0oooo0O0oooo
918 0 19950 178-195 178

'On embedding of ‘classical substructural logics

Ken-etsu Fujita
Kyushu Institute of Technology
email: fujiken@ai.kyutech.ac.jp

27 March, 1995

Abstract

There is an intimate connection between proofs of the natural deduction systems and typed
lambda calculus. It is well-known that in simply typed lambda calculus, the notion of formulae-
as-types makes it possible to find fine structure of the implicational fragment of intuitionistic logic,
i.e., relevance logic, BCK-logic and linear logic. In this paper, we investigate classical substructural
logics comsisting of implication and negation. However our method would be general to be applied
to rich systems beyond the fragment. We show that proofs in Parigot’s Au-calculus with proper
constraints exactly correspond to proofs of substructural logics of Gentzen’s LK. Moreover we discuss
three embedding of classical substructural logics into the corresponding intuitionistic substructural
logics.

1 Introduction and motivation

In the implicational fragment of Hilbert style intuitionistic logic, one can find three substructural log-
ics, i.e., BCI, BCK and Relevance logic which are characterized by some structural rules in terms of
sequent calculus. The proofs of these intuitionistic substructural logics of Hilbert style correspond to
BCI-)-terms, BCK-A-terms and Al-terms respectively via the Curry-Howard isomorphism. Usually the
classical system of Hilbert style is obtained by adding Peirce’s law to the intuitionistic system. However
it might be known that adding Peirce’s law makes each intuitionistic substructural logic classical. In
other words, we can derive both the axiom K (A > B D A)and W ((A D> A D B) D A D B) in the
implicational fragment of LJ with the left exchange rules, the cut rules and Peirce’s law as axioms where
the cut rules in the proofs could not be removed. ,

On the other hand, H.Ono {Ono90] proved that GL, + I" — A iff FL., - T' — A with proviso that I'
and A contain neither multiplicative disjunction nor multiplicative constant 0. Here 2 denotes empty, ¢
(adding contraction rules) or w (adding weakening rules). FL is called full lambek calculus, and GL is a
classical logic with neither contraction nor weakening rules, which is same as Girard’s linear logic. Since
we usually define negations using the multiplicative 0, this theorem might mean that we cannot expect
classical substructural logics without negations, and that even if we take classical substructural logics
without negations, they are essentially intuitionistic.

This paper investigates classical substructural logics consisting of implication and negation. However our
discussion is not available only for the fragment. As a natural extension of restricted A-terms (BCI-)-
terms, BCK-A-terms and Al-terms), we define the corresponding classical proof terms (GLx-Ap-terms
where X is nil, C or W) in terms of Parigot’s Au-term with proper restrictions. It is proved that these
classical terms exactly represent proofs of Gentzen’s LK without weakening rules or contraction rules,
i.e., the well-known notion of Curry-Howard isomorphism with respect to classical substructural log-
ics, and that there exists a principal type scheme. We show that three double negation translations
(Gédel, Kolmogorov and Kuroda) give embeddings of the classical substructural logics into the corre-
sponding intuitionistic substructural logics. As corollaries of the embedding theorem, it is obtained that
every GLw-Ap-term is stratified, typability and inhabitation are decidable, well-typed G Lx-Apu-terms
are strongly normalizable.

2 The Au-Calculus

Originally Ap-calculus was invented by M.Parigot [Pari92-2] as a multiple-consequence natural deduction
system in order to give a naturally computational meaning to classical proofs via the Curry-Howard

179

isomorphism [How80]. Here we introduce the modified version in which inference rules have one conse-
quence like in NJ and naming rules are treated as a form of applications. The syntax of the Auy-term M
is defined by A-variables z and p-variables a:
M = z|MM| z.M|aM|pa. M .
The set of A-free variables and A-bound variables in M are usually defined, which are respectively denoted
by AFV(M) and ABV(M). The set of p-free variables and p-bound variables in M are also naturally
defined, which are denoted by uFV (M) and uBV (M) respectively. If A\AFV(M) = ¢, then we call M as
A-closed. If uFV(M) = ¢, then we call M as p-closed. When M is A-closed and p-closed, we call M as
closed.

We have two kinds of types, types indexed with A-variables and negated types indexed with p-variables.
In the following —A is a set of u-indexed negated types and distinct types never have the same index,
and T denotes the usual set of types with A-variables. The set of type assignment rules T' Ay, is defined
as follows together with the rule that infer I',-A Fz: Afromz: A €T.

I‘,(IJZAl,ﬂAF]\/[:Az Fl,"lAlf—MllAz—*Al FQ,‘IAg"MQZAQ

T,—-AF o.M : A — Ay - T1, D9, ~A1,—As F My Ms : A; (= E)
I'N'-Aja:mAFM: L a:-Ae-A T,-AFM:A
T-AFpadl 4 P T.oAF all: L (L)

The first two rules are called logical rules and the latter two are called naming rules. When there is
a TAy, deduction of a statement I',=A + M : A where —A is a set of negation types indexed with
p-variables and T is a set of undischarged assumptions indexed by A-variables, we say M is stratified.
LetT'be 2y : Ay, Zm ¢ A and A be a; : Ay, -+, ap : mA,, then a set of A-variables ASubjects(T')
is defined by {z1,---, 2} and a set of pu-variables pSubjects(—A) is {a1, -, an}. Sometimes we need a
minor modification of the Parigot’s Ap-calculus with respect to the treatment of negations. For instance,
closed Ap-terms in our usual sense might contain free y-variables which are indexes of L. P.de Groote
gives one modification adding negation rules to overcome this problem. The above system of one version
of the Ap-calculus also avoids this kind of problem.

The one step reduction rules with respect to p-abstraction are usually defined as follows.
Structural reduction: contract (pa.M)M; to (pa.M)[a <= My] where
(1) z[a < My] = z;
(2) (Az.M)[a < Mi] = Az.M[a < M
(3) (MM')[O{ = Ml] M[a ~ MﬂM’[a = Ml},
(4) (uB.M)la <= M1] = pf.Mla < M];
(3) (aM)[a < M) = a(M|a < M]|M,);
(6) (BM)[a « M| = BMla< M] B # .
The second reduction is (S1) called a renaming reduction.
(S1): contract apfB.M to M| := al.
Other reductions are called (S2) and (S3) respectively.
(52): contract pa.aM to M if o ¢ pFV(M).
(83): contract pa.M to Az.po.M|o <] if M contains a subterm of the form aly.M' for some M.
The binary relations >, >* and =, on the set of Au-terms are defined with the usual 3-reductions, struc-
tural reductions and (S2).
1-1. ()\’EMl)MQ g]\/fl[iL‘ = MQ];
1-2. (;LOA.JMl)MQ > ,uoz.Ml[oz = MQ];
1-3. pa.aMv M if @ & uFV(M);
1-4. If My > My, then MMy > MMy, MiM v MoM, Ax. My > Az.Ms, pa. M > pa. My and aM; > aM,.

2-1, M v* M;
2-2. If My > My, then My o™ Mo;
2-3. If My v* My and M, v* My, then My b* Mj.

3-1. If My v™ My, then My =, Mo;
3-2. If M, =4 My, then M, =u M;
3-3. If My =, M5 and My =, M3, then My =, Ms.

Similarly we define >_, >* and =,_ without (§2). b, b} and =, are defined with all the above rules.
>g, b5 and =g are used for the usual binary relation on A-terms respectively obtained by the one step
(B-reduction, the reflexive and transitive closure, and equality relation. We implicitly use a-conversion.

180

Lemma 1 (Basis Lemma) .

(HDUETCI,ACA’andT,~AF M: A, then I',~A"F M : A.

(2) T, ~AF M : A, then A\FV(M) C ASubjects(T) and uFV (M) C pSubjects(—A).
(3) If T, ~A F M : A, then T 1 AFV(M),=A 1 pFV(M) F M : A.

Proof. By induction on the derivation of M : A.

By the Basis Lemma, it is clearly remarked that I', mA F M : A in the above system iff I' - M : 4, A
in Parigot’s original Au-calculus where I', WA I+ M : L in the above system is identified with I' = M : A
in Parigot’s Ap-calculus, and for the name 6§ of L, pu6.M is identified with M and [6]M is M.

Lemma 2 (Generation Lemma) .

(HIUT,~AtFz:A thenz:AeT.

