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On the General Index Transforms in L,-Space

Semeén B. Yakubovich* (R5)b— v EIAY)
Megumi Saigo! [Fas #]  GRRIAZ:EREM)

Abstract

This paper is devoted to study index transforms under general constructions of
kernels, which involve the known Kontorovich-Lebedev, the Mehler-Fock integral
transforms and, further, the index transforms with Meijer’s G-function and Fox’s
H-function as the kernels. Mapping properties and inversion theorem on the space
L,,(Ry)N L, (R,) with the norm

%) 1/
Ullo = ([~ e 1s00at) " <00 (1<p<2 veR)

are investigated. As an example, the generalized , F-index transform of the Olevskii

type is considered.
AMS Subject Classification (1991): 44A15, 44A20

1. Introduction

In this paper we deal with the so-called general index transform of the form
(1.1) Wen @ == [TYEmimi (>0,
where the kernel Y;¥(z) is the respective index kernel of the kind
(1.2) Vi) = [ Kulplendy (@ >0),

involving the known Macdonald function K;,(z) [1] and an arbitrary characteristic func-
tion ¢(z) from some space L, ,(R4). The indicated Macdonald function with the imagi-
nary index is the kernel of the known Kontorovich-Lebedev transform pair [2]

(13) e =gr) =7 [ Kalwiwdy (v>0)
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(1.4) zf(r) = %/w sinh(r1)K;,(2)g(7)dr (x> 0).
0
As it is known, the Macdonald function has the expression [1]
-—:vcoshﬂ irp
(1.5) Kif(z) = 2/ ¢™8dB  (z > 0).

By the analytic property of the integrand in (1.5) and by its asymptotic behavior at the
contour we can shift its integral line to the horizontal open infinite strip (16 — 00,16 4+ o)

with 8 € [0,7/2) as

t6+00 . .
(1.6) Ki(z) = é / e~=hBeimBdR (2 > 0).

1§—00
We note here the useful uniform estimate for the Macdonald function [9]

T+ 1 —67'—:vcos6

(1.7) |Kir(z)| < Cs— (r,z > 0),
where 0 < § < 7/2 and Cj is a positive constant depending only on 6. In [7] and
later in [8] the generalization of the Kontorovich-Lebedev index transform (1.3)-(1.4) was
constructed for the case of Meijer’s G-function [1] as the kernel. As it was shown (see also
[9]), this general index transform comprises enough wide class of integral transforms such
as the Mehler-Fock transform [10], [12], the Olevskii transform [9], the Lebedev-Skalskaya
transforms and its new generalizations [11]. Detailed information about index transforms
and modern results in this field can be found in the book [10].

In this paper we continue our approach to construct and investigate index transforms
in the weighted space L,,(R4) with 1 < p < 0o and v € Ry = (0,00) of Lebesgue
measurable complex valued functions f for which

(1.8 ko = ([ 100 ‘“)/ <oo.

When v = 1/p, this space reduces to the usual Lebesgue space L,(R,). There are not
so more papers dealt with the study of the mapping properties of the index transforms
in L,-spaces for arbitrary values of p. Most of the obtained results for index transforms
were devoted to the cases of L; and L, spaces. The survey and historical notices can be
seen in [9]. We note also that the L,-theorems for the Mehler-Fock transform are given
in [10], [12]. We will study here not only mapping properties of index transforms, but the
hypergeometric approach [9] on their investigations, and the composition structure using
the Mellin transform theory in L,, and the theory of Mellin convolution type general
transforms (see [6]). The approach allows us to obtain new interesting examples of index
transforms with special functions of hypergeometric type as the kernel, and give inversion
theorems in the spaces L, .
For f € L,,(R;) with 1 < p < 2 the Mellin transform is defined by [6]

(1.9) ;)= [ IweTtd (Re(s) = v),
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where the convergence of the integral (1.9) is understood in the norm of L,(v — too,v +

100) (¢ = p/(p — 1)). In particular, if f € L,,(Ry) N L,1(R4), then the integral (1.9)

is the usual improper absolutely convergent integral. In what follows the parameter p is

taken as 1 < p < oo when no otherwise is stated and the parameter ¢ denotes p/(p — 1).
Let us give some useful results from [6].

Theorem 1. If f(z) € L,,(R4) (1 < p < 2,v € R), then its Mellin transform
f*(s) = f*(v +it) exists and belongs to the space Ly(R), where R = (—o00, ).

