oooooooogon
918 0 19950 16-23

16

Left—incbmpa,tible Term Rewriting Systems and

its Normalizing Strategy

Masahiko Sakai,
School of Information Science, Japan Advanced Institute of Science and Technology,
Tatsunokuchi, Ishikawa, 923-12 Japan,
E-mail sakai@jaist.ac.jp

abstract: This paper extends left-incompatible term rewriting systems defined by
Toyama et al.[TSEP93]. It is shown that the functional strategy is normalizing in
the class, where the functional strategy is the reduction strategy which finds index
by some rule selection method and top-down and left-to-right lazy pattern matching
method. The reduction procedure based on the strategy is also shown.

1 Introduction

According to lazy evaluation method widely
adopted in functional programming language im-
plementations, the evaluation of an expression is
postponed until the result is truly needed[Hen80,
Tur85, Jon87, Dav92]. If the value of the expres-
sion is not used in anywhere, it is never evaluated.
Hence, it is often observed that an expression com-
putation which does not terminate by usual call-
by-value method, called eager method, terminates
by lazy method. For example, letting rules of if
be

if(true,z,y) — z and

if(false, z,9) — ,
if(g(a), h(b),i(c)) will be lazily evaluated by fol-
lowing steps;

(1) Select the first pattern if (true,z,y).

(2) Find a position needed in order to reduce by
the pattern. So g(a) is selected and evalu-
ated first.

(8) If g(a) comes to true, reduce
if(g(a), h(b),%(c)) to h(b) and then evalu-
ate h(b). If not, select the second pattern
if(false,z,y) and repeat in the same way
as (2) and (3).

Let the value of g(a) be true and the value of h(b)
can be computed. The value of target expression

can be computed even if the evaluation of i(c) re-
quires infinite computation steps.

The lazy evaluation is not only efficient but also
effective on normalizing property as illustrated
above. However, it is not so clear the class of pro-
gram on which the lazy method mentioned above
works as a normalizing strategy, i.e., the value of
an expression can be computed if it exists.

On the other hand, Huet and Levy proposed
the concept of index[HL79]. They defined a class
of strong-sequential term rewriting systems (SS)
in which each term not in normal form has an in-
dex and in which index reduction is normalizing.
Strandh defined the class of bounded term rewrit-
ing systems (B)[Str89], which is the same class as
SS shown in later[Dur94]. For efficient execution,
"Toyama proposed transitive system (TS), which is
the subclass of SS[TSEP93]. Strandh separately
defined forward-branching class[Str89], which is
the same class as TS shown in later[Dur94]. Du-
rand showed that efficient construction of match-
ing automaton given by Huet and Levy[HL79] for
simple systems, which is the proper sub-class of
FB, can also be applied to FB[Dur94].

Toyama proposed left-incompatible system,
called SLI in this paper, which is proper subclass
of TS[TSEP93]. In the system, top-to-down and
left-to-right lazy pattern matching method stated
above is normalizing strategy. In this paper, we
define left-incompatible system (LI) larger class

than SLI. LI is still proper sub-class of TS. We
also give a reduction procedure which repeats re-
duction efficiently based on top-to-down and left-
to-right lazy pattern matching method.

2 Term Rewriting Systems

We mainly follow the notation of [K1092, TSEP93]
and assume readers are familiar with term rewrit-
ing systems (TRS)[Kl092, DJ90]. Let ¥ =V U F
be a signature where F' and V are a set of function
symbols with arity and a set of variables, respec-
tively. Ts, (or simply T) denotes the set of terms
well constructed by symbols in X. A rewrite rule
is a pair of terms [— r such that [is not a variable
and variables in 7 also appearinl. A TRSRisa
finite set of rewrite rules.

Letting O be an extra constant, a term C €
(Tgugny — Tx) is called a context denoted by
Cl,...,). For C[,
for t1,...,tp € Ty, C[t1,...,
tained term by replacing O’s with %;,...
left to right order.

Let o be a substitution. We denote the apph

..+, | which contains n O’s and
t,) denotes the ob-
,tp from

cation of o to term t by to. Syntactical equality
of terms and subterm relations are indicated by =
and C respectively.

We say that the term ¢ reduces to s by using"

rule [— r (on context C[]) if and only if there
exist a substitution o and context C[] such that
t = C[lo] and s = C[ro]. We write t — s when
t reduces to s. We use — to denote reflexive and
transitive closure of —. = is also used to denote
transitive closure of —.