(2) IfT,-A + M; M, : A where M is not a p-variable, then I'y,~A; + My : B — AandT'y,~Ag - M, : B
for some B where ' =T’ UTy and A = A; U A,.

Q) T,~Atr aM: A, then Ais L and I',mA + M : B for some B where o : ~B € -A.

(4T, -Ar+ Az M: A thenT,z: B,~AF M : C for some B,C where A=B — C.

BGYUT, At pa.M: A, thenT,-A,0: "AFM: L.

Proof. By induction on the length of the derivation.

Lemma 3 (Substitution Lemma) .

() T,~AF M: A, then I'o,~Ac - M : Ao where o is a substitution replacing a type variable with a
type.

(2) IfT,z:A-A1 - M;:Band Ty,-mAg - My : A, then T'y,T9, Ay, ~Ag Ml[z = Mz] : B.
(3)IfI,-A,3:—-AF M :Band a:-A€-A, then T',-A F M[G:=ao]: B.

(4) If T'y,~A; & My : A and T'9,mAg F My : B where a : ~(B — C) € -Ay, then I'1,T9,A; — {a:
‘I(B — C)},Ot : —1C,‘1A2 + Ml[a <~ Mz] T A

Proof. (1) By induction on the derivation of T',-~A + M : A.
(2) By induction on the derivation of I'y,z : A,=A; - My : B.
(3) By induction on the derivation.
{4) When a ¢ AFV (M), we have My[a < M,] = My, and apply Basis Lemma. Otherwise by the Gen-
eration Lemma, there is I's, 7Ag F aMj : L for some I's, M3 and Ag, and hence I'3,-Az - M3: B - C
where o : ~(B — C) € =Aj3. For such every subdeduction, we apply I's,-~As F My : B to obtain
FQ,I‘3,’1A2,ﬂA3 + M3M2 : C and hence Pz,Pg,“Ag,‘ﬂA;; - {a : —l(B - C)},Of :=C F aM3M2 H
Thus a derivation of I'1,T9,-A; — {@ : =(B — C)},a : C,~Ay + Mi[a < My] is obtained where
a: B — C € Ay was replaced with o : C.

It is proved in [Pari92-2][Pari93] that for untyped or typed Ap-terms, the reduction rules have Con-
fluent Property, Type preservation property and Strong normalization property.

Putting proper restrictions on Ap-terms makes it possible to define the notions of GLx-Ap-terms (X
is nil, C' or W) which would correspond to proofs of classical substructural logics respectively. We give
the definitions bellow, which all are natural extension of the well-known intuitionistic cases.

Definition 1 (GL-Ap-terms) .

1. Every A-variable is GL-Ap-term.

2. If My and My are GL-Ap-terms, AFV(M1) N AFV(M3) = ¢ and pFV(Mq) N pFV (M) = ¢, then so
is M1M2.

3. If My and My are GL-Ap-terms, x € AFV(M;) and a € pFV{M,), then so are Az.M; and pa.Ms.
4. ¥ M is a GL-Ap-term and o ¢ pFV (M), then so is aM. :

The clause 2 forbids the left and right contraction rules on applications, and the right contractions

are not allowed by the clause 4 in the other cases. The clause 3 excludes the left and right weakening
rules on abstractions.

Definition 2 (GLg-Ap-terms) .
1. Every A-variable is GLc-Ap-term.
2. If My and My are GLg-Au-terms, then so is M M.

3. If M; and Mj are GLc-Ap-terms, x € pFV(M;) and a € pFV (M), then so are Az.M; and pa.Ms.
4. If M is a GLg-Ap-term, then so is aM.

181

Definition 3 (GLw-Ap-terms) .

1. Every A-variable is GLw-Ap-term.

2. If M; and M, are GLw-Ap-terms, AFV(M;) N AFV (M) = ¢ and pFV (M) NpFV (M) = ¢, then
so is My M.

3. If M is a GLw-Au-term, then so are Az.M and pa.M.

4. If M is a GLw-Ap-term and o ¢ pFV (M), then so is aM.

When no conditions are applied on Au-terms, we call the terms as GLcw-Au-terms, which are exactly
Ap-terms.

3 GLx-)u-terms are proofs of GLx

Following [Ono90], we call the 1mphcat10na1 and negational fragment of Gentzen’s LK without the con-
traction rules and the weakening rules as GL. We show that GLx-Au-terms correspond to proofs of
GLx. In other words, according to the notion of formulae-as-types [How80], the types of GLx-Ap-terms
are provable in GLx for each X. We define GL as the following sequent calculus system with the right
and left exchange rules.

A—A

FaAA() AT A
AT S AV rqAﬁA(~)

I — A4 ATy — Ay (5-) A, T'— A A (=>)
A DAz,I‘l,FQ——)Al,Ag P—>A,A13A2 .

Iy — AL A A,rz—*Az()
T T2 — ALde

We define GL¢ as the above GL plus the right and left contraction rules, and GLw as GL together with
the right and left weakening rules. GLcw is defined as GL with all structural rules. T' is defined as a set
of types with distinct A-variables for the sequent T'. A is a set of types for the sequent A, which consists
of types with distinct p-variables. We refer to the following two theorems from [Ono90].

. Theorem 1 (Grisin, Wronski-Krzystek) .
The cut elimination theorem holds for GL, GL¢, GLw and GLcw.

Theorem 2 .Let FLgx be an intuitionistic fragment of GLx, i.e., based on LJ. Then GLx = FLgx +
——A 5 A where X is either empty or any of C;, W and CW.

Now we prove that GLx proofs are represented as G L x-Au-terms.

Theorem 3 (GLx proofs as GLx-Au-terms) .

(1) T — A, A in GL or GL¢, then there exists a GL-Ap-term or GL¢-Ap-term M respectively such
that T',~A M Ain TA,, where A\AFV(M) = ASubjects(T') and pFV (M) = pSubjects(A).

(2) If F — A, Ain GLw or GLcw, then there exists a GLw-Ap-term or GLow-Ap-term M respectively
such that I‘ -A+M:Ain TAxg-

Proof. By induction on the number of sequents contained in the cut-free derivation of GLx and case
analysis on the last rule. We show only the following cases.
(1) Casel. (D—):
By the induction hypotheses, we have I, -Aq My A; and z : Ay, FQ,"Az F My : 1 for some GLx-
Ap-terms My and My such that AFV(M;) = /\Sub]ects(I‘l), pFV (M) = pSubjects(Ay), AFV (M) =
MSubjects(T'a) U {z} and pFV (M) = pSubjects(Ay). We assume that it is possible to take A-variables
and p-variables such that AFV (M) N AFV (M) = ¢ and pFV(M;) O pFV(M;) = ¢. This harm-
less assumption is also used in the following cases. Now we can take a new variable z with the type
A1 — As. Since Ax.M; is a GLx-Ap-term, so is (zM7)Az.My. Thus z : Ay — Az,rl,rg,“Al,“!Az
(¢M;)Az.M; : L is obtained by (— E) where AF'V ((zM))z. M) = ASubjects(T1)UASubjects(T2)U{z}
and pFV((zMy)Az.My) = pSubjects(A1) U pSubjects(Ay) are satisfied.
Case2. (— C):
The induction hypothesis gives I,-A,a : ~A+ M : A for some GLo-Ap-term M where AFV(M) =

182

ASubjects(T) and pFV(M) = pSubjects(A) U {a}. By (LI) and (LE), we have I, -A F pa.aM : A
where the proof term is a GLo-Ap-term.

(2) Casel. (D—): o o

By the induction hypotheses, we have I';,mA; F M : A; and = : Ay, T9,~As + My : L for some
GLx-Ap-terms M; and M,. Since we choose variables such that (zM;)Az.M, is a GLx-Ap-term,
z:A; = A, Ty, Ty, ~Ay,-Ay F (2M1)Az.M; : L is obtained by (— E) where z is a fresh variable.
Case2. (— W): o

The induction hypothesis gives that I', A + M : L where M is a GLw or GLcw-Ap-term. Now we take
a new variable o such that o ¢ uFV(M), then T',~A I pa.M : A by Basis Lemma and (LE) where the
proof term is a GLw or GLcw-Au-term. ’

ForT',-A I M : A, sequents of formulae I'* and A* are defined as follows:

* _ >;
E{i : A}<U T)* = A,T* ifz € \FV(M); ({z: A}UT)" =T* if ¢ ¢ AFV(M);
({a: AJUA)* =A,A* ifa € puFV(M); ({a: AYUA)* =A* ifadguFV(M).

