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abstract: This paper extends left-incompatible term rewriting systems defined by
Toyama et $\mathrm{a}\mathrm{l}.\mathrm{l}\mathrm{T}\mathrm{s}\mathrm{E}\mathrm{P}93$ ]. It is shown that the functional strategy is normalizing in
the class, where the functional strategy is the reduction strategy which finds index
by some rule selection method and top-down and left-to-right lazy pattern matching
method. The reduction procedure based on the strategy is also shown.

1 Introduction

According to lazy evaluation method widely
adopted in functional programming language im-
plementations, the evaluation of an expression is
postponed until the result is truly $\mathrm{n}\mathrm{e}e\mathrm{d}\mathrm{e}\mathrm{d}[\mathrm{H}\mathrm{e}\mathrm{n}80$ ,
Tur85, Jon87, Dav92]. If the value of the expres-
sion is not used in anywhere, it is never evaluated.
Hence, it is often observed that an expression com-
putation which does not terminate by usual call-
by-value method, $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ eager method, terminates
by lazy method. For example, letting rules of $\dot{i}f$

be
$if$ (true, $x,$ $y$ ) $arrow x$ and
$\dot{i}f$ ( $f$ alse, $x,$ $y$ ) $arrow y$ ,

if $(g(a), h(b),$ $i(c))$ will be lazily evaluated by fol-
lowing steps;

(1) Select the first pattern if (true, $x,$ $y$).

(2) Find a position needed in order to reduce by
the pattern. So $g(a)$ is selected and evalu-
ated first.

(3) If $g(a)$ comes to true, reduce
$\dot{i}f(g(a), h(b),$ $i(c))$ to $h(b)$ and then evalu-
ate $h(b)$ . If not, select the second pattem
if (false, $x,y$) and repeat in the same way
as (2) and (3).

Let the value of $g(a)$ be true and the value of $h(b)$

can be computed. The value of target expression

can be computed even if the evaluation of $\dot{i}(c)$ re-
quires infinite computation steps.

The lazy evaluation is not only efficient but also
effective on normalizing property as illustrated
ab$o\mathrm{v}\mathrm{e}$ . However, it is not so clear the class of pro-
gram on which the lazy method mentioned above
works as a normalizing strategy, i.e., the value of
an expression can be computed if it exists.

On the other hand, Huet and Levy proposed
the concept of $\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}[\mathrm{H}\mathrm{L}79]$ . They defined a class
of strong-sequential term rewriting systems $(\mathrm{S}\mathrm{S})$

in which each term not in normal form has an in-
dex and in which index reduction is normalizing.
Strandh defined the class of bounded term rewrit-
ing systems $(\mathrm{B})[\mathrm{S}\mathrm{t}\mathrm{r}89]$ , which is the same class as
SS shown in $\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}[\mathrm{D}\mathrm{u}\mathrm{r}94]$ . For efficient execution,
Toyama proposed transitive system $(\mathrm{T}\mathrm{S})$ , which is
the subclass of $\mathrm{S}\mathrm{S}[\mathrm{T}\mathrm{s}\mathrm{E}\mathrm{p}93]$ . Strandh separately
defined forward-branching $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{S}\mathrm{S}[\mathrm{s}\mathrm{t}\mathrm{r}89]$, which is
the same class as TS shown in $\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}[\mathrm{D}\mathrm{u}\mathrm{r}94]$. Du-
rand showed that efficient construction of match-
ing automaton given by Huet and $\mathrm{L}\mathrm{e}\mathrm{v}\mathrm{y}[\mathrm{H}\mathrm{L}79]$ for
simple systems, which is the proper sub-class of
$\mathrm{F}\mathrm{B}$ , can also be applied to $\mathrm{F}\mathrm{B}[\mathrm{D}\mathrm{u}\mathrm{r}94]$ .

Toyama proposed left-incompatible system,
called SLI in this paper, which is proper subclass
of $\mathrm{T}\mathrm{S}[\mathrm{T}\mathrm{s}\mathrm{E}\mathrm{p}93]$. In the system, top-to-down and
left-to-right lazy pattern matching method stated
above is normalizing strategy. In this paper, we
define left-incompatible system $(\mathrm{L}\mathrm{I})$ larger class
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than SLI. LI is still proper sub-class of $\mathrm{T}\mathrm{S}$ . We
also give a reduction procedure which repeats re-
duction efficiently based on top-to-down and left-
to-right lazy pattern matching method.