Theorem 2. If f*(v +1t) € L,(R) (1 < p < 2,v € R), then the inverse Mellin
transform

1 v+ico . .y
(1.10) f(gc)_R/V_ioo FH(s)e=%ds (z > 0)
exists and f(z) € L, ,(R4). Moreover, the equality
_ 1 d v+ico f"'(s). s
(1.11) fl@) = 5= /y_iw —a1ds (2> 0)

is true for almost everywhere on R .

Theorem 3. If f*(v +it) € L,(R),h(x) € L1-,,(R4) (1 < p < 2,v € R), then the
Mellin-Parseval equality

v4ioo

(1.12) I ratybieye = 5% L7 prehe - s)eds

takes place.

At the final of this section let us note the Holder inequality for weighted spaces

(1.13) ANELOL G V[P

for f(z) € L,,(Ry), k() € Ly_, 4(Ry), and the generalized Minkowski inequality

(1.14) (/Ooodx p>l/p5/0°°dy (/Ow |f(;,g,y)|1’d;p>]/p.

/Ooo f(z,y)dy

2. General Results

In this section we will investigate the general index transform (1.1) in the space
L,,(R;) and will establish its inversion theorem.
First we need the following;:



Lemma 1. Let ¢(z) € L,,(R4) with v < 1 and p > 1. Then for the index kernel
Y (z) the estimate

(2.1) V8 lp < CsD(1 = ») (cor~1 6) T2
.

-5
e lellvp (T >0)
is true, where 0 < § < 7 /2 and Cs is a positive ahsolute constant depending only on é.

Proof. In view of the generalized Minkowski inequality (1.14) and the estimate (1.7)
of the Macdonald function K;(z) in (1.2), we obtain the following chain of expressions

p)llp

00 00 1/p oo
< s pr—1 p — |l “VIK.
_/0 |Kir(y)| dy (/0 ! p(ry)] dw) IIQIIV,p/() vy |Kir (v)| dy

/0 T K ir(y)p(ry)dy

P — 0 pr—1
(22) (¥Ellp= ([ o™ da

T+1 —0T e —Yy cos -V
< Collglly e [~ emvetyrdy

1) THL g
= Cs['(1 —v) (cos ! 6) — ¢ 571l vp-

This completes the proof of Lemma 1.

Lemma 2. Let ¢ € L1_,4,(Ry) and f(z) € L,p,(Ry) (v > 0,p > 1). Then the index
transform (1.1) has the estimate k

(2.3) Y2 £1(7)] < CsT(v) (cos™ 6) (r + Ve | @lli-vgll fllvp (T >0),

where 0 < § < /2 and Cs is a positive abhsolute constant depending only on é.
Proof. Using Lemma 1 and the Holder inequality (1.13), we have

(2:4) @< [T v sl
< CsT(v) (cos™ 8) (7 + 1)e™ @l 1-vall -
Thus Lemma 2 is established.

Corollary 1. The general index transform (1.1) is a bounded operator from the
space L, ,(Ry) (v > 0,p > 1) into the space L.(Ry) (r > 1) and

(2.5) NEZA < Cosllflluw

for 0 < § < w/2, where C, 5 is a positive constant depending only on é and v.
Proof. By choosing some positive parameter é € (0,6/2), we obtain

k 0 1/r
26) IR < CoTw) (cos™ 8) Sy ([ (4 17e77dr) " = Cugllf Il

from the estimate (2.4), which proves (2.5).
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Let us consider the operator

(2.7 (lg'g) (z) = %/w sinh((r — €)7)V¥(x)g(r)dr (z > 0),

where ¢ € (0,7) and Y¥(z) is the index kernel of the type (1.2) but with another charac-
teristic function #(x).

~ Theorem 4. Let ¥ € Li(Ry)N Lyy11(Ry),9 € Liyy(Ry) (v > 0, > 1). Then for
the function g(t) = [Y;Zf] () represented by the general index transform (1.1) with the
density f(y) € L,,(R,), the operator (2.7) has the form

E

sine o uv K 1 \/u2 + v2 — 2uv cos é‘)
= xu)(P dud
/ / Vu? + v? — 2uv cose Plz)(@f)(v)dudv,

where K1(z) is the Macdonald function of index 1 and (® f)(z) is the Mellin convolution
type transform [9]

(29) (@N)@) = [~ o) fwdy (@ >0)

with the kernel ¢(z).
Proof. First we note that the composition

(2.10) [Yi2f1(r) = [RE(® )] (1)

holds for the index transform (1.1), from the estimate (2.4) and the Fubini theorem
for the respective iterated integral in the right-hand side of (2.10), where [RCf](7) is
the Kontorovich-Lebedev transform (1.3) of an arbitrary function f. Substituting (2.7)
instead of g(7) the composition representation (2.10) and instead of the kernel Y (z) its
definition (1.2), we obtain the iterated integral

(2.11) (1) (2) = -:—2 [ sinh((x — e)r) / ™ (0) Kin (0)do

X T/ K (u / f(y)e(uy)dydudr (z > 0).
0

Using the inequality (1.7) and the condition on the function 1,we deduce the estimate of
the kernel Y;¥()

28)  (I?g)(

V(2) < cs T2

—sr [ —vcosé
e [ (zv)le dv
0

1
s

IN

1 00
_6"/.- Id)(xv)[dv—i—C;;T / [t (zv) [v¥dv

T+ IC—ST.