A TRS is called left-linear, if every variable of
l occurs only once for every left-hand side {. A
TRS is called ambiguous, if there exist rulesl — r,
I' ', term s C ' and substitutions o, ¢/ such
that lo =
are the same and [= s.

so’ except trivial case, i.e., the rules
A left-liner and non-
ambiguous TRS is orthogonal.

In this paper, we only deal with orthogonal
TRS’s.

17

3 Transitive Systems

In this section, we review transitive systems and
their property according to reference [TSEP93].
The class of transitive systems is a sub-class of
strongly sequential systems[HL79)].

Definition 3.1 (Q-‘terms) Letting Q0 be an ez-
tra constant, we represent prefizes of terms by Q-
terms in Txy(ay (also denoted by Tq simply).

- tq denotes the Q-term obtained from a term
t by replacing each variables with Q.

- The prefiz ordering > on Tq is defined as

follows:
t>=Q forallt€Tq,
t>=t for each variable or constant,
f(t1,. <oy tn) = f(s1,.. -s8n)

ifti=s; fori=1,...,n

- t and s are compatible, written by t T s, if
u >t and u = s for some u; otherwise they
are incompatible, denoted by t#s.

Definition 3.2 (Q-systems) Let R be Term

Rewriting System.

- The set of redex schemata of R is Red =
{la|l—>r € R}.

. The reduction relation —q (Q-reduction) is
defined on Tq as C[t] —q C[Q] wheret T s
for some s € Red and t # Q2.

- NFq 1is the set of all normal forms w.r.t.
Q-reduction.

Lemma 3.3 ([Kl1092]) Q-reduction is confluent
and terminating.

Definition 3.4 The direct approzimant w(t) of
Q-

an Q-term t is the normal form of t w.r.t.

reduction.

Lemma 3.5 ([TSEP93])
- If t = s then w(t) = w(s).

- Let C[Q] € NFq. Then for allt € NFq,
C[t] € NFq.

Definition 3.6 A termt is in strong head normal

forms if w(t) # Q

Lemma 3.7 ([TSEP93]) A term t in strong
head normal forms is in head normal forms.

Definition 3.8 (Transitive index)

- Let C[] be a context and let z be a fresh
variable. If z C w(C[z]), the displayed oc-
currence of Q in C[Q)] is called an index de-
noted by C[].

- The displayed indez in C,[Sy] is transitive
'Lf for any Q-term C2[QI], Cg[cl[Q[]] The
transitive index is denoted by C1[Qry].

Definition 3.9 Let R be Term Rewriting System.
- Red* = {p | Q < p C q for some q € Red}.
. Red* = Red* — Red.

- The set of preredex schemata of R is

Red™ = {p | Q < p < g for some q € Red}.

Definition 3.10 (Transitive direction)

. Let Q C Tq. The displayed Q in C[Q] is a
direction for Q if C[z]#Q. A direction for
Q 1s indicated with C[Qg).

. Transitive direction is defined as a direction
for Red*. A transitive direction is denoted

with C[QTD].
Lemma 3.11 ([TSEP93)) If = C[Qrp]
C[z] € NFq then C[Qr]. -

Lemma 3.12 ([TSEP93]) Let R be a TRS. R
is transitive iff every t € Red™ has a transitive

and

direction.
We prepare some lemmas used in later.
Definition 3.13

. The reductiont — s on context C[] is called

transitive reduction if C[Qry]. We write

transitive reduction relation —ry.

. Let t = Cls], C[Qry] and C[] # 0. We
write t Dy 8.

18

- The relation — 71 U D7y is denoted by 9>

Proposition 3.14 Ift Srr s and C[Qrp), then
C[t] =71 Cl[s]- o
Proof Lett = C'[lo] and s = C'[ro] for some
Il - r € R, 0 and C'[Qr]. Since C[y] by
the definition, we have C[C’'[Q07/]]. This indicates
C[t] = C[C'[lo]] »11 C[C'[ro]] = C[s]. An easy
induction concludes the proof. O
Lemma 3.15 Let R be transitive TRS. If a term
t has a normal form, then there exist no infinite
sequences:

t=tp>th1i>» - --

Proof Assume infinite sequence tg=>t1> - - . We
can define C;[] from ¢; as follows.

- Col] = O. Therefore Cylto] = to.

- Cia[]1 = Gl], if ti —7r tia.

. Ci+1[] = C,[C[]], if t; Dy tiy1, e, 4 =
Cltita]-
We can show following properties by using propo-
sition 3.14.