2 Term Rewriting Systems

We mainly folow the notation of [Klo92, TSEP93]
and assume readers are familiar with term rewrit-
ing systems $(\mathrm{T}\mathrm{R}\mathrm{S})$ [ $\mathrm{K}\mathrm{l}\mathrm{o}92$ , DJ90]. Let $\Sigma=V\cup F$

$be$ a signature where $F$ and $V$ are a set of function
symbols with arity and a set of variables, respec-
tively. $T_{\Sigma}$ (or simply $T$) denotes the set of terms
well constructed by symbols in $\Sigma$ . A rewrite rule
is a pair of terms $larrow r$ such that $l$ is not a variable
and variables in $r$ also appear in $l$ . A TRS $R$ is a
finite set of rewrite rules.

Letting $\square$ be an extra constant, a term $C\in$

$(\tau_{\Sigma_{\cup}\mathrm{t}^{\mathrm{o}\}}}-\tau_{\Sigma})$ is called a context denoted by
$C[, \ldots, ]$ . For $C[, \ldots, ]$ which contains $n\square ’ \mathrm{s}$ and
for $t_{1},$ $\ldots$ , $t_{n}\in\tau_{\Sigma},$ $C[t_{1}, \ldots , t_{n}]$ denotes the $0$b-
tained term by replacing $\square ’ \mathrm{s}$ with $t_{1},$

$\ldots$ , $t_{n}$ from
left to right order.

Let $\sigma$ be a substitution. We denote the appli-
cation of $\sigma$ to term $t$ by $t\sigma$ . Syntactical equality
of terms and subterm relations are indicated by $\equiv$

$\mathrm{a}\mathrm{n}\mathrm{d}\subseteq \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{y}$ .
We say that the term $t$ reduces to $s$ by using

rule $larrow r$ (on context $C[$ ]) if and only if there
exist a substitution $\sigma$ and context $C[]$ such that
$t\equiv C[l\sigma]$ and $s\equiv C[r\sigma]$ . We write $tarrow s$ when
$t$ reduces to $s$ . We $\mathrm{u}\mathrm{s}\mathrm{e}arrow*$ to denote reflexive and
transitive closure $\mathrm{o}\mathrm{f}arrow$ . $arrow \mathrm{i}\mathrm{s}+$ also used to denote
transitive closure $\mathrm{o}\mathrm{f}arrow$ .

A TRS $\mathrm{i}.\mathrm{s}\mathrm{c}\mathrm{a}\dot{\mathrm{l}}\mathrm{l}\mathrm{e}\mathrm{d}$ left-linear, if every variable of
$l$ occurs only once for every left-hand side $l$ . A
TRS is called ambiguous, if there exist rules $larrow r$ ,
$l’arrow r’$ , term $s\subset l’$ and substitutions $\sigma,$

$\sigma’$ such
that $l\sigma\equiv s\sigma’$ except trivial case, i.e., the rules
are the same and $l\equiv s$ . A left-liner and non-
ambiguous TRS is orthogonal.

In this paper, we only deal with orthogonal
TRS’s.

3 $\mathrm{R}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ Systems

In this section, we review transitive systems and
their property according to reference [TSEP93].
The class of transitive systems is a sub-class of
strongly sequential $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{S}[\mathrm{H}\mathrm{L}79]$ .

Definition 3.1 ( $\Omega$-terms) Letting $\Omega$ be an ex-
$tra$ constant, we represent prefixes of terms by $\Omega-$

terms in $T_{\Sigma\cup\{\Omega}$ } (also denoted by $T_{\Omega}$ simply).

. $t_{\Omega}$ denotes the $\Omega$ -term obtained from a term
$t$ by replacing each variables with $\Omega$ .

The prefix ordering $\succeq$ on $T_{\Omega}$ is defined as

follows:

$t\succeq\Omega$ for all $t\in T_{\Omega}$ ,
$t\succeq t$ for each variable or constant,
$f(t_{1}, \ldots,t_{n})\succeq f(s1, \ldots, sn)$

if $t_{i}\succeq s_{i}$ for $i=1,$ $\ldots,$
$n$ .

. $t$ and $s$ are compatible, written by $t\uparrow s$ , if
$u\succeq t$ and $u\succeq s$ for some $u$ ; otherwise they
are incompatible, denoted by $t\# s$ .

Definition 3.2 ( $\Omega$-systems) Let $R$ be Term
Rewriting System.

The set of redex schemata of $R$ is $Red=$
..

$\{l_{\Omega}|larrow r\in R\}$ .

The reduction $relation-_{\Omega}$ ($\Omega$ -reduction) is

defined on $T_{\Omega}$ as $C[t]arrow\Omega C[\Omega]$ where $t\uparrow s$

for some $s\in Red$ and $t\not\equiv\Omega$ .

