+ ka, ;< 2BC-a ) (5.8)

k=2

with the aid of Theorem 1. Therefore

o m m a0
1 1 i n
4 ): - = . Kk
5 (5 ) Y (S )
=2 j=1 J=1 k=2
m
< %—Z Eﬁ(l-otj) < Zpll-o. (5.9

[
1)

Thus



25

o 8]

m
1
_ < 2 .
ca+mk"| }:ak,J 23¢1 -0t (5.10)
k=2 J=1

*
which shows that h(z) € P (n,o, ), where o is given by (5.7,

TueoreMm 8. Let the functions fj(z) defined by (5.1 be in the
*
class P (n,a,3) for every j=1,2,...,m. Then the function hiz)

defined by

1\
-

m
hiz) = c.f. (2D (c . ’ (5.11)
JJ J
—

N ,
is in the class P (n,qa,3), where
l.

m
}: c. = 1. (5.12)
J

Jj=1

Proor. According to the definition of h{(z) , we can write

a0 m
h{(z) = =z - k. (5.12)
J PvJ
k=2

=1
. . * . .
Further, since fjkz) are in P (n,o,3) for every j=1,2,...,m, we

get

(1+mk”ak 3 < 2BR(1-00 (5.14)
k=2

for every j=1,2,,..-,m. Hence we can see that

e} e ]

n
E 1+ k" C.a C. E (1+30k a, .
? J k,J J[ 3 kyJ ]

k=2 =1 7= k=2

[\/Ja
N5
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m
< [ }: cj]ZB(l—a) = 2pR(1-a). (5.15)

J=1
with the aid of (5.12). This proves that the function h(z) is in

the class P*(n,a,ﬁ) by means of Theorem 1. Thus we have the

theorem.

*
TreoreMm 9. The class P (n,o, 3 is closed under convex linear

combination.
Proor. Let the functions fj(z) (j=1,2> defined by (5.1) be
*
in the class P (n,a,B3). It is sufficient to show that the function
h{(z) defined by

2+ (1 -3 f (2D o 1 (5.162

h(z)=uf1 < u =<
is in the class P (n,o,). Since, for 0 < u < 1,
QG
. k
- = T - {1- - [
h{z2 z E: [;.tak’1 + (1 u)akyzl_ ’ (5.17)
k=2
with the aid of Theorem 1, we have
[¢ ¢]
(1+B)kn[yak , t a1 < 2p0-a) (5.18)
y R e
k=2

*
which implies that h{(z) « P (n,a,/3).
As a consequence of Thearem 2, there exists the extreme

*
points of the class P (n,a,(3).

TueoreM 10. Let fl(z) = z and

2p301-00 _k

fk(z)= z -
. (1+30 k

(k = 2 (5.19

for O £ a< 1, 0O< B <1, and n NO' Then f(z) is in the class
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* )
P (n,a,3) if and only if it can be expressed in the form

a
(= = z (5.2
f(z) = E: TR 5.20)
le=1
1o
where pk >0 (k= 1) and }: By, = 1.
k=1
Proor. Suppose that
o o
. ~nrC1 - .
fez) = Ypu f (z) =z - R EAS Tl ML (5.21)
k k (1+33Fn ke
k=1 k=2 = o '
Then we get
e o] n o o]
+ap2k” 2p(l-a
2: A+ppik 2301 a; B, =§: p, = 1-p; < 1. (5.22)
e 2R(1 -0 (1+B)k ) =

By virtue of Theorem 1, this shows that f(z) « P*(n,a,ﬁ).
On the other hand, suppose that the function f(z) defined by

*
(1.6) is in the class P (n,o,3?. Again, by using Theorem l,we can

show that
- _
a, < :ﬂ33145% (k = 2). , (5.23
(1+3) Kk
Setting
n
C1+3) Kk . _
= > 2 . =
My T Egticed Gk K E 5.24
and

©
= 1- R (5.2
My 1 §:“k 5.292

Hence, we can see that f(z) can be expressed in the form (5.20).

This completes the proof of Theorem 10.