( ||¢||L1(R+) + 027: ”Hd ”Iv+1 1(R+))
3

Hence invoking to (2.3) for each z > 0, we can estimate the mt.egral (2.11) for € € (0,7)

(212) |(79) ()| < (Cra 1 llzay) + Cor™ Il ussn(re)) Nplhi—val |1l

X /00 E.I}M(T +1)2eCr¥8)dr < oo,
0

T
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where v > 0 and we choose §; (i = 1,2) such that 7 — e < §; + 62 < 7. Hence we observe
that the integral by 7 in the estimate (2.12) is convergent and we can apply the Fubini
theorem to obtain (2.8) after using the formula [5, Vol.2, (2.16.52.6))

zy K, (\/a?? + y? — 2xy cos 5)
VT y? —2rycose

(2.13) —?—/ 7sinh((r — &)7) K, (2) Ki-(y)dr = sine
7 Jo
at the inside integral by 7 . Thus Theorem 4 is proved.
The inversion of the general index transform (1.1) in L, , is given by

Theorem 5. Let 1 < p < 2,0 < v < 1 and g(r) = [Y7f](r), where f(x) €
L,,(R)NL,1(Ry) and ¢ € Li—yo(Ry) N Ly, 1(Ry). Let the characteristic function
() satisfying conditions in Theorem 4 be from the space Liy,,(Ry). Then the limit
equality of the type

(2.14) Lim. (I‘b /f Ydy (z > 0)

e—0+
in the Ly, -norm is valid if and only if the equality

1

— 8

(215) (1 +s)p*(1—s) = (Re(s) = v)

is fulfilled, where ¢* and ¢* denote the Mellin transform (1.9) of functions ¥(z) and (z),
respectively. Further, the limit in (2.14) exists almost everywhere on R,.

Proof. The proof follows after the respective treatment of the integrals in (2.8).
Indeed, by changing the variable v = u(cose + t sin€), we obtain the equality

(t,u,¢€) .
(2.16) / /oo P — 2 “up(ru(cose + tsine))
X (cose + tsine)(®f)(u)dudt,
where € € (0, 7) and
usine V2 + 1K, (u sine V1?2 + 1) (t > —cote),
(2.17) R(t,u,e) =
0 (t < —cote).
It is easily seen from the asymptotic behavior of the Macdonald function K;(z) [1]
|R(t,u,e)l < C
for any t € R, u € Ry and € € (0,7), where C is a positive constant, and

lim R(t,u,e) =1.

e—0+
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Hence by estimating the norm (1.8) of the obtained operator (2.16) in the space L, ,(R)
by the aid of the generalized Minkowski inequality (1.14) and the conditions of this the-
orem, we find

(218) || (I*9) ll415

C [ o 1 L .
< ;/0 u|(¢>f)(u)|/_cots t2+1||1/’(-Tu(cose-{—tsms))H,,H,,,(('ose+tsm€)dtdu

dt

¢ ® . [*® o cose +tsineg)™¥
< Clllons [~ [T 1@t ldyd [~ )

—~cote t2 + 1
< Cullllvrpllell-vall fllv1s

where C and C are positive constants. When 0 < v < 1, by virtue of the formula {5,
Vol.1, (2.2.9.7)] we can estimate the integral

[ - /°° (cose +tsine)™

dt
—cote t2 + 1

and obtain I, < Asine for A being a positive constant and ¢ € (0,7). Further, since
f(z) € L,,(R}), then one can show that

1 z
;_/0 f(y)dy € L,41,(Ry).