$NF_{\Omega}$ is the set of all normal forms w.r.t.
$\Omega$ -reduction.

Lemma 3.3 $([\mathrm{K}\mathrm{l}\mathrm{o}92])\Omega$ -reduction is confluent
and terminating.

Definition 3.4 The direct approximant $\omega(t)$ of
an $\Omega$ -term $t$ is the normal form of $tw.r.t$ . $\Omega-$

reduction.

Lemma 3.5 $([\mathrm{T}\mathrm{s}\mathrm{E}\mathrm{P}93])$

. If $t\succeq s$ then $\omega(t)\succeq\omega(s)$ .

. Let $C[\Omega]\in NF_{\Omega}$ . Then for all $t\in NF_{\Omega}$ ,
$C[t]\in NF_{\Omega}$ .
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Definition 3.6 A term $t$ is in strong head normal

forrns if $\omega(t)\not\equiv\Omega$ .
Lemma 3.7 $([\mathrm{T}\mathrm{S}\mathrm{E}\mathrm{p}931)$ A $te\mathit{7}mt$ in strong
head normal forms is in head norrnal forrns.
Definition 3.8 (Transitive index)

Let $C[]$ be a context and let $z$ be a fresh
variable. If $z\subseteq\omega(C[z])$ , the displayed oc-
$c$urrence of $\Omega$ in $C[\Omega]$ is called an index de-
noted by $C[\Omega_{I}]$ .

. The displayed index in $C_{1}[\Omega_{I}]$ is transitive

if for any $\Omega$ -term $C_{2}[\Omega_{I}],$ $C_{2}[c_{1}[\Omega_{I}]]$ . The
transitive index is denoted by $C_{1}[\Omega_{TI}]$ .

Definition 3.9 Let $R$ be Term Rewriting System.

$Red*=$ {$p|\Omega\prec p\subseteq q$ for some $q\in$ Red}.
$Red^{+}=Red^{*}$ –Red.

The set of preredex schemata of $R$ is

$Red^{\prec}=$ {$.p|\Omega\prec p\prec q$ for some $q\in$ Red}.

Deflnition 3.10 (Transitive direction)

Let $Q\subseteq T_{\Omega}$ . The displayed $\Omega$ in $C[\Omega]$ is a
direction for $Q$ if $C[Z]\# Q.$ A direction for
$Q$ is indicated with $C[\Omega_{Q}]$ .

Transitive direction is defined as a direction

for Red*. A transitive direction is denoted
with $C[\Omega\tau D]$ .

Lemma 3.11 $([\mathrm{T}\mathrm{s}\mathrm{E}\mathrm{P}93])$ If’ $C[\Omega_{TD}]$ and
$C[z]\in NF_{\Omega}$ then $C[\Omega_{TI}]$ .
Lemma 3.12 $([\mathrm{T}\mathrm{S}\mathrm{E}\mathrm{p}93])$ Let $R$ be a $TRS$ . $R$

is transitive iff every $t\in Red^{\prec}$ has a transitive
direction.

We prepare some lemmas used in later.

Definition 3.13

The reduction $tarrow s$ on context $C[]$ is called
transitive reduction if $C[\Omega_{TI}]$ . We write
transitive reduction $relationarrow TI$ .

Let $t\equiv C[s],$ $C[\Omega_{TI}]$ and $C[]\not\equiv\square$ . We
write $t\supset_{TI}S$ .

The $relationarrow\tau I\cup\supset_{TI}$ is denoted $by\ni$ .

Proposition 3.14 If $tarrow TI*s$ and $C[\Omega\tau D]$ , then
$C[t]arrow*TIc[S]$ .
Proof Let $t\equiv C’[l\sigma]$ and $s\equiv C’[r\sigma]$ for some
$larrow r\in R,$ $\sigma$ and $C’[\Omega_{TI}]$ . Since $C[\Omega_{I}]$ by
the definition, we have $C[C’[\Omega_{TI}]]$ . This indicates
$C[t]\equiv C[C’[l\sigma]]arrow TIC[c’[r\sigma]]\equiv C[s]$ . An easy
induction concludes the proof. $\square$

Lemma 3.15 Let $R$ be transitive $TRS$. If a term
$t$ has a normal $fo7m$, then there exist no infinite
sequences:

$t\equiv t\mathrm{o}\ni t_{1}\ni t_{2}\ni\cdots$

Proof Assume infinite sequence $t_{0}\ni t_{1}\ni\cdots$ . We
can define $C_{i}$ $[]$ from $t_{i}$ as follows.

. $C_{0}[]\equiv\square$ . Therefore $C_{0}[t_{0}]\equiv t_{0}$ .

