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Abstract

An intuitionistic substructural logic is a formal system obtained from Gentzen’s
sequent calculus LJ for the intuitionistic logic by removing some or all of structural
rules, i.e. exchange, weakening and contraction.

Some natural deduction systems for them are known, but they all are what we call
‘sequent style’ natural deduction. here we introduce ‘pure’ natural deduction systems,
and consider their strong nomaliztion.

1 Introduction

An intuitionistic substructural logic is obtained from LJ by removing some or all of struc-
tural rules.

One of important properties in substructural logics is that the notion of and will split into
two. The first one is called additive conjunction, and the other one is called multiplicative
conjunction. Every natural deduction systems for substructural logics in literatures are
restricted mostly to their multiplicative fragments, since adding additive connectives will
cause much complications.

we will introduce natural deduction systems for four intuitionistic substructural logics
with exchange rule containing both additive and multiplicative conjunctions, and prove
their strong normalization theorem. We will show that when an intuitionistic substructural
logic doesn’t have contraction rule, an upper bound of the number of normalizing steps for a
given proof II can be easily calculated by II. On the other hand, complicated arguments as in
the strong normalization of the intuitionistic logic seem to be necessary for the intuitionistic
substructural logic with contraction.

2 System ILLx

Here, we define four intuitionistic substractural logics defined by sequent calculus systems.

Definition 2.1 (formula) Assume that there are finite or infinite propositional symbols.
Then we define formulae as follows.

All propositional symbols are formulae.

If A and B are formulae, then (A D B), (AA B) and (A * B) are formulae.

Definition 2.2 (System ILL) System ILL is a sequent calculus system with cut and ex-
change rule and implication, multiplicative conjunction and additive conjuction fragments.

Definition 2.3 (System ILL‘—;W) System ILL— W is a system obtained by adding a strac-
tural rule Weakening to System ILL.



Definition 2.4 (System ILL—C) System ILL—C'is a system obtained by adding a strac-
tural rule Contraction to the System ILL.

Definition 2.5 (System ILL—CW) System ILL—CW is a formal system obtained by
adding the stractural rule Weakening and Contraction to the system ILL.
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Rules for System ILLx*

3 System NILLx

we consider natural deduction systems which are equivalent to System ILLsx.

Definition 3.1 (assumption) If A is a formula, and if n is a natural number, then A™
s an assumption.

Definition 3.2 (System NILL) Let A, B and C be meta-variables for formulae, and let
T' and A be meta-variables for finite sets of assumptions. Then we define System NILL as
follows:

(assumption) If A™ is an assumption, then A™ is a deduction proving {A"} F A.

D 15 a deduction proving , an —condition ;A" € olds for, then
I) If D s a deducts ing ' - B d If (W ditt A" €T holds f h

55 D -

is @ deduction proving ' — {A"}+ A D B.

- (D E) IfDy is a deduction provingT'F A D B; and Dy is a deduction proving A+ A, and
if (C—condition) TN A =0 holds for, then

D, D
=== (OE)
s a deduction proving ' UA F B.
(A X) If Dy is a deduction proving T + A, and Dy is a deduction proving A F B, and if

(W—condition)T = A holds for, then
Dy Dy (AT) -

AN
s a £duction proving TUAF AA B.
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(A E;) If D is a deduction provingT H A D C, and Dy is a deduction proving A+ AA B,
and if (C—condition)T N A =0 holds for, then

D, D
21 22 (/\EI)
s ¢ deduction proving TUAF C.
(A E,) If D is a deduction proving T+ B D C, and Dy is a deduction proving A+ AAB,
and if (C—condition) TN A =0 holds for, then
_DI—DZ (/\Er)
15 a deduction proving TUAF C.
(x I) If Dy is a deduction proving T - A, and D, is a deduction proving A - B, and if
(C—condition) T NA =0 holds for, then
St (D
5 a £duction proving TUA F Ax B.