- C;[Qy] for any 7 > 0,
- ti o7r tiv1 = Ci[t:] =11 Cigaltiy1], and
< t; D71 tit1 = Cifti] = Cia[tin]-

Since ¢ has a normal form, there must be finite
steps of —p; in tH=>»t1> -, otherwise we can
construct infinite sequence ty = so —7r s1 —7TI

Therefore, there exists n such that t, D7y
ta+1 D71 - -+ This is impossible.]

4 Extended Left-incompatible
System and Functional Strat-

egy

In simple left-incompatible system(SLI), an index
of a given term is efficiently computed basically by
a lazy pattern matching method. In this section,
the author gives a left-incompatible system (LI)
without losing the advantage of SLI system.

Definition 4.1 (Left incompatibility)
Let s,t € Tq. The left incompatibility of s and
t, indicated by t#<s, is defined as follows:

-t#EQ, s#EQ, and

- f=g=> HZ[V] < i[tj = Sj] A t,'#ssi], where
t= f(t1,..-,ta) and s = g(s1,...,5m).

We write t#<s instead of t#<s A (s#<t). t#=s
also denotes t#<s A s#<t.

Intuitively, t#<s if and only if each node of ¢ is
Q or it is the same as the corresponding node of s
until the nodes are different constant or function
symbols in depth-first order comparison.

Lemma 4.2 ([TSEP93]) Let C[2] T p and let
ClQypy] be the left most direction for {p}. Then

p#<q = C[Qql-
]

Definition 4.3 ([FTSEP93]) An orthogonal
TRS (X, R) is simple left-incompatible (SLI) if
Red can be expressed as a list [p1,...,pn) satis-
fying the following conditions:

- pitt<pj ifi < j, and
- Vp; € Red, q € Red* [pi#<q].

The followings are defined by relaxed the sec-
ond condition of SLI in essential. Moreover, the
following definition does not require the existence
of the list of Red.

Definition 4.4 (Left-incompatible system)
An orthogonal TRS (X, R) is left incompatible if
it satisfies the following conditions:

- Vp € Red,q € Red*[p # q = (p#<qV
q#<p)], and
- Yq € Red*[3p € Red[~(p#<q)] =
V¢ € Redt[q # ¢ = (q#<d V
q'#<9)]]-
Example 4.5 Let Red = {f(9(Q,a)),g(a,b)}.

The system is left-incompatible but not simple left-
incompatible, since g(Q,a)#<g(a,b).

Definition 4.6 A list of standard redex schemata
is SRed = [p1,. . .,pn] which satisfies the following

conditions:

- Red C SRed C Red*,

19

- Vp;,Vq € (Red* — SRed)[pi#<4]

Lemma 4.7 If TRS (X, R) be left-incompatible,
there exists a SRed = [p1,...,pa]. The converse
also holds.

The lemma 4.7 is not trivial, because the
left-incompatible relation #< is not a par-
tial order since it does not have transitiv-
ity. For example, f(€,Q,0,0)#<f(2,1,1,1) and
F(,1,1,1)#1(2,2,9,2) hold, but
7(9,9,0,0)#<f(2,2,%,2) does not hold.

Before proving this lemma, we must prepare
several notions.

Definition 4.8 The lexicographic prefix ordering
<1 on Tq is defined as follows.
Q=<t if t #9Q,
F@1,--sta) <1 f(81,.-.,52)
if [t1y- -y tn) =<1 [51,- .-, 8n).
where <<, is lexicographic extension of <J.

It is easy to show that <; is a partial order on
Ta.

Proposition 4.9 Lett and s be in Tg.
(o) t<s=>t=<s
(b) t <15 = ~(st<t)
(c) tH#<s=>1t < s

Proof (a) is trivial from the definitions.

For the proof of (b), we assume t <; s. In
case of t = Q <; s # Q, we have —(s#<t) from
the definition. In case of ¢ = flt1,- -, ta) =<y
f(s1, +-,8a) = s and [ta,: -, ta] =<1 [51,--, 5],
there exists k such that t; = s;(i < k) and t <; sg.
From induction hypothesis, we have —(sp#<ty).
It follows from i <; sp that —\(sk" =< ti) by (a)
and transitivity of <;. Hence, we have —(s#<t).