$C_{i+1}[]\equiv C_{i}[]$ , if $ti^{arrow}TIti+1$ .
. $C_{i+1}[]\equiv C_{i}[C[ ]]$ , if $t_{i}\supset_{TI}t_{i+1}$ , i.e., $t_{i}\equiv$

$C[t_{i+1}]$ .

We can show following properties by using propo-
sition 3.14.

. $C_{i}[\Omega_{I}]$ for any $i\geq 0$ ,

. $t_{i}arrow_{TI}ti+1\Rightarrow C_{i}[t_{i}]-TIci+1[\mathrm{t}+1]$ , and

$t_{i}\supset_{TI}t_{i+1}\Rightarrow C_{i}[t_{i}]\equiv C_{i+1}[t_{i+1}]$ .

Since $t$ has a normal form, there must be finite
steps of $arrow TI$ in $t_{0}\ni t_{1}\ni\cdots$ , otherwise we can
construct infinite sequence $t_{0}\equiv s0arrow TIs_{1}arrow TI$

Therefore, there exists $n$ such that $t_{n}\supset\tau I$

$t_{n+1}\supset_{TI}\cdots$ . This is impossible. $\square$

4 Extended Left-incompatible
System and Functional Strat-
egy

In simple left-incompatible system(SLI), an index
of a given term is efficiently computed basically by
a lazy pattern matching method. In this section,
the author gives a left-incompatible system $(\mathrm{L}\mathrm{I})$

without losing the advantage of SLI system.

Definition 4.1 (Left incompatibility)
Let $s,$ $t\in T_{\Omega}$ . The left incompatibility of $s$ and
$t$ , indicated by $t\#\leq^{s}$ , is defined as follows:
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. $t\not\equiv\Omega,$ $s\not\equiv\Omega$ , and . $\forall p_{i},\forall q\in(Red^{*}-SRed)[p_{i}\#\leq q]$

$f=g\Rightarrow\exists i[\forall j<i[t_{j}\preceq s_{j}]\wedge t_{\dot{\iota}}\#\leq s\dot{l}]$ , where
$t\equiv f(t_{1}, \ldots,t_{n})$ and $s\equiv g(s_{1}, \ldots , s_{m})$ .

We write $t\#<^{S}$ instead of $t\#\leq^{s}\wedge\urcorner(s\#\leq t)$ . $t\#=^{S}$

also denotes $t\#\leq^{S}\wedge S\#\leq^{t}$ .
Intuitively, $t\#\leq^{S}$ if and only if each node of $t$ is

$\Omega$ or it is the same as the corresponding node of $s$

until the nodes are different constant or function
symbols in depth-first order comparison.

Lemma 4,2 $(1^{\mathrm{T}\mathrm{S}\mathrm{E}\mathrm{P}}93])$ Let $C[\Omega]\uparrow p$ and let
$C[\Omega_{\{\}}]p$ be the left most direction for $\{p\}$ . Then

$p\#\leq q\Rightarrow C[\Omega_{\{\}}]q$.
$\square$

Definition 4.3 $([\mathrm{T}\mathrm{S}\mathrm{E}\mathrm{p}93])$ An orthogonal
$TRS(\Sigma, R)$ is simple left-incompatible $(SLI)$ if
Red can be expressed as a list $[p_{1}, \ldots , p_{n}]$ satis-
fying the following conditions:

. $p_{i}\#\leq p_{j}$ if $i<j$ , and

. $\forall p_{i}\in Red,$ $q\in Red^{+}[p_{i}\#\leq q]$ .

The followings are defined by relaxed the sec-
ond condition of SLI in essential. Moreover, the
$\mathrm{f}\mathrm{o}11_{\mathrm{o}\mathrm{W}}\mathrm{i}\mathrm{n}\mathrm{g}$

.
definition does not require the existence

of the list of Red.

Definition 4.4 (Left-incompatible system)
An orthogonal $TRS(\Sigma, R)$ is left incompatible if
it satisfies the following conditions:

. $\forall p\in$ Red, $q\in Red^{*}\lceil p\not\equiv q\Rightarrow(p\#\leq q$

$q\#\leq p)]$ , and

. $\forall q\in Red^{+}[\exists p\in Red[\neg(p\#\leq^{q)}]\Rightarrow$

$\forall q’$ $\in$ $Red^{+}[q\not\equiv q’\Rightarrow(q\#\leq q’$

$q’\#\leq q)]]$ .

Example 4.5 Let Red $=\{f(g(\Omega, a)),\mathit{9}(a, b)\}$ .
The system is left-incompatible but not simple left-
incompatible, since $g(\Omega, a)\#<g(a, b)$ .