Indeed, using the inequality (1.14) we have that

(2.19) ;15 /0 xf(y)rly = 515 /0 1 f(xy)dy

U+1,P V+17p

< [las (1P ) =ity [ v < o

So, by the known properties of the Poisson kernel P(t) = 1/x(t* + 1) we obtain from the
equality (2.16) the estimate

(220) |(0) - [ rw)ay

< 1/°° | cose + tsine |
R Y t2+1

X H/Ooo u(Pf)(u)R(t,u,e)P(zu(cose + tsine))du — %/Oz f(y)dy

v+1,p

dt.

v+1l,p

We must now establish that the right-hand side of inequality (2.20) tends to zero, as
¢ — 0+, which will lead to the limit equality (2.14). In fact, using the above estimates
and the Lebesgue theorem, we observe that the right-hand side of (2.20) tends to the
expression ‘

(2:21) |[7 w@npptedn— = [ )y

)
v+1,p
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which is equal to zero. Indeed, according to the Mellin-Parseval equality (1.12) and owing
to Theorems 1-3, we can represent the Mellin convolution type transform (2.9) in the form

v+ico
(222) @N@) =5 [ f ()" 1= o),
where ¢*(s) is the Mellin transform (1.9) of the function ¢(z), and ¢*(1—v—1t) € L,(R).
Since f*(v + it) € L,(R), then by the Holder inequality the integral (2.22) is absolutely
convergent and the estimate |(®f)(z)] £ Ca*~! (z > 0) is obtained. From ¢ € L,111(R+)
and by the Fubini theorem, we can change the order of integration in the iterated integral
in (2.21) accounting (2.22) and have the equality

v+1l,p

e23) | [T @@= [ fwa

- H;E / (1 (1 + 8)g(1 — s)z*Nds — % [ 1wy

—100 v+1,p
1 v4i00 f"‘(s) o1 1 T
I Ry O JUPRI N PY
271 /u—ioo l—sac 3 z2 Jo f(y)dy vilp

under the equality (1.11), if ¢*(1 + s)p*(1 — s) = (1 — s)~". Inversely, if

=0,

v+1,p

) o [ o+ et = 9 s = o [T )iy

then for almost all > 0 it follows that

x v+ico :

[y =5 [ g1+ 71— )2 ~vds
0 271 Ju—ico

and from the equality (1.11) and Theorem 1, we have the relation (2.15). Thus from

(2.23) we conclude the validity of the limit relation (2.14). The existence of the limit

almost everywhere on R, follows from the radial property of the Poisson kernel P(t) =

P(|t]) € Li(R4). Theorem 5 is proved.

3. ,F,-Index Transform of the Olevskii Type

In this section we consider a very important example of the general index transform
(1.1) being introduced by Olevskii [4], which contains the Gauss hypergeometric function
[1] as the kernel and generalizes the famous Mehler-Fock index transform [10], [12] with
the associated Legendre function of the first kind [1]. Indeed, putting into the formula
(1.2) () = z°~'J, () (z > 0,Re(e+ pr) > 0), where J,(z) is the Bessel function [1], we
obtain the value of the respective index kernel Y:¥(z) using formula [5, Vol.2, (2.16.21.1)]
as

(3.1) /0 "y, (ey) Ko (3)dy
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go-z u D@+ s+ ir)/AT(0 + = i7)/2)
) T(p+1)

at+pu+it a4 u—1r
x"’F‘( l; ’ ;2

i+ 1;—372) (z > 0).
Thus the formula (1.1) is reduced to the Olevskii transform

(32) LF fl(r) = 202, LUt # )/ 2T (o + 1 = i7)/2)

F(p+1)
y /Ooota+“'12F1 (a+/;+rr’a+/;—zr;“+];_t2> F(t)dt.

Let us establish the inversion formula for the Olevskii transform (3.2) in the space L,,
following to Theorem 5. From the asymptotic behavior of the Bessel function [1] we ﬁnd
that of the characteristic function ¢(z) = z*=1J,(z), as 2 — 40 and z — co. Precisely,
we have

(3:3) @M (2) = 0@z (x> +0),  271J,(z) = O(x*Y?) (2 — o).
Thus in order to be fulfilled the assumption of Theorem 5 ¢ € I,;_ va(Ry)N Ly, 1 (Ry),

we assume that the inequality

(3.4) —% < v — Re(a) < Re(g)

holds as a corollary of the absolute convergency of the respective integral (1.8). Further,
from the functional relation (2.15) we easily obtain the expression for the Mellin image of
the characteristic function ¢(z) at the point 1 + s as

(3.5) (1 +5) =" (1 =)' (1 =5 (Re(s) = v).
Invoking to the value of the integral [5, Vol.2, (2.12.2.2)]

D((a+s+p—1)/2)
M(i—a—s+3)/2)

(3.6) ©*(s) =/ gt 2] (z)dz = 20F*2
0
the equation (3.5) takes the form

1 T(14(—a+s+pu)/2)
l1-s TI'((p+a-s)/2) °

Hence one can express the characteristic function +(z) in terms of the Mellin-Barnes
integrals using the Slater theorem [3], that is

(3.7) P(1 4 s) = 27+

9-otl /v/2+ioo T(1+(p—a)/2+s)T(1/2 -

s) “26 4
2m Jv/2-ico F((/1+a)/2_3)11(3/2_3) (z/2)~*ds.