By Basis Lemma, we have I' T AFV(M),-A 1 pFV(M)+ M : A from I',-~A + M : A. Here T'* and A*
are the sequents obtained by omitting A-variables and p-variables from I' T AFV (M) and A 1 uFV(M)
respectively. On the inverse direction of the above theorem, we prove that G L x-Au-terms are represented
as GLx proofs.

Theorem 4 (GLx-Apu-terms as GLy proofs) .
Let M be a GLx-Ap-term. If T,—=AF M : Ain TA,,, then I'* — A* A in GLy.

Proof. By induction on the number of types contained in the T A ap deductions and case analysis on
the last rule. Only the following cases are mentioned.
Case of (— F), i.e., M is M1 M,.
Casel-1. AFV(M1) N AFV (M) = ¢ and pFV(My) N pFV(Ms) = ¢: ,
By the induction hypotheses, there are T'j — Af,A; D Ay and I'; — A}, 4; in GLx. Hence, using
(D—), we have Ay D A,T'5 — A3, Ay, and then T}, T — A}, A}, A2 by (cut).
Casel-2. AFV(My)NAFV(M;) # ¢ and pFV (M) NuFV (M) = ¢, i.e., M is GLc or GLow-Ap-term:
Following the above Casel-1 and use the left contraction rules.
Casel-3. AFV(M1)NAFV (M) = ¢ and pFV (M) N uFV (M) # ¢, i.e., M is GLc or GLow-Ap-term:
Following the Casel-1 and use the right contraction rules.
Casel-4. AFV (M) NAFV(M;) # ¢ and uFV (M) NpFV (M) # ¢, i.e., M is GLc or GLow-Ap-term:
Following the Casel-1 and use both the left and right contraction rules.
Case of (LE), i.e., M is pa.Mj.
Case2-1. a € pFV (M):
The induction hypothesis gives that I'™* — A* in GLx where {a : A}* is to be in A*, which is what is to
be proved.
Case2-2. o & pFV (M), i.e., M is GLw or GLow-Ap-term:
By the induction hypothesis, we have I'" — A* in GLx where {a : A} is not in A*. The use of the
right weakening rules leads to I'™* — A*, A in GLw or GLcw.
Case of (LI), i.e., M is aM.
Case3-1. o € pFV (M), i.e., M is a GLc or GLow-Au-term:
There is a deduction of I'* — A*, A by the induction hypothesis where {a : A}* is a member of A*.
Hence the application of the right contraction rules yields to I'* — A* — {A}, A in GL¢ or GLcw.
Case3-2. o ¢ pFV (My):
The induction hypothesis is what we need.

According to Theorem3 and 4, we can identify GLx-Au-terms as GLx proofs. Hence with help of
Theorem?2, the set of types inhabited by closed GLx-Au-terms corresponds to the set of theorems in
FLgx+ — —=A D A. Let BCI be the Hilbert-type system (axioms-based logic) consisting of modus
ponens and substitution rules together with axioms (I): AD A4, (C): (AD B> C)D> B> ADC, and
(B): (AD> B) > (C>A)DC DA Let BCIW be BCI with axioms (W): (A D> A D B) D AD B. Let
BCIK be BCI with (K): A D B D> A. Let BCIKW be BCI with axioms (K) and (W). Then from the
correspondence between Hilbert systems and sequent systems, i.e., BCI and FLg, BCIW and FL EC,
BCIK and FLgw, BCIKW and FLgcw, the statement in the Corollary is followed.

Corollary 1 .For each the corresponding pair of X and Y,
{A |k M : A for some GLx-Ap term M} = {A | Ais a theorem in BCTY 4 ——D > D}

183

4 Principal type scheme in GL, GL¢, GLy and GLcw

We prove the existence of a principal type scheme if GLx-Ap-term is stratified. With respect to substi-
tution, the most general type assignment for a Au-term is defined as a principal type scheme.

Definition 4 (Principal type scheme and principal pair) .

1. For a closed Ap-term M, a type A is a principal type scheme (p.t.s.) of M iff - M : A’ for a type A’
such that Af equals A’ for some substitution §.

2. A pair < T',=A; A > is a principal pair (p.p.) of M iff IY,~A’ + M : A’ such that (I',~A)f equals
IV,-A and Af equals A’ for some substitution 6. The deduction of I',mA + M : A is called a principal
deduction. ‘

In order to prove Principal Deduction Theorem, we use the Composition-Extension Lemma especially
in the case of applications.

Lemma 4 (Composition-Extension Lemma)

Let 6 be 6; Uy, A = Domain(6;) and B = Domain(fs). Let

(1) ANB = ¢; (2) 61 = p o7 where Domain(r) = A and Domain(p) C Range();
(3) Range(t) N B = ¢. Then there exists a p’ such that § = p’ o 7.

Proof. Take p' as 62 U p. See [Hind88].

Theorem 5 (Principal deduction theorem of GLx-Au-terms) .Let X be nil, C, W or CW.

(1) If a GLx-Ap-term M is stratified, then M has a principal pair < I',=A; A > where ASubjects(T') =
AFV (M) and pSubjects(—A) = pFV(M).

(2) There is a recursive algorithm which decides a GLx-Apu-term M is stratified and which outputs the
principal pair < T, =A;A > where ASubjects(T') = AFV(M) and pSubjects(~A) = pFV (M), if M is
stratified.

Proof. Along the line of [Hind88], by case analysis on the term M.

5 Reductions of GLx-\u-terms

In this section, we prove that each GLx-Ap-term is closed under the reductions. As a corollary, we obtain
subject reduction property of GLx-Ap-terms.

Lemma 5 .Let M be a GL or GLw-Ap-term.
Ifz € A\AFV(M) and o € pFV(M), then 2 and o occur exactly onece in M.

Proof. By induction on the structure of M.

Lemma 6 .(1) Let M be a GL or Lc-Ap-term.

If M b, N, then A\FV(M) = AFV(N) and pFV (M) = pFV(N).
(2) Let M be a GLw or Low-Ap-term.

It M o, N, then AFV(N) C AFV (M) and pFV(N) C pFV(M).

Proof. By induction on the derivation of M > N.

By the above Lemma, we straightforwardly derive the following.

Corollary 2 . ,

(1) Let M; and Mz be GLx-Ap-terms s.t. AFV(M;) NAFV (M) = ¢ and pFV (M) N pFV (M) = ¢.
It My b4 Ny and My by Na, then AFV(Ny) N AFV(Ny) = ¢ and pFV(Ny) O pFV(Ny) = 6.

(2) Let M be GL or GLg-Ap-term such that ¢ € AFV(M) and a € pF'V(M).

If Mvy N, then z € AFV(N) and o € pFV(N).

(3) Let M be a GLx-Ap-term such that a ¢ pFV(M). .

If Moy N, then a ¢ uFV(N). :

Lemma 7 (Reduction of GLx-\u-terms) .Let M be a GLx-Ap-term.
If M o2 N, then N is also a GLx-Au-term.

Proof. By induction on the derivation of M >} N.

184

Lemma 8 (Subject reduction of GLx-Ay-terms) .Let M be-a GLx-Ap-term.
T, -AFM:Aand Mo} N, then,-AF N:Aand N is also a GLx-Ap-term.

Proof. By induction on the derivation of M >} M’ and use Lemma?7. We only show the base case.
1. T,-AF (Qz.M)My : A
By Generation Lemma, ',z : B,mAF M; : A and T',-A I M; : B for some B. By Substitution Lemma,
T,-AF Mz := M) : A.
2. T,-AF (pa.M)M; : A
By Generation Lemma, I'y,-A; F M : L where o : =(B — A) € =Ay and T'y,=Ay + My : B where
' =T;UTls and A = (A; — {a: B — A})UA,. By Substitution Lemma, I'1,T3,-A; — {a: =(B —
A},a:=A,=As F My[a <= M) : L, and hence T', A + pa. Mi[o < Ms] : A
3. Wehave I', =A,ay : "A+ M : L where a; : =A € A from the assumption I',=A F ag(pag. M) : L.
By Substitution Lemma, I',~A + M|[ag := a;] : L is derived.
4. By assumption I',—A + pa.aM : A where a ¢ pFV (M), we have I',=A;a : =A + M : L. Hence
T TAFV(M),-A T pFV(M)F M : 1, and also T',-A F+ M : L by Basis Lemma.
5. From assumption I',—A F pa.M : A where M has a subterm of the form aly.M’ for some M’', we
have I',-A,a : =A F M : L, and A must be of the form A; — A, for some A; and A;. Hence by
Substitution Lemma and z : A; F 2z : Ay, we obtain I',z : A;,7A,a: -As + M[a < z] : L and then
I, -AF dz.paMla < z] : A

6 Embedding GLx into \y; via p-head form proofs

We have already observed that there exists a special form of classical propositional proofs [Fuji94-1],[Fuji94-2],
which we call g-head form proofs. In terms of Ap-calculus, the p-head form proofs are represented as
p-closed pa.M where uFV(M) C {a} and o ¢ uBV(M). This notion makes the four classes of GLx-
Ap-terms collapsed into the one class of GLow-Ap-terms.