Definition 4.6 A list of standard redex schemata
is $SRed=[p_{1}, \ldots,p_{n}]$ which satisfies the following
conditions:

$Red\subseteq SRed\subseteq Red^{*}$ ,

Lemma 4.7 If $TRS(\Sigma, R)$ be left-incompatible,
there exists a $SRed=[\mathrm{p}_{1}, \ldots ,p_{n}]$ . The converse
also holds.

The lemma 4.7 is not trivial, because the
left-incompatible relation $\#\leq$ is not a par-
tial order since it does not have transitiv-
ity. For example, $f(\Omega, \Omega,0, \mathrm{O})\#<f(\Omega, 1,1,1)$ and
$f(\Omega, 1,1,1)\#<f(2,2, \Omega, 2)$ hold, but
$f(\Omega, \Omega,\mathrm{o},\mathrm{O})\#\leq f(2,2, \Omega, 2)$ does not hold.

Before proving this lemma, we must prepare
several notions.

Definition 4.8 The lexicographic prefix ordering
$\prec_{l}$ on $T_{\Omega}$ is defined as follows.

$\Omega\prec_{l}t$ if $t\not\equiv\Omega$ ,
$f(t_{1}, \ldots, t_{n})\prec\iota f(s1, \ldots, sn)$

if $[t_{1}, \ldots,t_{n}]$

.
$\prec\prec\iota[s_{1}, \ldots, s_{n}]$ .

$where\prec\prec_{l}$ is lexicographic extension $of\prec\iota$ .

It is easy to show that $\prec\iota$ is a partial order on
$T_{\Omega}$ .
Proposition 4.9 Let $t$ and $s$ be in $T_{\Omega}$ .

$(a)t\prec s\Rightarrow t\prec_{l^{S}}$

$(b)t\prec_{l^{S}}\Rightarrow\neg(s\#\leq t)$

$(c)t\#<^{S}\Rightarrow t\prec_{l^{S}}$

Proof (a) is trivial from the definitions.
For the proof of (b), we assume $t\prec\iota s$ . In

case of $t\equiv\Omega\prec\iota s\not\equiv\Omega$ , we have $\urcorner(s\#\leq t)$ from
the definition. In case of $t—f(t_{1}, \cdots , t_{n})\prec_{l}$

$f(s_{1}, \cdots , s_{n})\equiv s$ and $[t_{1}, \cdots , t_{n}]\prec\prec\iota[s_{1}, \cdots , s_{n}]$ ,
there exists $k$ such that $t_{i}\underline{=}s_{i}(i<k)$ and $t_{k}\prec_{l}s_{k}$ .
From induction hypothesis, we have $\urcorner(s_{k}\#\leq t_{k})$ .
It follows from $t_{k}\prec ls_{k}$ that $\neg(s_{k}\preceq t_{k})$ by (a)
and transitivity $\mathrm{o}\mathrm{f}\preceq\iota$ . Hence, we have $\urcorner(S\#\leq^{t)}$ .

Finally, let’s prove (c). We have $t\not\equiv\Omega$ and $s\not\equiv$

$\Omega$ from $t\#\leq^{s}$ . Letting $t\equiv f(t_{1}, \ldots , t_{n})$ and $s\equiv$

$g(s_{1,\ldots,n}s)$ , we also have $f=g$ from $\neg(s\#\leq t)$ .
From these facts, there exists $k$ such that

$\forall j<k[t_{j}\preceq s_{j}]$ A $t_{k}\#\leq^{s_{k}}$ (1)

and we have also
$\forall i[\exists l<i[s\iota\not\leq t\iota]\vee\urcorner(_{S_{i}}\#\leq^{t_{i}})]$ . (2)

. $\forall p_{i},p_{j}[i<j\Rightarrow p_{i}\#\leq p_{j}]$ , and

19



Then we have $\neg(s_{k}\#\leq^{t_{k}})$ , since $s_{k}\#\leq^{t_{k}}$ and (2)
leads $\exists l<k[s_{l}\not\leq t_{l}]$ contradicting to (1). Since
$t_{k}\#<s_{k}$ , we have $t_{k}\prec\iota s_{k}$ by induction hypothesis.
On the other hand, we have $\forall j<k[t_{j}\preceq\iota s_{j}]$ from
(1) by (a). These conclude that $[t_{1}, \ldots , t_{n}]\prec\prec_{l}$

$[s_{1}, \ldots , s_{n}]$ , hence $t\prec_{l}$ s. $\square$

Lemma 4.10 The relation $\#_{<}on$ $T_{\Omega}$ is acyclic.
Proof By proposition 4.9. $\square$