(x E) If Dy is a deduction proving ' F A D B O C, and Ds is a deduction proving
Al Ax B, and if (C’—condition)T N A =0 holds for, then

Dy Dy (,p
s a deduction proving TUAF C.

Definition 3.3 (System NILL—W) Sysiem NILL—W is a formal system obtained by
removing (W—-condition) from the system NILL.

Definition 3.4 (System NILL-—C) System NILL—C is a formal system obtained by re-
moving (C—condition) and (C’—conditon) from the system NILL.

Definition 3.5 (System NILL-CW) System NILL—CW is a formal system obtained
by removing (C—condtion), (C’—condition) and (W—condition) from the system NILL.
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Rules for Systern NILLx*
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(example)
A°  AD
AANA 0
A>ana D
is a deduction proving - A D AA A in NILLx*.
Al A° A
ANA 0
Asana D

is a deduction proving {A'} - A D> AA Ain NILL-W or NILL-CW.

To show that each System ILLx is equivalent to the paired System NILLx, at first we
prove the following lemma.

Lemma 3.6 (exchanging natural number of assumption) In the System NILLx, if
D is a deduction proving T U {A"} + B (A" € T), then there is a deduction & proving
TU{A™}+ B (A™ ¢ T) such that it is same height {0 D

(proof) Induction on height of D.

Theorem 3.7 (equivalence of ILL* and NILLx) Each of the System ILLx is equiva-
lent to the paired System NILLx, i.e. there is a deduction D proving Ay, ..., Ay = A in ILLx,

iff there is a deduction £ proving { AT }u- - -U{A}*} A (A7?, ..., A}* are distinct each other)

i NILLx.

(proof) Induction on height of deductions.
At first, we will show that if there is a deduction D proving I' F A in ILLx, then there
is a deduction & proving IV A in NILLx.

D1 Dy

1. Case D = (Cut) : By definition, I' = A, I, and D; is a deduction proving
A& B, Ds is a deduction proving B,II + A. By L.H., there is a deduction £; proving
A’ B and a deduction & proving {B"} UII'  A. By previous lemma, there is a
deduction &, proving {B"}UIl” F A (A'n({B™}ull”) =0, B™ ¢ I") such that
it is same height to &;. let

&
onm
BDA &
E£= A : (D E)v
and it is a deduction A’ UTI' - A.
D,

Case D = ATEB (We) : By definition, D; is a deduction proving I' - B. By LH,,
there is a deduction & proving IV + B. Take A™ ¢ I, and let

&
o
An
£= ADB 5 (D E) or
BO & A"
OnN° —Fm W)
EEBDB AAB(/\E),
and it is a deduction satisfying the condition.

D B

. Case D = A—I‘lk-—ﬁ (Co) : By definition, D, is a deduction proving A, A,I' - B. By

I.H., there is a deduction & proving IVU {A™, A™} } B (A", A™ ¢ I, n # m). Let
Tk

ADB A™

£= — (D B),
&1 AP A"
O D™ =7 (A)
SEADB A/\A(/\Ei),
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and 1t is a deduction satisfying the condition.
4. Another case: straightforward

Next, we will show that if there is a deduction &€ proving I' - A in NILL#, then there is
a deduction D proving I F A in ILLx.

1. Case £ = A"™: Let D = Al A, and it is a deduction satisfying the condition.
&

2. Case £ = ) 31 B (D I)"™ : By definition, & is a deduction proving T'U{A™} - B or
I'F B such that A” ¢ T. By LH,, there is a deduction (a) D, proving ', A+ B or
(b) D} proving T'F B. In (b), let

/
1
_ATFB ge))
b=t are
, D,
andD.z TFAS B (D.R)‘, N
and D is a deduction satisfying the condition.

&L & o . . .