Theorem 6 (u-head form proofs in GLcow) .Let M be a y-closed GL x-Ap-term.
If Ty, M : A, then there exists a pu-head form proof M’ as a GLcw-Ap-term such that T' by, M : A.

Proof. [Fuji94-1}[Fuji94-2] proved that there exists a p-head form proof for arbitrary classical proposi-
tional proofs.

The GLx-Au-terms can represent proofs of classical substructural logics of LK. On the other hand,
BCI-A-terms, BCK-)A-terms and Al-terms are proofs of substructural logics of minimal intuitionistic
logic, strictly speaking primitive logic. Now we consider the intuitionistic fragment of Ap-calculus with
one consequence, which is simply typed lambda calculus together with the intuitionistic absurdity rule.
Here p-operators appear only in the form of p3.M for some 8 and pFV(M) = ¢. The proof term p3.M
represents the intuitionistic absurdity rules, i.e., infer arbitrary B from M : L. In terms of Felleisen’s A,
this term corresponds to A(M) using abort. We denote the intuitionistic fragment of Ay by Auj.

According to the existence of y-head form proofs, we can easily derive the following corollary that

is embedding classical substructural logics into intuitionistic logic, which is well-known as Glivenko’s
theorem.

Corollary 3 (Embedding GLx-Au-terms into Auy via p-head form proofs) .
If a type A is inhabited by a p-closed GLx-Au-term, then —=—A is inhabited in Apj.

Proof. Consider a p-head form proof pa.M of type A corresponding to the GLx-Ap-term by the
above Theorem. We define the following translation F' which gives a Aus-term of type =—A from the
p-head form proof term.

F(pa.M) = da.(F(M)); F(z) =g F(M M) = F(My)F(My);
F(Az.My) = Az.F(My); F(aMy) = o F(M)); F(pB.My) = pfB.(F(My)).

The definition seems to give no essential translation, however (LE) is repalced with (— I), and (LI) is
with (— E) in the proof.

From a proof of the double negation =—A in Apy, conversely we can obtain a classical proof of 4 in
A, which is to be a p-head form proof.

Lemma 9 (y-head form proofs) .Let H be Az.pa.z(Ak.ak).
ITHM:--Ain Apy, then '+ H(M) : A in Ay gives a p-head form proof of A.

185

Proof. Using the intuitionistic proof M of =—A in Apy, we eliminate the double negation to 6btain
the p-head form proof of A in Apu.

[a:—A? [k: A}

ak L (-LlI)
M :=—A Ak.ak : A %;EIJ))
M(Qk.ak): L

2
pa.M(Ak.ak): A (LE)
Lemma 10 .Let pa.M be a p-head form proof.

Then M =, F(M)[a := Mk.ak].

Proof. By induction on the structure of M. We show only the case M of oM.
F(aM)[a = Ak.ak] = (aF(M1))[e := Ak.ak] = (Ak.ak)F(M;)[a := Mk.ak] =g a(F(M;)[a = Mk.ak))
=, oM by the induction hypothesis. ’

With the help of 5-conversion: Az.Mz =, M where z ¢ AFV (M), it is obtained that both F o H and
H o F are identity.

Lemma 11 (H is inverse of F and vice versa) .
FoH=,idand HoF =, id.

Proof. (1) F o H =, id:
For any Ap-term M, pFV (M) = ¢ and F(M) = M. Then (Fo H)M = F(H(M)) = F(pa.M(Ak.ak))
= Aa.F(M)Ak.ak =, Ae.F(M)a =, F(M) = M.
(2) Ho F =, id:
For any p-head form proof pa.M, .
(H o F)pa.M = HAa.F(M)) = po.(Aa. F(M))Ak.a'k =g po’ F(M)[a := Mk.o'k] =, po.M by the
above Lemma.

On the other hand, we directly prove Glivenko’s theorem which would be used for a translation to
p-head form proofs. :

Definition 5 (Glivenko’s embedding G) .
For a proof term M in Ay, the translation G is defined as follows:

(1) G(z) = Ak.kax; (2) G(Az. M) = Ak.k(QAz.pf.G(M)(Au.k(Av.u)));
(4) G(pa.M) = Aa.G(M)Az.z; (5) G(aM) = Av.aG(M) where v is fresh.

Lemma 12 (Glivenko’s theorem) .
T, ~AF M: Ain A, then T, A F G(M) : =~A in Apy.

Proof. By induction on the number of types contained in the derivation of Ay and case analysis on
the last rule. We show only the case of (— E).

[z: A— B [y:A]
[k:-BJ? zy: B
k(zy): L
G(M,) : -—A Ay.k(zy) : —A
G(M2)Ay.k(zy): L
G(My):~-(A — B) Az.G(M3)Ay.k(zy) : ~(A — B)
G(M1)(Az.G(Ma) y.k(zy)) : L
Ak.G(M1)(Ae.G(M3) Ay .k(zy)) : =—B

(= E)

(= E)
(=D

(= E)

(= 1)

(= B)

(=

Now we obtain a procedure to provide a p-head form proof from an arbitrary classical propositional
proof in Ap.

Corollary 4 (Translation from classical proofs to y-head form proofs) .
H o G provides p-head form proofs for arbitrary p-closed classical propositional proofs in A.

186

Proof. By Lemma9 and Lemmal2.

The above Corollary is another proof of the existence of p-head form proofs thanks to Glivenko’s
Theorem. According to the Corollary, we can obtain the following composed translation pHF which
gives a p-head form proof from any p-closed Ap-term.

(1) pHF(z) = po.az; (2) pHF (Az.M) = po.ade.pfB.G(M)(Auv.adv.u);
(3) WHF (M M3) = pa.G(My)(Az. G(MZ)Ay a(zy));
(4) pHF (pa.aM) = pa.aG(M); (5) uHF(pa.M) = pa.G(M)[a := Ak.ak).

Remarks 1 (The embedding G does not preserve substructural logics) .
According to the proof of Lemmal2, GL x-Ap-terms are embedded into G Lcow-Ap-terms where vacuous
discharge is applied and applications are used for two terms which have common variables.

7 Godel’s translation

We investigate an embedding of classical substructural logics into the corresponding intuitionistic sub-
structural logics, which is known as Godel’s translation modified by Gentzen [Szabo69], [Dumm?77]. As
a corollary, we obtain that every GLwy-Ap-term is stratified, and that typability and inhabitation are
respectively decidable for Ay. The negative translation A9 is defined as follows:

19 =1; A9 = —=—-A for an atomic formula distinct from L;

(A1 — Ag)9 = A — AS.

The negative translation is naturally extended to a context I' such that

{N={}

({zx: A}UT) = {z: A9} UTY.

For p-indexed set A, similarly —A9 is defined. We give the definition of the translation of Ap-terms
together with the auxiliary function G. The translation produces a A-term with two kinds of variables
denoted by z and «a.

Definition 6 (Gddel’s translation for Ay-terms) .

V) z=ug (2) Az. M = \z.M; (3) My M, = My My;

(4) pa. M = G(Aa.M,n); ~ (5) aM =aM

where G is defined for a A-term M and a natural number

. G(M,0) = Mhz.xz; G(M,1) = Az.M(Ay.yz);
G(M,n+2) = Ay.G(Ak.M(Az.k(zy)),n).

A function f is defined for a type A such that

f(L) =0; f(A) =1 for an atomic formula distinct from L;

(A1 — Ag) =2+ f(Ay).