Proof of lemma 4.7 Let $X=\{q\in Red^{+}|\forall p\in$

$Red[p\#\leq q]\}$ and $\mathrm{Y}=Red^{*}-X$ . Let $[p_{1}, \ldots ,p_{m}]$

be a list sorted from $\mathrm{Y}$ topologically according to
$\#<$ in increasing order. Now let’s prove that the
list is standard. From construction of $Y$ and the
definition of left-incompatible TRS, it follows that

$\forall p\in \mathrm{Y},r\in Red^{*}\lceil p\not\equiv r\Rightarrow(p\#\leq^{r}r\#\leq p)]$ . (3)

Assuming $[p_{1}, \ldots , p_{m}]$ is not standard, the follow-
ing two cases are possible:

$\exists p_{i},p_{j}\in \mathrm{Y}[i<j\wedge\neg(p_{i}\#\leq p_{j})]$ (4)

$\exists p_{i}\in \mathrm{Y},$ $\exists q\in X[\neg(pi\#\leq q)]$ (5)

In case of (4), it follows from (3) that $p_{j}\#_{<}p_{j}$

which contradicts to the fact that the list is topo-
logically sorted. In case of (5), we have $p_{i}\in Red^{+}$

from the definition of $X$ . Since $p_{i}\not\in X$ , there
exists $p_{j}\in Red$ such that $\urcorner(p_{j}\#\leq^{p_{i})}$ . Therefore
we have $q\#_{<}p_{i}$ and $p_{i}\#<p_{j}$ by the definition of
left-incompatible. These lead $\neg(p_{j}\#\leq q)$ by propo-
sition $4.9(b),(\mathrm{c})$ . Hence, we have $q\#_{<}p_{j}$ , which
contradicts $q\in X$ .

The converse is trivial. $\square$

By the proof of lemma 4.7, we can calculate
a list of standard $\mathrm{r}e$dex schemata SRed of left-
incompatible TRS.

Example 4.11 Let Red $=$ $\{f(g(a, a, \Omega))$ ,
$f(g(b, \Omega, a)),g(b, a, b),\mathit{9}(c, \Omega, \Omega)\}$ . One of SRed of
the system is

$[f(g(a, a, \Omega)),$ $f(\mathit{9}(b, \Omega, a)),g(C, \Omega, \Omega)$ ,
$g(b, \Omega, a),g(b, a, b)]$ .

Lemma 4.12 $SLI$ is a proper subclass of $LI$.
Proof $SLI\subseteq LI$ is trivial by the definitions and
lemma 4.7. $SLI\neq LI$ is shown from example 4.5.

Lemma 4.13 Let $R$ be a left-incompatible $TRS$

with $SRed=[p_{1}, \ldots , p_{n}]$ . Let $C[]$ be a context
such that $C[\Omega]\uparrow p_{d},$ $C[\Omega]\# pi(1\leq i<d)$ and

$C[\Omega_{\{p_{d}\}}]$ display the leftmost direction for $\{p_{d}\}$ .
Then $C[\Omega_{TD}]$ .
Proof Since $C[\Omega]\# pi(1\leq i<d)$ , we have
$C[\Omega_{\{:\}}p](1\leq i<d)$ . From definition of stan-
dardness, it follows that $p_{d}\#\leq p_{j}(d<j\leq n)$ .
Thus, by Lemma 4.2 we can show that $C[\Omega_{\{p:\}}]$

for $p_{i}\in Red^{*}$ . $\square$

Lemma 4.14 $LI$ is a proper subclass of $TS$ .
Proof First, let’s prove that each $t\in Red^{\prec}$ has
a transitive direction. Letting $t\in Red^{\prec}$ , there ex-
ists some $p_{d}\in SRed$ such that $t\# p_{i}(i<d)$ and
$t\uparrow p_{d}$ . Since $t\succeq p_{d}$ contradicts non-overlap prop-
erty, we have $t\not\geq p_{d}$ . So $t$ must have a direction
for $\{p_{d}\}$ , from the definition of the direction. By
Lemma 4.13, the leftmost direction of $t$ for $\{p_{d}\}$

is a transitive direction. By Lemma 3.12, we have
$LI\subseteq TS$ . $LI\neq TS$ is shown from the following
system.

$Red=\{f(\Omega, a, a), f(a, \Omega, b)\}$

$\square$

We introduce the notion of well-marked
$\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}[\mathrm{T}\mathrm{s}\mathrm{E}\mathrm{p}93]$.
Definition 4.15 Let $R$ be a $TRS$.