3. Case &€ = 5 (D E) : By definition, & is a deduction proving TUA + A D B,
and &; is a deduction proving AUILF A (P NII = 0). By I.H,, there is a deduction
D, proving IV, A’ A D B and a deduction D5 proving A’ II' - A. Let

A+FA BFB (L)
Dy, AJADBFB (Cut)
D=p, TI',A,AFB c t)” ,
T',A A I'F B © )"
o
(r',A",II' + B)
and it is a deduction satisfying the condition.

4. Another case: similarly

Corollary 3.8 The systems obtained by removing one of (W—-condition) are equivalent to
System ILL—W.

Corollary 3.9 The systems oblained by removing some of (C—condition) are equivalent to
System ILL—C.

Corollary 3.10 The systems obtained by removing one of (W——condition). and some of
(C—condition) are equivalent to System ILL—CW.

(proof) Look proof of previous theorem carefuly, and these corollarys are obtained.

Corollary 3.11 The system obtained by removing (C’'—condition) and one of (W—condition)
is equivalent to System ILL—CW

(proof) It is enough to show that if T U {4} U{A™} } B is provable, then T'U {A™},
in the system.



Take C* and (C D C)F such that C?,(C D C)* gTU{A"}U{A™} F B, let

T, A", A™
B m Ct i
SECD L 55e Ol e
pe ©50 545821 T©5o.a (*E():”)

B
and it is a deduction satisfying the condition.

4 Redex and reduction for a deduction of System NILLx*

Next, like Gentzen’s natural deduction systems NK and NJ, we define normal deduction.
To define this, we define some difinitions, and prove some lemmas.

Definition 4.1 (substitution for deductions) Let £ be a deduction proving 't A, and
A™ be an assumption. We write [E/A™D for substituting A™ in D proving A+ B by £ and
we define inductively on height of D.

1. Case D = A™: [E/A”]A" =€
2. Case D = A™ (n #£ m): [E[]A"]A™ = A™
3. Case D = B™ (B % A): [£/A"]|B™ = B™

Dy
4. Case D =75 oIy [g/A"D =D
Dl m ‘ ' . ‘
5. Case D=7, S5C O I)" (D# A) and D™ ¢ T, or A™ & A where A’ is the set of

E/A D
assumption of Dy: [EJ/A”]D = [—lg-% onm

1

D
6. Case D =75 5C (O I)’ (D # A), and A™ €T and if Dy proves A’ C then A™ €
‘ ' £/AM([D¥ /D™D, Y
A': Take assumption D* satisfying D*¥ ¢ A'UT, [E/A™D = £/ ](f[l D/B 1D1) (O I)¥

7. Case D = D—I'B’"D—Z (R) ((R) = (D E),(AI),(AEY),(AE,),(+]),(xE)): [E/A™]D =
[£/A™]D: [E/AM]D, (R)
B

Lemma 4.2 Let D be a deduction proving A+ B, and & be one proving I' - A in NILL*.
IfA™ ¢ A, then [E[/A"D =D.

(Proof) Induction on height of deductions.

Lemma 4.3 Let D be a deduction proving TU{A"} F B (A" ¢ T'), and £ be u deduction
proving A+ A in NILLx. IfTNA = 0, then F = [E/A™]D is a deduction provingTUA+ B
“an at.

(Proof) Induction on height of deductions.

Definition 4.4 (redex) Let Dy, D2 and D3 be deductions in NILLx. If they are following
forms, we call them redex.

Dl D2 D3 D2 D3 Dz D3
oI » (AI) (AD) (1)
ADB ( D D AANB D AAB D AxB
5 0B TG (\B) T (W) T ()

201



202

Definition 4.5 (reduction) we call it reduction to replace a left-side deduction by the
right-side one.

Dy Dy Dy 2

o n" ()  —J== (DE)

ADB D D AxB BoC D
2 (DE) b[Dy/A" Dy, ——F—— (+E) b 2 (D E)
B C C
D, Dy, D
‘ 2 (AI) 2 (AD)

D1 AN B D1 D, Dy ANB Dy, D3

If D b D', then we also call it reduction to replace a following left-side deduction by the
right-side deduction.