(38)  op(x) =
First let us discuss the convergence of the integral (3.8). By the asymptotic Stirling
formula for the Euler gamma-function [1] we easily have that y*(1+v+it) = O(Jt|~Re(@)
(|| — oo). Therefore if we make to be precise the right inequality in (3.4) as v — Re(a) <
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min[Re(pt), —1/q] (¢ > 2), then we arrive at ¢¥*(1 + v + it) € Ly(R) for any ¢ > 2 (see
also Theorem 1) when 1 < p < 2. So the integral (3.8) is convergent in the mean sense,
but since v — Re(a) < 0 in the oscillation term of the Stirling formula, it allows us to
conclude that the integral (3.8) is conditionally convergent, too. Moreover, from Theorem
2 it follows that ¥(x) € Li4,,(R4) (1 < p < 2). Let us show that the value p = 1 is
also possible in this case. For this, we will use the corollaries of the Slater theorem [3].
We note that it is not necessary to evaluate the integral (3.8), because the final purpose
is to write the inversion operator like (2.7) for the introduced Olevskii transform and for
this we need to evaluate the respective kernel Y;¥(z). It is more easy to use the Mellin-
Parseval formula (1.12) on this matter which is allowed to avoid the direct calculation of
the function % (z).

Now let us assume that the contour at the integral (3.8) separates the right and left
poles of the integrand, for which let us set

(3.9) -2+ Re(a—p)<v<l.

Hence from the Slater theorem and its corollaries (see details [3]) it follows the asymptotic
behavior of the function ¥

(310)  $(@) =0 (a—04), ¥(x)=0@"?) (r— co).

Therefore, if 1 + v 4 Re(p — @) > 0, then we achieve the property ¢ € L,411(Ry) taking
into account the integral (1.8) and the asymptotic (3.10), because the function 3 has no
other singularities as we concluded from the Slater theorem.

To write the inversion formula like (2.14) we need to evaluate only the integral (1.2)
for the kernel Y;¥(z). Making use of the Mellin-Barnes representation [3, §10, 9.3(1)] of
the Macdonald function K;.(z)

o= L [ () p () o
(3.11) 1{,,(1)_47&/7_@2 DD T (555 )ads (@>0,9>0),

we substitute it into the formula (1.2) for the kernel Y;¥(z). We perform to change the
order of integration by the Fubini theorem in view of the Stirling formula, by noting the
asymptotic (3.10) and by taking the positive parameter ~ such that 2+ Re(p—a)—v >0
to provide the property 2= "¥(z) € L;(R4). Thus after evaluating the inside integral of
the formula (3.7), we obtain the representation

o) v =1 [T () () e s e g

Then from the differential properties of the last integrand and the uniform convergence
of the integral (3.12), it can be written as

9=z~ qr  prtieo (s 4ir\  (s—it\T(1+(p—a—s)/2)
Y () = s
.13) o) = 2= [T [T (S5 0 () Sr e

— 9 p? / " F(t,iT)dt.
0
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Finally, calculating the Mellin-Barnes integral (3.13) by the Slater theorem, we arrive at
relations depending on the values of variable ¢

Fl+(p—a+ir)/2)T(1 + (g — a—1i7)/2)

(3.14) F(t,ir) = t*t+—°

Mp+1)
X2F1(1+'u_02—",1+H_;-I—”;u—{-l;—tz) (0<t<1),
) T+ (g — a—1i7)/2)T (i)
3.15) F(t,i7) =17 :
(3.15) F(t,i7) N(u +atir)2)

><2F1(]+”—a—” ﬂ+a+";l—ir;—l2)

71”_
2 2
I'(1+ (g — a+11)/2)T(—ir)
(g +a—ir)/2)
oy (14 L0 | _ptacir

+t¢.T

;14175 —t2) (t>1).
Thus as a conclusion we obtain:

Theorem 6. Let 1 < p < 2,0 < v <1 and ¢g(r) = [Fi" f] be the Olevskii type
transform (3.2) of a function f(z) € L,,(R4y) N L,1(R4). Then under condition (3.4)
and inequality 1 + v + Re(p — a) > 0, the inversion formula

-—a+1

(3.16) /0m f(y)dy = Lim.

e—0+ 2

//smh ((r —e)r)F(t,ir)g(r)ditdr (z > 0)

is true by the norm in the space L, 1,(Ry), and the limit in (3.16) exists almost every-
where on R,.
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