. root $(t)$ denotes outermost symbol of term $t$ .

Let $D=\{root(l)|larrow r\in R\}$ be the set of
defined symbols. The set of marked symbols
$D^{*}$ is defined as $\{f^{*}|f\in D\}$ where each
$f^{*}$ is new symbol and has the same arity of
$f$ . The set of marked term is $T_{\Sigma\cup D}\cdot$ , simply
written by $T^{*}$ .

Let $t$ be a marked term. $e(t)$ denotes the
term obtained from $t$ by erasing all marks.
$\delta(t)$ denotes the $\Omega$ -term obtained from $t$ by
replacing all subterms satisfying root $(t)\in$

$D$ with $\Omega$ . $\overline{\delta}(t)$ denotes $f(\delta(t_{1}), \ldots, \delta(t_{n}))$

where $t\equiv f(t_{1}, \ldots,t_{n})(0\leq n)$ .

Definition 4.16 $t\in T^{*}$ is well marked if
$\forall s\subseteq t[root(S)\in D^{*}\Rightarrow e(\delta(s))\in NF_{\Omega}]$ .

Lemma 4.17 If $t$ $\in$ $T^{*}$ is well marked then
$e(\delta(s))\in NF_{\Omega}$ for any $s\subseteq t$ .
Proof Trivial $\square$

20



Lemma 4.18 Let $t\in T^{*}$ be well marked. If
a

root $(t)\not\in D,$ $e(t)$ is strong head-normal form.
Proof Since root $(t)\not\in D$ , we have $e(\delta(t))\not\equiv\Omega$ .
It follows from $e(s)\succeq e(\delta(t))$ by lemma 3.5 and
lemma 4.17 that $\omega(e(t))\succeq\omega(e(\delta(t)))\equiv e\{\delta(t))\not\equiv$

$\Omega$ . $\square$

$-$

Lemma 4.19 Let $C[t]$ be a well-marked term. If
$tarrow s$ and $s$ is well marked, then $C[s]$ is well
marked.
Proof It is enough to show that $e(\delta(c’[s]))\in$

$NF_{\Omega}$ for any $C’[]\subseteq C[]$ such that root$(c’[S])\in$

$D^{*}$ . Let $t\equiv C’’[t]’arrow C’’[S’]\equiv s$ . Since
$C[t]$ is well marked and lemma 4.18, we have
$e(\delta(o’[c\prime\prime[\Omega]]))\equiv e(\delta(c’[c\prime\prime[t]]))\in NF_{\Omega}$ . Since
$s$ is well marked, we also have $e(\delta(s’))\in NF_{\Omega}$ by
lemma 4.17. We can prove $e(\delta(c’[c\prime\prime[s’]]))\in NF_{\Omega}$

by using lemma 3.5. $\square$

Definition 4.20 $([\mathrm{T}\mathrm{S}\mathrm{E}\mathrm{P}93])$ Let $p_{d}$ $\in$ $T_{\Omega}$

and let $t$ $\equiv$ $C[t_{1}, \ldots , t_{k}, \ldots , t_{m}]$ $\in$ $T^{*}$ and
$\overline{\delta}(t)$ $\equiv$ $C[\Omega, \ldots, \Omega, \ldots , \Omega]$ . Furthermore let
$e(C)[\Omega, \ldots , \Omega_{\{p_{d}\}}, \ldots , \Omega]$ display the leftmost di-
rection for $\{p_{d}\}$ . Then we say that $t_{k}$ is the left-
most directed subterm of $t$ with respect to $p_{d}$ .

Definition 4.21 (Functional Strategy) Let $R$

be a left-incompatible $TRS$ with SRed $=$

$[p_{1}, \ldots , p_{n}]$ . The procedure $HNF(t)$ computing
the strong normal form of $t$ is defined as follows.

Input:

$-A$ well-marked term $t\in T^{*}$ .

Output:

$-A$ well-marked term $t’$ such that $e(t’)$ is
a strong normal form of $e(t)$ .

(4) Let $s$ be the leftmost directed subterm of
$tw.r.t$. $p_{d}.\cdot$ Replace $s$ . in

$t$ by $HNF(s)$

and let $s’$ be the.. $resultin.g\backslash$ term. Return
$HNF(_{S’})$ .

(5) If root $(t)$ $\in$ $D$ then return

markr.oot $(t)$ , else return $t$ ,
$w\dot{h}eremarkroot(f(t1, \ldots,tn))$ denotes
$f^{*}(t_{1}, \ldots,tn))$ .