Remarks 2 .By the definition of f, it is clearly remarked that
(1) f(A) > 2 iff A is a function type.

(2) f(A) is odd iff the target type of A is atomic.

(3) f(A) is even iff the target type of A is of the form of negation.

Remarks 3 .Latter it will be clear that the natural number n in G(M,n) might correspond to the
complexity of the type of M measured by f.

Remarks 4 .

The slight modified definition of the above definition would also be available for the following results.
¢’ is defined for a type:

A9 = =-A for an atomic formula; (A; — Ag)9 = AT — A4S

M is defined similarly with a function G:

pa.M = G'(Aa.MAz.z,n); aM = \k.k(aM).

G'(M,0) = Xz.M(Ay.yz); G'(M,n+1) = Ay.G'(Ae.M(Az.k(zy)),n).
f' is defined for a type:

f'(A) = 0 for an atomic formula; fl(A) — Ay) =1+ f'(Ay).

Since A9 is negative, that is, atomic formulae occur only negated, == A9 « A9 holds in minimal logic
as follows.

Lemma 13 .Let M be a A-term.
bFa M :--A9 if and only if Fx_ G(M, f(4)): A49.

187

Proof. By induction on the structure of the formula A. We give only the case A of A} — Aj, ie.,
- f(4) > 2.

Only-if-part:

Let M : ~=(A{ — A§) and y : A{. Then Ak.M(Az.k(zy)) : -—AJ, and hence A is inhabited by
G(Ak.M()z.k(zy)), f(A2)) using the induction hypothesis. Now we have Ay.G(Ak.M(Az.k(2y)), f(A2)) :
A{ — A§, whose proof term is equal to G(M, f(A; — Ap)).

If-part:

Let G(M,n + 2) = Ay.G(Ak.M(Az.k(zy)),n) : (A1 — A2)¢ = A} — AJ. We have y : Af and
G(Ak.M()\z.k(zy)),n) : A}, then the induction hypothesis gives Ak.M (Az.k(zy)) : =—AJ. Hence k : 1 A]
and M(Az.k(zy)) : L. Now M : -B and Az.k(zy) : B for some B. B must be By — By such that
z: By and k(zy) : By. Here By is L from k : =A§, and zy : A which gives z: By = A — Aj. Hence
M :—-B = ﬁ((Ai] — Ag) — ..L) = ’ﬂ‘\(Al — Az)g.

Let Y-term be a BCI-M-term, BCK-A-term or Al-term. The corresponding pair of X and Y means
the pair of GL-Ap-terms and BCI-A-terms, etc.

Lemma 14 .Let M be a Y-term and n be a natural number.
If M is a Y-term, then so is G(M,n).

Proof. By induction on n.

Lemma 15 .For each corresponding pairs of X and Y,
if M is a GLx-Au-term, then M is a Y-term.

Proof. By induction on the structure of M.

Theorem 7 (G6del’s embedding of the Ay-calculus) .Let M be a GLx-Ap-term.
IfT, Ak, M: A, then T9,~A9 5, M : A9.

Proof. By induction on the number of types contained the deduction of A and case ananlysis on the last
‘rule. The case of (LE) is only given in the following.

By the induction hypothesis, we have I'Y,~A9, a0 : =AY |- M; : 1. Then Lemmal3 gives T'9,~A9
G(Aa. My, f(A)) : A9 whose proof term is po. M.

Corollary 5 (preserving substructural logics) .
The Godel’s embedding transforms proofs of classical substructural logics into those of the corresponding
intuitionistic substructural logics.

Proof. By the above Theorem and Lemmal5.

IfT Fy_ M : A, then by straightforward induction, we can construct a deduction I'Y Fy_, M : A9
such that every type in the deduction has the form of Godel’s double negation.

Lemma 16 .Let M be a GLx-Ap-term.
I 19, -A9 +y_, M : A9 where every type in the deduction has the form of Godel’s double negation, then
T,-AFy, M: A

Proof. By induction on the structure of the Ap-term M. The condition in the if-part is necessary in
the case of applications. If M is to be in S-normal, then this condition is redundant by the Subformula
property [Praw65]. Case M of pa.M; is in the below.

By the assumption, I'9, =AY by, G(Aa.Mq,n) : A9 where we take n as f(A), and then T9,-A9)
Xa. M : ——A9 by Lemmal5. Generation Lemma gives that I'9,~AY9 o : —A9 Fy_, My : L. Thus
T,-A Fxu po. My @ A is obtained by the induction hypothesis T',~A, a1 =A Fyy, My @ L

Corollary 6 (stratification of GLy-Apu-terms) .
Every GLw-Ap-term is stratified.

Proof. Any G Lyy-Ap-term M is translated to BCK-A-term M, which is stratified. Because it is known
that every linear A-term (BCK-A-term) is stratified by Theoremd4.1 in [Hind87]. Hence I', =A Fy_, M : A
for some T, A and A, and we also have I'9, ~AY9 -y, M : A9 where every type in the derivation has a
form of Godel’s double negation. Hence I',~A -5, M : A by the above Lemma, i.e., M is stratified.

Moreover according to the decidability of typability and inhabitation for A — [Bare91], it is easy to
obtain those for Ay as follows.

188

Corollary 7 (typability is decidable for \u) .
Given GLx-Apu-term M, it is decidable to check whether there exists a type A such that k), M : A or
not.

Proof. Typability of M in A — is decidable. Hence if Fy_, M : A for some A, then Fapg M : A by
Corollary5. Otherwise there is no A such that), M : A by Theorem?7. Also see Principal deduction
theorem (Theorem5).

Corollary 8 (inhabitation is decidable for Ap) .
Given A, it is decidable to check whether there exists a term GLx-Ap-term M such that -y, M : A or
not.

Proof. Since inhabitation of A9 in A — is decidable, if Fx_, M : A9 for some M, then clearly
Fap M’ : A for some M'. Otherwise there is no M such that 5, M : A by Theorem?.

Next we discuss the correctness of Godel’s embedding with respect to =,_.

Lemma 17 Let M and N be A-terms, and n be a natural number.
G(M,n)[z := N] = G(M[z := N],n).

Proof. By induction on n.

Lemma 18 .Let M and N be A-terms, and n be a natural number.
‘G(M,n)[a := N] = G(M[a := N],n).

Proof. By induction on n.

Lemma 19 .Let M, M; and Mj be A-terms. Let n be a natural number.
- If My =5 My and M =5 G(Mq,n), then M =5 G(M,,n).
If My v Mz and M v G(Mj,n), then M > G(Mz,n).

Proof. By induction on n.

Lemma 20 .Let M and N be GLx-Ap-terms.
Then M[z := N| = M[z := N].

Proof. By induction on the structure of M. The case M of po. M is as follows. ‘
pa.Mi[z = N| = G(Aa. My, n)[z := N] = G(Aa.M[z := N|,n) by Lemmal7. The induction hypothesis
makes it equal to G(Aa.Mi[z := N],n) = pa.My[z := N].

Lemma 21 .Let M and N be G Lx-\p-terms.
Then Mla := Az.a(2N)]>j Mo < NJ.

Proof. By induction on the structure.of M. We only show the case M of aM;.

aMila = Az.a(zN)] = (adh)[a := Az.a(zN)] = (Az.a(zN))Mi[a := Az.a(2N)] o4 (Az.0(2N)) Mi[a < N]
>g a(My[a < N] N) by the induction hypothesis. Then it is definitionally equal to aMi[a < N|N =
(aMi)[a < NJ.

Lemma 22 .Let M and NV be GLx-Au-terms, and n > 2.
G(Aa.M,n)N vj G(Aa.M[a < N],n - 2).

Proof. For n > 2, by the definition we have (G(Aa.M,n))N = (A\y.G(Ak.(Aa.M)(Az.k(zy)),n — 2))N bg
Gk (Aa.M)(Az.k(zN)),n - 2) bg G(Ak.M[a := Az.k(zN)],n — 2) =, G(Aa.M[a = Az.a(zN)],n - 2).
By the Lemmal9 and 21, it is f-reduced to G(Aa.M[a < N],n — 2).

Theorem 8 (Correctness of Goédel’s embedding of GLx-Au-terms) . Let M; and My be well-
typed GLx-Ap-terms. If My =, M, then My =g M,.