Pon v Zoy
LEtm » EZE@m EDr » £2 B

(R) = (D E),(AL), (AE)1, (AE)y, (+I), (xE)

Lemma 4.6 Let D be a deduction proving I' - A in NILL or NILL—C. If D > &, then &
s a deduction proving I' - A in i1, too.

(Proof) Induction on height of D.

Lemma 4.7 Let D be a deduction proving T' - A in NILL— W or NILL-WC. If D b €,
then & is a deduction provingI'+ A (I' C T) in it.

(Proof) Induction on height of D.

When we have normal proof in a system, even if we reduce a deduction in any way, we
say that the system is strong normalizable. To show that NILL« are strong normalizable,
we consider expanded typed linearx A-term.

5 Expanded typed linearx A-term

Definition 5.1 (typed linear A-term) Assume that there are enumerate infinite vari-
ables.

1. x:var, A : type = x4 : typed var
2. x4 : typed var = z4 : typed term

3. o : typed var, M® : typed term, (W— condition):z* € FV(MB)
= (/\mA MB)ADB typed term

4. MASB NA typed term, (C—condition) FV(MAXB)NFV(N4) = ¢
= (MAPBNAYB : typed term

5. MA,NB : typed term, (W—condition) FV(M4) = FV(NP)
= (M4, NB)ANB . typed term

6. MAIC NAAB . typed term, (C—condition):FV(MAPC)NFV(NAAB) = ¢
= (M42C oy NAABYC - typed term

7. MBIY NANB typed term, (C—condition) FV(MB2C)NFV(NAE) = ¢
= (MB3C o, NANBYC - typed term
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8. MA NB :typed term, (C—condition):FV(MA) NFV(NB) =10
= [MA, NB1A*B : typed term

9. MAD(BOC) NA*B . gyped term, (C—condition) FV(MAIBIONNFV(NA*B) =¢ =
(MA2(BIC) o NA*BYC  typed term

We call the structure [,](,) ‘pairing’ and () (,) (o1) (o) ‘application’.

Definition 5.2 (typed linear— W A-term) Typed linear— W A-term is defined by remov-
ing (W—condition) from typed linear A-term.

Definition 5.3 (typed linear—C \- term) Typed linear— C A-term is defined by remov-
ing (C—condition) from typed linear A-term.

Definition 5.4 (typed linear—WC A-term) Typed linear— WC A-term is deﬁned by re-
moving (W—condition) and (C—condition) from typed linear A-term.

Definition 5.5 (reduction) we call it reduction to replace a following left-side term to
the right-side term.

1. ((Az.M)APBENAYE b [N4 /24| MB
2. (MA:)C o <NA1LB)AAB)C > (MADCNA)C ‘
3. (MB2C o, (N4, [B)ANB)C |, (MB2CLB)C
4. (MAD(BDC) o [NA, LB]A*B)C b ((MAD(B:)C)NA)BDCLB)C
IfMA 1> N4,
5. (Az.M)B34 b (Az.N)B>4
6. (M,L)® > (N,L)B, (L,M)? > (L,N)B ( (,)is any pairing or application)

6 Strong normalization for linear or linear—W A-term

Definition 6.1 (complexity) Complexity of term (CP:Term — Nat) is defined induc-
tively on structure of term as following.

MP(z) = 2
MP([M,N]) = MP(M) x MP(N)
MP({M,N)) = MP(M)+MP(N)
MP(Az.M) = MP(M)
MP((M oN)) = (MP(M)+1)x (MP(N)+1)
MP((M,N)) = MP(M)x MP(N) (another case)

Lemma 6.2 If (Az.M)N is a linear or linear— W term, then
MP((Az.M)N) — (MP(N) — 1) > MP([N/«]M).
(Proof) Induction on structure of M.
Lemma 6.3 If M is a linear or linear— W term,
M b N = MP(M) > MP(N)
(Proof) Induction on structure of M.