Not$e$ that the matching should be done by ig-
noring the mark information of $t$ in the reduction
in step (2). However, we need not ignore the mark
information in the substitution using in the reduc-
tion.

Lemma 4.22 Let $R$ be left-incompatible system
and let $t\in T^{*}$ be well marked. If there exists a
normal form of $e(t)$ ,

$i)tarrow_{TI}HNF*(t)$ ,

$ii)$ the procedure $HNF(t)$ terminates,

$iii)root(HNF(t))$ is in $(C\cup D^{*})$ , and

$iv)HNF(t)$ is well marked.

Proof Since $\ni$ is terminating by lemma 3.15,
we can prove by induction on lexicographic com-
position of $(arrow TI\cup\supset_{TI})$ and number of unmarked
symbol in $t$ denoted by $|t|_{um}$ .

. In case of the execution path (1)$-(5),$ $\mathrm{i}),\mathrm{i}\mathrm{i})$

and iii) is obvious. Since $t$ is well marked,
$\forall s\subseteq t[root(S)\in D^{*}\Rightarrow e(\delta(s))\in NF_{\Omega}$.
Since $HNF(t)$ may differ only root symbol
from $t$ and $e(\delta(HNF(t)))\equiv e(\overline{\delta}(t))$ , we have
to show that $e(\overline{\delta}(t))\in NF_{\Omega}$ which is fol-
lowed from condition in (1). Hence vi) is
shown.

Procedure $HNF(t)$ :

(1) Find the first compatible pattern $p_{d}$ to
$e(\overline{\delta}(t))$ in the list SRed if it exists; oth-
erwise go to (5).

(2) If $e(\overline{\delta}(t))\succeq p_{d}$ and $p_{d}\in Red^{+}$ , go to
(5)

(3) If $e(\overline{\delta}(t))\succeq p_{d}$ and $p_{d}\in Red,$ rewrite
$t$ to $t’$ by the corresponding rule to $p_{d}$ ,
and return $HNF(t’)$ .

. In case of the execution path (1)$-(2)-(5)$ , the
proof is almost the same as above. The dif-
ferences are as follows: since $e(\overline{\delta}(t))\succeq p_{d}\in$

$Red^{*}$ , there are no compatible $p_{i}\in Red$ to
$e(\overline{\delta}(t))$ . Hence, $e(\overline{\delta}(t))\in NF_{\Omega}$ .

. In case of the execution path (1)$-(2)-(3)$ , the
reduction $tarrow t’$ in (3) is obviously transitive
index reduction of $t$ . Therefore, i) - vi) is
satisfied w.r.t. $t’$ by induction hypothesis.
Hence, $\mathrm{i}$ ) $- \mathrm{v}\mathrm{i}$) hold clearly.
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. In case of the execution path (1)$-(2)-(3)-(4)$ ,
Let $t\equiv C[s]$ . $C[\Omega]\uparrow p_{d}$ and $C[\Omega]\# p_{i}(1\leq$

$i<d)$ from (1), and $C[\Omega_{\{_{\mathrm{P}i}\}}$ displays the
leftmost direction for $\{p_{d}\}$ . Since $C[\Omega\tau D]$

by lemma 4.13 and $C[z]\in NF_{\Omega}$ , we have
$C[\Omega\tau I]$ by lemma 3.11. Hence $t\supset_{TI}s$ .
By induction hypothesis, i) -vi) is satisfied
w.r.t. $s$ . It follows that $s’$ is well marked by
lemma 4.19.

- If $e(s)$ $\equiv$ $e(HNF(s))$ , we have
$|HNF(s)|_{um}<|s|_{um}$ because $root(S)$

is in $D$ and root$(HNF(s))$ is not.

-Otherwise, since $sarrow TI+HNF(s)$ , We
have $t\equiv C[s]arrow\tau I+c[HNF(s)]\equiv s’$ by
proposition 3.14.

In both of cases above, i) - vi) is satisfied
w.r.t. $s’$ . From these facts we can easily
conclude $\mathrm{i}$ ) $-\mathrm{v}\mathrm{i}$ ) w.r.t. $t$ . $\square$

Theorem 4.23 Let $R$ be left-incompatible $TRS$

and let $t\in T$ have a normal form. The pro-
cedure $HNF(t)$ eventually terminates and term
$t’\equiv e(HNF(t))$ is a head normal form of $t$ .
Proof Direct consequence of lemma 3.7, lemma
4.18 and lemma 4.22.

This theorem shows that we can compute head-
normal form of given term $t$ if it has normal form.
The procedure to compute normal form of $t$ is eas-
ily constructed by applying $HNF$ to $t$ in top-to-
bottom order.
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