189

Proof. By induction on the derivation of My =, M. The atomic cases are in the following.
Case of -reductions:
(Az.M)N = (A\z.M)N vg M[z := N] = M[z := N] by Lemma20.
Case of structural reductions:
(. M)N = G(Aa.M,n)N v% G(Aa.M[a < N],n - 2) = pa.M[a < N] by Lemma22 and Remark?2.

Remarks 5 .For renaming reductions (S1), we cannot expect this property. In order to work with (52),
n-reduction is necessary to obtain the corresponding lemma to the above. The inverse direction of the
above Theorem does not hold.

Theorem 9 (Simulation of one step p-reduction by embedded ﬁﬁductions) .
Let M; and M, be well-typed GLx-Ap-terms. If My >_ My, then M; pj M.

Proof. By induction on the derivation of M; >_ My. The atomic cases are same as those in the proof
of Theorem8.

Corollary 9 (Strong normalization of well-typed GLx-Au-terms) .
Well-typed GLx-Ap-terms are strongly normalizable with respect to structural reductions and §-reductions.

Proof. By the above theorem and the fact that A — has strong normalization property [Bare91].

Remarks 6 .The result of the above Corollary and Lemma8 (Subject reduction) is not inconsistent with
the fact that GLy is cut-free (Theoreml).

8 Simplification on Goédel’s embedding

In this section we discuss a simplification on the Gédel’s embedding. As a consequence if we had renaming

reduction (S1) and (S3) besides, then the translation gave a -normal form M if M is to be in normal in
this sense. With information on types whose subjects are p-variables, we define a simplified embedding
based on Gddel’s double negation translation, which also appears in [Pari92-1].

Definition 7 (simplified embedding) .
(1) Let n be a quotient of (f(A) + 1) divided by 2 for a : —A. Let M be a GLx-Ap-term.

T=um

M1M2 M, My; Az.M = Az M

ua.]\/f =Az1- - 2n. M; ol = Ma:l

(2) Let A bea type.

1*={} A* = {z : =A} if A is atomic distinct from 1;

(Al s Az)* = {.Z'l . A‘({} U A;
(3) Let A be a set of types indexed with p-variables.
{}={} ({a: A} UA)* = A*U A

Theorem 10 (simplified Gédel’s embedding) .Let M be a GLx-Ap-term.
I, -AbFy, M: A, then T9, A" -y, M : A9,

Proof. By induction on the derivation. We show the following two cases.
Casel of (LE), i.e., M is po.M;:
Let the induction hypothesis be IH-1, i.e., T9,A* (a: A)* Fy—, M : L. By induction on f(A).
Casel-1. f(A)=0:
(a:L1)*={}and T9,A* b, My : L is directly derived by IH-1, and (f(A)+1) div 2 is 0.
Casel-2. f(A)=1:
(a: A)* ={z:-A} and T9,A*, 2 : ~A), My : L by IH-1. Hence I'Y, A* F»_, Az. M : A9 is obtained,
and (f(A)+1) div 2 is 1.
Casel-3. f(A; — A3) > L:
Let the second induction hypothesis be IH-2. (a : 41 — Ap)* = {21 : Af} U A3 and T9, A%,z :
Ay, A3 Fao, My : L by IH-1. Then by TH-2, T9,A*, 2y : A bFa_ Azy-- 2. My : A where m is a
quotient of f(A2) + 1 divided by 2. Hence we have I'Y,A* k), Azodzy - 2m. M7 : (A1 — A2)9, and
m+1=((f(A2)+1) div2)+1= (f(Al — A))+1) dzv 2.
Case2 of (_LI), ie, M is aMj:

190

Let ITH-1 be 'Y, A* I M : A9 where a:: A € A. By induction on f(A).

Case2-1. f(A)=0: .

(f(A)+1) div 2 is 0, and IH-1 directly gives I'Y, A* F,_, M: 1.

Case2-2. f(A)=1:

(f(A)+1) div2 =1, and I'9,A* k5, Mz : L where z: —A € A*.

Case2-3. f(A;1 — A2) > 1

Since zo : A € A*, we have I'Y,z¢ : A, A5 by, Mz : Aj by IH-1. Thus by the second induction
hypothesis, I'Y, A* k), (ﬁxo)zl -+ Ty + L. Here m = (f(Az) + 1) div 2, and hence m + 1 = (f(4; —
Az) +1) div 2.

Lemma 23 .Let M and N be GLx-Ap-terms.

ﬁ[x = m = M[z := N|

Proof. By induction on the structure of M.

Lemma 24 .Let M and N be well-typed GLx-Ap-terms. ,
Ifn = ((f(A) +1) div 2) where o € pFV (M) and o : —A in the derivation, then n —1 = ((f(A") +
1) div 2) where a € pFV(M[a < N}) and a: =A’.

Proof. n must be greater than 1, i.e., A is a function type A; — As. Then A’ is A, in the case of
N : Ay, hence ((f(A42) +1) div 2) = ((f(A)+1) div2) - 1.

Lemma 25 .Let M and N be GLx-Ap-terms. Let ((f(A)+ 1) div 2) be n which is greater than 1 for
a:-A
M[z$:= N] = M[a < NJ.

Proof. By induction on the structure of M. Only the case M of aM; is showed: .
oMi[z¢ = N|) = (Mizy---2n)[z1 := N]) = (Mi[z; := N]))Nzg- -z, = Mija < N] Nzg---z, =
Mo < NNy ---2n, = a(Mi|a < N|N) = (aMi)[a < N].

Lemma 26 .Let M; and M; be well-typed GLx-Ap-terms.
If M1 by M2, then EDE m

Proof. By induction on the derivation of M; >y M,. We show the following cases.
Casel of B-reduction: .
(Az.M)N = (Az.M)N g M|z := N| = M[z := N].
Case2 of structural reduction: — _
(pa.M)N = (Az1 - 20 M)Nbg Azg - 24.M[z1 := N| = Azg -+ - 2p.M[a < N| = pa.M[a <= N].
Case3 of renaming reduction (S1):
a(pB.M) = pB.MzS - -2% = (Azf - - 28 M)a§ - - 22 >% M[z? := 9] - [2f := 22].
Cased of (S3): ‘

g M = Az% - 2% M =q Az Az - c@n Mz = 2] = A\zAzy - 20 Mla < 2] = Mzpa.Ma < a).

Remarks 7 .Moreover in order to work with (S?), we need 7-reduction. Then it is obtained that the
corresponding lemma to the above.

Corollary 10 .Well-typed GLx-Ap-terms are strongly normalizable with respect to .

Lemma 27 .Let M be a p-closed GLx-Ap-term.
If M is to be in normal with respect to by, then M is in G-normal.

Proof. By induction on the structure of the normal form. Only the following two cases are mentioned.
Casel. M is M1 M,: _ .
M; and M are also in normal, and hence My and M, are in S-normal. Assume that Mj Ms is not in
B-normal. Then M; must be of the form A-abstraction or p-abstraction. In both cases, M; M, contains
a redex by S-reduction or structural reduction respectively, which is a contradiction.
Case2. M contains a substerm aM;: - L
M; is also in normal and M, is in f-normal. Assume that oM is not in B-normal. Then M is the form
A-abstraction or p-abstraction. In the first case, since M is p-closed, pa appears outside of My in M,

which is a redex by (53). On the latter case, @ M; contains a redex by renaming reduction. Both cases
lead to a contradiction.

191

Remarks 8 .According to the above proof, it is clear that (53) and the condition of u-closed are neces-
sary to obtain a B-normal form. The following two examples are given.

(a). Consider two Ap-terms with the type -—=A — A such that M; = Ay.pay(Az.az) and My =
pa.a(Az.pf.z(Az.a)y.z)), in which the latter is called as a p-head form proof in [Fuji94-1], [Fuji94-2].

Then M, > M; with the help of (S3). Let f(A) = 1. Both M7 = Ay.Az.((pa.y(Az.az))Aw.wz) and My
contain a f-redex. On the other hand, My = Ay.Az.y(Az.zz) which is in S-normal.

(b). Let M be pB.clz.z which is in normal and not p-closed. There is a deduction of a : (4 —
A) by, M : B. For f(A) = f(B) = 1, we have M = Az.aAz.z where o : (4 — A)?, and
M = \zg.(A\z.2)z122 Pp ATg.T122 Where 21 : A9 and zp : A, Hence M #5 M, and M is not in
[B-normal.