1. Case M = (A\z.P)Q and N = [Q/z]P : By previous lemma, MP(M)—(MP(Q)+1) >
MP(N). Therefore MP(M) > MP(N).

2. Another Case: Straightforward.

Theorem 6.4 (Strong Normalization) All reductions of any linear or inear— W A-term
are fintte.

(Proof) By using previous lemma.



7 Strong Normalization for typed linear—WC A-term

Definition 7.1 (Complexty of types) We define complexty of type A CP(A) inductively
on structure of type as follows:

1. A: atrmic= CP(A) =1

2. CP(AD B)=CP(A) + CP(B)

3. CP(AAB) = (CP(4A) + CP(B)) x 2
4. CP(A* B) = (CP(A) + CP(B)) x 2

Definition 7.2 (reducible) We define a set REDy of typed A-term having type A as
follows:

1. M# € REDy4 (A : atomic) & A: SN
2. MA3B ¢ RED45p < VN4 € RED4((MN)? € REDg)

3. MAMB € RED anp < YN424 € RED 454, YVLE?B € REDpo3p
((N oy M)* € REDy4, (N o, M)B € REDp)

4. MA*B ¢ RED .5 < VNAD(BDA) ¢ REDAD(B:)A),VLAD(BDB) € REDA:)(B:)B)
(N o M)A € RED4, (L o M)P € REDp)

Definition 7.3 (neutral) If M4 is a typed variable or an application, then we call it
neutral.

Definition 7.4 If M4 : is SN, then we write v(M*4) for the length of the longest reduction
path of M4,

Lemma 7.5 (reducible) Any typed A-term M# satisfies the following conditions from
(CR1) to (CR4).

(CR1) MA € RED, = M4 : SN
(CR2) M4 € RED4, M4 b M'A = M'4 € RED,
(CR3) VM : neutral, YM'A(M4 > M'4 = M'A € RED4) = M4 € RED4
(CR4) M4 :neutral and n.f. = M4 € REDy4
(Proof) Induction on the complexty of type A.

Lemma 7.6 M4 € RED4,N? € REDg = (M,N)® € RED¢ ((,) is any pairing or
application)

(Proof) By usual method.

Lemma 7.7 M4 :typed A-term, NP* .. NB» ¢ RED = [NP'/2Pr . NP»[zB-1MA €
RED4

(Proof) Induction on structure of M4,

Theorem 7.8 (Strong Normalization) All typed linear— WC A-term is strongly noma-
Lizable.

(Proof) In previous lemma, let Ny = z4,...,N, = x,, and M# € RED4 for any typed
A-term M“4. Therefore, by (CR1), M4 : SN.

Corollary 7.9 (Strong Normalization) All typed linearx A-term is strongly nomaliz-
able.
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8 Strong Normalization for NILLx

In this section, we show that all deductions in NILL% are strong normalizable by using
strong normalization for typed linear—s* A-term.

because term variables are enumerate infinite, there is a bijective function from natu-
ral numbers to term variables. By using the function, there is a bijective function from
deductions to linears A-term. We call it DT.

Lemma 8.1 D b D’ = DT(D) b DT(D)’
(Proof) Induction on structure of reduction.

Theorem 8.2 (Strong Normaliztion for NIIL*) All deduction in NILL* are strongly
nomalizable.

(Proof) By using previous lemma.

9 Conclusion

o By attaching some indexes to assumptions, substraclural logics in natural deduction
systems are introduced.

o All deductions in these systems are strongly normalizable.

e In the systems without contraction, there is a easy proof for strong nomalizations. To

our interesting, additive conjunction pairing is defined by addition and multiplicative '

conjunction pairing is defined by multiplication.
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