*
CorRoLLARY 7. The extreme points of the class P (n,o,f3) are



che functions fk(Z)( k 2 1) given by Theorem 10.
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6.Radii of Close-to-Convexity, Starlikeness and Convexity

Tueorem 11. Let the function f{(z) defined by (1.6} be in the

*
zlasss P (n,a,3), then f(z) is close-to-convex of arder o (0<p<1)

in |z|<r1(n,a,ﬂ,p), where

1

1 L AL -00

. n-1k-1
(1- C pR s
roin,o,B3,03= inf { (1-p) (143 ke } (E>2)

- (6.1)

"he result is sharp with the extremal function f(z) given by (2.3).

N
Proor. We must show that |f'(z)-1|=<1-p for

Je have
0

7 — . — k_l
|/ (z>-1] < E: ka, |=]%71 .

k=2

Thus |f' (z)-1| £ 1-p if

o

k k-1
2: C =5 )aklzl < 1.
k=2

According to Theorem 1, we have

o]

n
a+mk"
E: 2B a0k = 1

k=2

Hence (6.2) will be true if

kl=z n
l I < (1430 k
(1-p) T 2p01 -0

ar if

|z|{r1(n,a,ﬁ,p).

(6.2

(6.3)

n-1 k-1
|z] =< { rp) C1rk } k 2 2). (E.4)

2G01 -0



29

fhe theorem follows easily from (6.4).
TueoreMm 12. Let the function f(z) defined by (1.6) be in the
*
:lass P (n,a,3), then f(z) is starlike of order p (05p<1) 1in

[zl(rz(n,a,ﬁ,p), where

1 -

n k-1
(1- b}
ro(n,o,@,0= inf { (1-p) (143 k } (k 2 2. (6.5
K

Z{k-pI3tl-a0

The result is sharp with the extremal function f(z) given by (2.3).

=f’ (=)~
ProorF. It is sufficient to show that ‘";Tf?l -1 £ 1-p for
|z]< ratnyo,B3,02. We have
.
- k-1
Z (k'—l)aklc_l
zf’t;) 1] < k=2 .
f(z) w0
k-1
1 o aklz‘
k=2
. =f’ (= ;
T - < 1-
Fhus 1 X ED) 1] £ 1-p if
had Ck—p)ak]z‘k_l
: P
STy < 1. (6.6)
k=2
4Jence, by using (6.3), (6.6) will be true if
k-1
(k- =
(k-p) |z | . (k"
(1-p) T 2Rl -0
ar if
1
n k-1
|z|< | SL-er ik (k> 2. (6.7)
2lk-pipil-o

The theorem follows easily from (6.7).

CorOLLARY B. Let the function f(z) defined by (1.6) be in
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the class P*(n,a,ﬁ), then f(z) is convex of order p (0Zp<1) in

|=|< ra(n,o,3,0), where
1

n Yk-1
. (1-p) (1+Dk > ~
ra(n,a,ﬁ,p)— 13f { STk -0 301 o0 } (k =2 2). (6.8)

The result is sharp with the extremal function f(z) given by (2.5

7.Integral Operators
Tueorem 13. Let the function f(z) defined by <(1.6) be in the

* .
tlass P (n,a,3), and let ¢ be a real number such that ¢ >-1. Then

the function F(z) defined by |

Fezy =51 I £ e ctrat (7.1)

c
bt (0]

alsa belongs to the class P*(n,a,ﬁ).

Proor. From the representation of F(z), it follows that

00
F(z) = z - E: bkzk, (7.2}
k=2
where
c+l -
By —[ c+k ] k- 7.3
Therefore,
o ©
n n{ c+l
{ = - e
E: 1+ kb, }: (143K [ S ]ak
k=2 k=2
Lo o]
55: (1+B)knak$ 2301 -0 (7.4)
k=2 '

* ] *
since f(z)e P (n,a,). Hence, by Theorem 1, F(zde P (n,a,3).
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TuEoREM 14. Let ¢ be a real number such that c>-1. If F(z) e
P*(n,a,ﬁ), then the function defined by (7.1) is univalent in

|z] < R*, wheré

A
il

1
; n—1 .
* . (1+3)k (c+1)1K=1
(ke = 2). (7.

lcf [ 2R0(1 -0 (ctk) ] (k. = 2) 7.5

The result is sharp.