9 Kolmogorov’s translation

We show Kolmogorov-style embedding that does not collapse substructural logics, i.e., embeds proofs of a
classical substructural logic to those of the corresponding intuitionistic substructural logic. P. de Groote
investigated the CPS-translation of Ay-terms in [Groo94-1]. However our translation is different from it
in the following two points:

(a). The treatment of p-abstraction and named terms are distinct, because of the different version of
Kolmogorov’s negative translation.

(b). B-reductions, structural reductions and (S2) are considered here.

Definition 8 (Kolmogorov-style translation of Au-terms) .
(1) z = Ak.xk; (2) Az.M = Mk.k(Az.M); (3) MiMy = Ak.M;(Am.mMak);
(4) pa.M = .M (Az.z); (5) aM = Mk.k(Ma).

Kolmogorov’s negative translation k is defined for A such that
AF = == 4 for an atomic formula; (A; — Ap)* = - (AF — AF).
We define A* as the formula such that A* = ——A*. The negative translation is naturally extended to
contexts indexed by A-variables and p-variables. :

We obtain that the CPS-translation transforms proofs of a classical substructural logic to those of the
corresponding intuitionistic substructural logic (minimal logic).

Theorem 11 (Preservation of substructural logics) .Let M be GLx-Au-term. For each corre-
sponding pair of X and YV, if I', "A = M : A, then T* —~A*F M : AF where M is a Y-term.

Proof. The outline of the proof is given by the observation on the definition of the CPS-translation of de
Groote such that the translation itself is to be a BCI-M-term. In the following proof, the intuitionistic
absurdity rule plays no role and only the existence of the constant L is essential. Hence the proof is done
in the primitive logic with the constant L, i.e., in minimal logic.

We prove it by induction on the number of types contained in the deduction of I',=A + M : A and
case analysis on the last rule. We show only the case (— E), i.e., M is M1 M,.
Casel. AFV(M1) N AFV (M) = ¢ and pFV (M) N pFV(M2) = ¢:
By the induction hypotheses, there are Y-terms M; and Mj such that %, -Af - My : (A — B)* and
that T%,—A3 F M, : A*. Hence the following deduction prmdes a Y-term Ak%_(z\ﬁm%k)

[m: A* — B*)2 M, : A*

mMy : B CE ki op
mMak : L 2(—’ E)
M; : (A— B)* ik ~(AF 5 58 D
M, O dgk) L =)
My (Am.m My o

Ak My (Am.mMzk) : B¥

Case2. AFV(M;) NAFV (M) # ¢ or puFV(My) N\ pFV(My) # ¢, i.e., M is either a GLc-Ap-term or
GLow-Ap-term:

Same as the previous case, we have a BCK-A-term or A-term Ak.M; (Am.mM;k) such that ThuTk, ~ATU
-Aj F Ak My (Am.mMak) : B

We show the correctness of the translation along the line of de Groote.

192

Lemma 28 .Let M be a Ap-term where k£ ¢ AFV(M).
Ak MFkvg M.

Proof. By induction on the structure of M.

Lemma 29 .Let M; and M, be Ap-terms.
%[.’L‘ = %] = Ml[.’L' = Mz].

Proof. By induction on the structure of Mj.

Lemma 30 .Let M; and My be Au-terms.
Mo := dm.mMya] =5 Mi[a < M,).

Proof. By induction on the structure of M;. The case M; of oM is in the bellow:
aMlo := Am.mMsa] = Mk.k(M|a := Am.mMya]Am.mMya) =5 Me.k(M[a < My]Am.mMsa) =5
Ak.E(AK' Mla < Ma]dm.mMok')a) = Ak.k(M|o < My Mya) = a(Ma < M]Ms) = (aM)a < Ms,).

Lemma 31 .Let M; and Ms be Au-terms.
If My =, My, then %"—‘Ig %

Proof. By induction on the derivation of My =, M>. The atomic cases are as follows:
Case of g-reductions:
(Az. MM, % Ak.(Az. M) Mk vg Me.M[x := _]\{Ll_]k = M. Mlz := Mi]k v M[z := Mj).
Case of structural reductions:
(pa-M)M; bg da.M[a := dmmMio)dz.z =g Aa.M[a < Mi)Az.a = pa.M[a < M.
Case of (S2) where o & uFV(M):
Aa.aM bg daMa g M.

10 Kuroda’s translation

We briefly show yet another double negation translation known as Kuroda’s embedding. In order to work
with Kuroda’s negative translation, instead of 3-reductions we adopt Sy-reductions in Ay [Plot75]:
(Az.M)V g, Mlz:=V].

Here a value V is defined as follows:

V u=z|Az.M|aV .

The negative translation and the translation with ¥ from values to values are defined.

A% = A for an atomic formula; (A1 — A9)? = Al —» ~—AL

Definition 9 (Kuroda-style embedding for Au-terms) .

z = Ak.kz; Ar.M = Me.k(Az. M);

M My = Xk.M; (An.My(Am.nmk));

aM = Ak.k(Ma); po.M = da.M(Az.z), and
Y(z) = =5 V(Az. M) = da. M; Y(aV) = a¥(V).

Theorem 12 .Let M be a GLx-Ap-term. For each corresponding pair of X and Y, if I, -A + M : A,
then I'Y, “A? + M : == A7 where M is a Y-term.

Proof. By induction on the number of types contained in the Xy derivation. We show only three
cases.
Casel of (— I):

[z : _A‘I]I
M: —:1—|Bq 1
[k:=(A— B)Y? Xz.M:A7 = -=B7 E-* 2)
Mol = (1p

A k(Az. M) : =—(A — B)

Case2 of (— E):

[n: A9 = ==B [m: A?
nm : 7= BY?

(_) E) [k : —1Bq]3

nmk: L 2
My : == AT Svmh o7 (7D
= (= E)

My(Am.nmk) : L
M : -—(A - B)? An. Mz (Am.nmk) : =(A9 — ~—~B9)
MiAn.My(Am.nmk) : L
Ak My An. My(Am.nmk) : ~—B?

(= E)

(=D
(= E)

(= 1?

Case3 of (LI):
M:—-—A7 o:-Af
[k:Ll— L]} Mao: L
EMa): L
M D)
Akk(Ma) : ——L1

(= E)

(— B)

Lemma 32 .Let M be a Ap-term where k ¢ AFV (M).
AeMEvg M.

Proof. By induction on the structure of M.

Lemma 33 .Let V be a value.
Vo AkET(V).

Proof. By induction on the structure of V. The case of oV is as follows using the induction hypothesis:
aV = Ak.k(Va) oh A k(A K ¥ (V))a)bg Mek(a¥(V)) = Ak.k(T(aV)).

Lemma 34 .Let M be a Ap-term and V be a value.
Mz := V]vop Mz == ¥(V)].

Proof. By induction on the structure of M. The case M of z is given using the above Lemma.
zlz := V] = Voi AeEY(V) = Me.kzfz = ¥(V)] = z[z := ¥(V)].

Lemma 35 . Let M; and M, be Au-terms.
Mo := An.My(Am.nma)] =g Mi[o <= My].

Proof. By induction on the structure of M;. The case of oM is as follows.
aM[a := An.My(Am.nma)] = Ak.k(M[a := An. My (Am.nma)|An. Ma (Am.nma)) =5

Mo k(Mo < Ma)An. Ma(Am.nma)) =g Ak.E((A' Mo < Mao]An. Mo(Am.nmk'))a) =

)\kk(]\[a < M, Mga) = a(M[a = MQ]MQ) = (QM]

Lemma 36 .Let =,, be a congruence relation obtained by fv, structural reductions and (S2). Let M,
and My be Ap-terms.
If M, =uy M>, then _]_W_lzﬂ %2.

Proof. By induction on the derivation of =,,,. The atomic cases are in the bellow.

Case of g-reductions:

(Az. M)V = Ak.E(AKE (Az.M))(An.V (Am.nmk)) bg Ak YV (Am. Mz := m]k) >}

AL (AR K (V) (Am. Mz := m]k) o} Ae.M[z := ¥(V)]k =g \k.M[z := V]kbg M[z :=V].
Case of structural reductions:
(pa.M)N = Ak.(Aa.M(Az.2))(An.N(Am.nmk)) bg Ak Mo := An. N(Am.nmk)|(Az.z) =o
AaMla := An.N(Am.ama)|(Az.z) =g pa.M[o < N|(Az.z) = pa.M[o < NJ.

Case of (S2) where a ¢ pFV(M):

pa.aM = da.((Ak.k(Ma))Az.z) >j Aa.Mavg M.

193

194

11 Extension to the second order classical natural deduction

We extend our discussion to the full Au-calculus, i.e., second order classical natural deduction. We only
show the extension for our Godel’s embedding. In the case of Kuroda’s embedding, the extension is
quite straightforward, and also see [Groo94-1] for Kolmogorov’s embedding. In the following, only the
additions are given to the inference rules and embedding.

T,-AF M: Aly/z]
T,-AF Xz M:Vz.A

,~AFM:Vz.A (VE)
[,-AF Mt: Alt/x]

(vVI)*

T,-AF M: AlY/X]
T,-AF \X.M:VX.A

T,-AFM:VX.A
T,-AF MB: A[B/X]

(V2I)* (V*E)
where * denotes the eigenvariable condition.

(Vz.A)Y = V. AY; (VX.A)9 = VX.A9.

F(Vz.A) =2+ f(A); F(VX.A) =2+ f(A).

Theorem 13 (Gddel’s embedding of the full Ap-calculus) .Let M be Ap-term.
IfT,-AkF M: Ain Ay, then I'Y,-A9 - M : A9 in AP2 ala Curry.

12 Concluding remarks

We have defined proof term assignment to the classical resource logics consisting of implication and
negation in terms of the Ap-calculus. According to these notions, we can classify the Au-terms into
four categories, i.e., GLx-Ap-terms here X is either nil, C, W or CW. It is shown that GLx-Ap-
terms exactly correspond to GLx proofs which are proofs of Gentzen’s LK without some structural
rules, that a closed GLx-Au-term has a principal type scheme if stratified, and that GLx-Ap-terms
have subject reduction property. On embeddings, we first discussed a translation of GLx-Ap-terms
into full intuitionistic logic via p-head form proofs. As a corollary, well-known Glivenko’s theorem is
obtained. With the help of the Glivenko’s theorem, it is derived that an algorithm which gives u-
head form proofs from arbitrary classical propositional proofs. Moreover we have investigated the three
embeddings (Godel, Kolmogorov and Kuroda) of classical substructural logics into the corresponding
intuitionistic substructural logics. As corollaries of the embedding, we obtained that every GLw-Ap-
term is stratified, typability and inhabitation for Ap are decidable, and that well-typed GLx-Ap-terms
are strongly normalizable.

Recently the computational aspects of classical proofs are actively investigated in [Grif90], [Murt91-2],
[Pari92-2] and [Pari93] along the natural line of [How80]. The above classical systems except Parigot’s Ay
are based on Felleisen’s A.-calculus {FFKD86]. Murthy stated in {[Murt91-1] that different double negation
translations fix the order of evaluation in a functional programming. That is, a call-by-name evaluation
is adopted by Kolmogorov’s translation and a call-by-value evaluation is by Kuroda’s translation. P.de
Groote has shown the CPS translation from Ax to A_, which adopts Kolmogorov’s negative translation
in logical interpretation. On the other hand, we investigated another CPS translation cooperating with
Kuroda’s translation. Relating to Murthy’s theorem, it is interesting to study translation and simulation
property of the CPS translation with respect to not only A. but also Ap.

We finally remark technical distinction among three translations used with Godel, Kolmogorov and
Kuroda’s double negation embedding. Let M’ be a translated A-term by one of them for Au-term M.

1. By Godel’s embedding, we obtained Theorem9 and Lemma26, that is, if M by N, then M’ >% N,
by which strong normalization is obtained. However we cannot expect this property with respect to
neither the CPS translations used with Kolmogorov’s embedding nor Kuroda’s embedding. Because
Godel’s embedding establishes Lemma21. On the other hand, since the others need §-expansion rules to
prove the corresponding lemma, i.e., Lemma30 and 35, they satisfy the corresponding lemma not with
B-reductions but with 8-conversions.

2. P. de Groote proved [Groo94-1] that if M’ =g N’, then M =, N. On the other hand, with respect
to Godel’s embedding, we cannot obtain the inverse direction of the Theorem8. For instance, let M be
Ay.pay(Az.az) of the type =—A — A. Let A be an atomic formula distinct from L, i.e., f(A) = 1. Then
M’ is \y.G(Aa.y(Az.az),1), and take N’ as Ayz.y(Az.zz) which is the -normal form of M’. We do not
have M =, N where N = N'.

3. All of the three simple translations cannot give that if M is to be in p-normal, then M’ is in S-normal.
However the modified CPS translation by de Groote establishes this property. We also give a simplified
Godel’s translation with this property for p-closed Ap-terms. This kind of translation is also investigated

in [Pari92-1] here one would not prove it without the condition of y-closed Ap-terms.

4. The CPS translations which are defined with Kolmogorov’s or Kuroda’s embedding work for untyped
" Ap-terms. On the other hand, our translation based on Gédel involves type information.

5. With the Kolmogorov-style translation, de Groote establishes the correctness of the translation with
respect to a congruence relation by §-reductions, structural reductions and (S1). On the other hands, our
Kolmogorov-style and Kuroda-style translations also support the correctness with respect to structural
reductions, (52) and either 3-reductions or Sy-reductions.

References

[Bare91] H.P.Barendregt. Lambda Calculi with Types. Handbook of Logic in Computer Science. Oxford
University Press (1991). :

[Dumm77] M.Dummett. Elements of Intuitionism. Clarendon Press (1977).

[Fuji94-1] K.Fujita. p-head form proofs. The 11-th meeting on Symbolic Logic and Computer Science
(SLACS’94), Kagawa, November 6-8 (1994).

[Fuji94-2] K.Fujita. Eaxtending NJ with two consequences. The Workshop on Non-Standard Logic and
Logical Aspects of Computer Science (NSL’94), Kanazawa, Japan, December 5-8 (1994).

[Fuji95] K.Fujita. Proof term assignment to classical substructural logics. The Second Workshop on Non-
Standard Logic and Logical Aspects of Computer Science (NSL’95), Irkutsk, Russia, June 15-18
(1995).

[FFKD86] M.Felleisen, D.P. Friedman, E.Kohlbecker and B.Duba. Reasoning with continuations. Proc.
of LICS, pp-131-141, 1986. ’

[Grif90] T.G.Griffin. A formulae-as-types notion of control. Proc. of POPL, pp.47-58, 1990.

[Groo94-1] P.de Groote. A CPS-Translation of the Ap-Calculus. Proc. of the Colloquim on Trees and
Algebra and Programming, 1994.

[Groo94-2] P.de Groote. On the relation between the Ap-calculus and the syntactic theory of sequential
control. Proc. of the Logic Programming and Automated Reasoning, 1994.

[Hind87] J.R.Hindley. BCK-combinators and linear A-terms have types. Mathematics Division, University
College, Swansea. August, 1987.

[Hind88] J.R.Hindley. The principal-type-scheme algorithm revisited: principal deductions in A-calculus.
Mathematics Division, University College, Swansea. 20 July, 1988.

[How80] W.Howard. The formulae-as-types notion of construction. To H.B.Curry: Essays on combinatory
logic, lambda-calculus, and formalizm. Academic Press, pp.479-490, 1980.

[Murt91-1] C.R.Murthy. Finding computational content in classical proofs. , Logical Frameworks. Cam-
bridge University Press, pp.341-362, 1991.

[Murt91-2] C.R.Murthy. An Evaluation semantics for classical proofs. Proc. of LICS, pp.96-107, 1991.

[Ono90] H.Ono. Structural Rules And A Logical Hierarchy. Proc. of Heyting’88 Conference, Plenum
Press, pp.95-104, 1990.

[Pari92-1] M.Parigot. Classical Proofs as Programs. TYPES Workshop at Bastad in June 1992.

[Pari92-2] M.Parigot. Ap-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. Proc.
International Conference on Logic Programming and Automated Reasoning, Springer LNCS 624,
pp-190-201, (1992).

[Pari93] M.Parigot. Strong Normalisation for Second Order Classical Natural Deduction. Proc. LICS
(1993).

[Plot75] G.D.Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science 1,
pp-125-159, (1975).

[Praw65] D.Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist&Wiksell, Stockholm
(1965).

[Szabo69] G.Gentzen. The collected papers of Gerhard Gentzen. Edited by M.E.Szabo, North-Holland,
1969.

195