Proor. Let F(z) (a,20). It follows from (7.1

i
18]
l.
™15
i1}
e
I
e

2
k=2
that
1 C
= Lz "F(z2»1'
(z)= (c>—
f (c+iy e
m .
ct+k k
=z - 4 T . ;
E: e} )ak (7.6)
k=2

In order to obtain the required result it suffices to show that

|f'{z)—1| <1 in 'z| < R .
Now
|f‘(z)—1l <1 if
00
i o

Hence by using (6.3, (7.7} will be satisfied if

Kook (217 L aspk” > o
(c+1d R=TE T & ) Ko=)
ar if
n-1 —1~
- 1+33k Cc+12 k-1 . .
=zl “ - ¢ =z 22, (7.8
l=] < [“B(l ) (e ] ¢k 7.8)

*
Therefore f(z) is univalent in |z|<{ R . Sharpness follows 1if we



32

take

flz) = z - 2B Ccrk) ks oy (7.9

(143) Ce+1ok"

- 8. Modified Hadamard Products

Let the function fj(z) (3=1,2) defined by (5.1) The modified

Hadamard product of fl(z) and f_ (z) is defined by

x
ke .
(z =z - z - 8.1
fy*fo (2 § 1%, 2 8.1

TueoreM 15. Let the functions fj(z) (j=1,2) defined by (5.1
L *
be in the class P i(n,a,/3). Then fi*f?(z) belongs to the class
P¥(n,7(n,a, 37,3, where

. pl-c0”

yin,on@ = 1 ¢
2"y

- 8.2

The result is sharp.

Proor. Employing the technique used earlier by Schild and
Silverman [5], we need to find the largest y= pin,a,3) such that

@

. -, N
{ 1+r§) 15 )
} : IRy 2k, 1%,z 5 1- (8.2)
k=2
Since
® n
1+ kK _
———— < g
§ R0 Mk, 1 =1 (8.4)
k=2
® n
1+ K
§ 2R(1-o0 e,z = 1 (8.5)

e
]
[



by the Cauchy-S5chwarz we have

@© n
, (1+k /o a <1
ZB1-c0 k,1%,2 ~ "
k=2

Thus it is sufficient to show that

n n
4k a a < Uk Y a (k =2 23,

3R 70 “k,1%%,2 T ZA-o0 k,1%%,2

that is, that

Naote that

201 —
Y a 5.:6;1_31 (k > 2).

- a -
k17,2 kn(1+ﬁ)
Consequently, we need only to prove that

2R(1-a) _ 1-a

< (k = 2),
n,
K1+ 1
or, equivalently, that
y o<1 - 20 s oy,
K1+
Since
. a —";'
ACk)= 1 - :gil_gz__
kT 1+

1s an increasing function of k (k =2 2), letting k=2 in (B.12),

<

obtain

. 2
_ pCl-o

pel-ow
2" L1

y € AC2) =1

which completes the proof of Theorem 15.

33

(8.6

(8.7

(8.8

(8.9

8.10)

(8.11>

8.1

we

(8.13)
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Finaily, by taking the functions fj(z) given by

f.(2) = z- _Qé%zgl_ 2% (j=1,2), (8.14)
J 2" e

we can see that the result is sharp.

CoroLLARY 9. For fi(:) and f, (z) as in Theorem 15, we

have

Z Tk
(= =z - = (8.15
hi(z) V/ak,l ak,“ 8.15)

. *
belangs to the class P (n,a,n3).

This result follows from the Cauchy- ineguality (8.58). It is

sharp for the same functicons fj(z) (j=1,2) as in Theorem 15.

THEOREM 16. Let the function fliz) defined by (5.1) be in the
class P*(n,a,ﬁ) and the function fo(z) defined by (S5.1)

(T be in the

s

class P (n,7,R3). Then fl*fECE) belonags to the  class P¥(n,C(n,

&, 3, 73,3, where

Cinyo,@,t) = 1 - B‘i:?)‘l"T’ ) (8.16)

20 (e

The result is sharp.

Proor. Proceeding as in the proof of Theorem 15, we get

{ < Bekysg - 2Bl d-m o oy

7143

. £8.17)

Since the function B(k) is an increasing function of k (k> 23

letting k=2 in (8.17), we obtain
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_ pil-o) (1-7)

2" L yapmy

r < B(2) =1

y (8.18)

which evidently proves Theorem 16.

Finally, the result is best possible for the functions

pll-o0) 2

-} = =-— z =N
fl(‘) = =z 3”—1(1+ﬁ pd (8.13]
and
fozy = 2o LYTT) 2 (8.20)
< 2"t
CoroLLarY 10. Let the fTunctions fj(z) (j=1,2,32) defined by
(5.12 be. in the class %*(n,a;ﬁ). Then fi*fz*fgiz) belongs ta thg

. _ .
class P {(n,nin,a,33,r3’, where
¥

2 3
R (1-ad

EIGES S =
2207

nin,o,B3) =1 - - (8.217

The result is best possible for the functions

-o) =z
fotz) = z- LT 2

} 2" egam

(j=1,2,2). (8.22)

*
Proor. From Theorem 15 , we have fl*fziz) e P (n,yin,a, 3,3,

where p is given by (8.2) . We pow use Theorem 16, we get

. * .
fl*fz*fz(z) € P (n,nin,o,R32,R3), where

_ pll-o) (1-p)

nin,o,R331=1

2" ey
- 5
-1 - (31—
Ez(n—lJ(1+B)¢

This completes the proof of Corollary 10.



TueoreM 17. Let the functions fj(z) (j=1,2) defined by

be in the class P (n,a,3). Then the function

©

2 2 k

h(z) = =z 2: [ak’1+ak’2]~ v
k=2

*
belongs to the class P (n,¢(n,a,3),R3), where

2
1oy 2
pinyo,m =1 - Bl-ad
27 (e
The result is sharp for the functiaons fj(z) (J=1,22
(B8.14).
ProoF. By virtue of Theorem 1, we obtain
® N2 o n .
£1+B)k. a < (1+(’9')k~ a < 1
2RC1-py) k,1 2p01-ad Tk, 1
k=2 k=2

and

- (e o)
n < n s
(1fB)L‘ a . < F1+8)k' a < 1.
2ZR(1) k,2 2pll-a0 “k,2

It follows from (B8.25) and (8.26) that

(+mk” 1 [ ek
2R - = | Zpliy

that is,

36

(5.1)

(8.235

(8.24)

defined by

8.25)

(8.26)

(8.27)

(8.28)
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R (8.29)
Since

43(1-c0 =

Dakr= 1 - =L
kT

is an increasing function of k (k 223, we readily have

o <Dz =1 - B
: n-—2 .
2N e

and Theorem 17 follows at ance.

TueoreM 18. Let the functions f, (z) defined by (5.1 be in

1

% .
the class P Cnl,a,ﬁ) and the Tunctions f.,(z) defined by (5.1) be

.

. * . . * . *
in the class P (n_,o,3). Then f *f_(z) « P (n,,0,3) NP (n,,a, 3.

1 1 2

. ) *
Proor. Since f_(z) € P (n_,o,3), we have

k,E _'-E—‘:—:— (.B-\:J())
Loy
where
n.
c, .= 1k . (j=1,2) (B.21)
Cky
*
From Theorem 1, since fICz) e P (nl,a,ﬁ), we have
0
< 2RC1-00 (8.32
}: Ck,lak,l < 2R(1-a). 8.
k=2

Now, from (B.30) and (8.32), we have

o8]
23(1 -0V
<
E: “ky1%%,1%%,2° T o E: “ie, 1%, 1
k=2 sy s 2



2
[23C(1-00 1

C

i B ]
Ly L
. 2pC1 -0 .
Since —li————- < 1. Hence f, *f_(z)
: Co A 1 =z
Ly

and n, by each other in the abdve,

Hence the theorem.

38

< 2p(1-a) .

* .
e P (nl,a,ﬂ). Interchanging ny

*
we get f,xf_ (z) e P (n,,a,3).
kS pral -
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