Finally, let’s prove (c). We have t # 2 and s #
Q from t#<s. Letting t = f(t1,...,t,) and s =
g(s1,...,8n), we also have f = g from —(s#<t).
From these facts, there exists k such that

Vi < k[t; X sj] AtrF<sk (1)
and we have also
V’L[al < 'i[sl A tl] Y _'(si#gti)]- (2)

Then we have —(sp#<ti), since sp#<tr and (2)
leads 3! < k[s; £ tj] contradicting to (1). Since
tk# < Sk, we have . <] si by induction hypothesis.
On the other hand, we have Vj < k[t; <; s;] from
(1) by (a). These conclude that [t1,...,1,] =<
[$1,...,8n), hence t <; s. o

Lemma 4.10 The relation #. on Tq is acyclic.
Proof By proposition 4.9. 0O

Proof of lemma 4.7 Let X = {q € Red* |Vp €
Red[p#<q]} and Y = Red* — X. Let [p1,...,Pm)
be a list sorted from Y topologically according to
#< in increasing order. Now let’s prove that the
list is standard. From construction of Y and the
definition of left-incompatible TRS, it follows that

Vp €Y,r € Red*[p £ r = (p#<r Vr#<p)]. (3)
Assuming [p1,...,Pm] is not standard, the follow-
ing two cases are possible:

Jpi,pj € Y[i < j A (pi#<p;)] (4)
Jpi € Y,3q € X[~(pi#t<9)] (5)

In case of (4), it follows from (3) that p;#.<p;
which contradicts to the fact that the list is topo-
logically sorted. In case of (5), we have p; € Red™
from the definition of X. Since p; € X, there
exists p; € Red such that —(p;#<p;). Therefore
we have q#.p; and p;#.p; by the definition of
left-incompatible. These lead —(p;#<q) by propo-
sition 4.9(b),(c).

contradicts ¢ € X.

Hence, we have g#.p;j, which

The converse is trivial. a

By the proof of lemma 4.7, we can calculate
a list of standard redex schemata’ SRed of left-
incompatible TRS.

Example 4.11 Let Red = {f(g(a,a,Q)),
f(g(b,9,a)),9(b,a,b),g(c,Q,Q)}. One of SRed of
the system is
[f(9(a,a,9)), f(9(b,Q,a)),9(c, 2,Q),
9(b,9,4a),g(b, a,b)].
Lemma 4.12 SLI is a proper subclass of LI.
Proof SLI C LI is trivial by the definitions and
lemma 4.7. SLI # LI is shown from example 4.5.

Lemma 4.13 Let R be a left-incompatible TRS
with SRed = [p1,...,pa]. Let C[] be a context
such that C[Q] T pa, C[Q)#pi(1 < i < d) and

20

ClQp,y] display the leftmost direction for {pg}.
Then C[Qr D]- ‘

Proof Since C[Q)#pi(1 < i < d), we have
ClQp3](1 £ 4 < d). From definition of stan-
dardness, it follows that pg#<p;j(d < j < n).
Thus, by Lemma 4.2 we can show that C[Q,,]
for p; € Red*. O

Lemma 4.14 LI is a proper subclass of TS.
Proof First, let’s prove that each ¢t € Red™ has
a transitive direction. Letting ¢t € Red™, there ex-
ists some pg € SRed such that t#p;(i < d) and
t T pq. Since t > pg contradicts non-overlap prop-
erty, we have ¢t % pg. So t must have a direction
for {p4}, from the definition of the direction. By
Lemma 4.13, the leftmost direction of ¢ for {pg}
is a transitive direction. By Lemma 3.12, we have
LI CTS. LI # TS is shown from the following
system.

Red = {f(Q,a,a), f(a,,b)}
]

We introduce the mnotion of well-marked

term[TSEP93].
Definition 4.15 Let R be a TRS.

- root(t) denotes outermost symbol of term t.

- Let D = {root(l) | l - r € R} be the set of
defined symbols. The set of marked symbols
D* is defined as {f* | f € D} where each
[* is new symbol and has the same arity of
f. The set of marked term is Tyyp+, simply
written by T*.

- Let t be a marked term. e(t) denotes the
term obtained from t by erasing all marks.
6(t) denotes the Q-term obtained from t by
replacing all subterms satisfying root(t) €
D with Q. §(t) denotes f(6(t1),...,6(t))
where t = f(t1,...,tn) (0 < n).

Definition 4.16 ¢ € T* is well marked if
Vs C t[root(s) € D* = e(8(s)) € N Fq).

Lemma 4.17 If t € T* is well marked then
e(6(s)) € NFq for any s C .
Proof Trivial O

Lemma 4.18 Let t € T* be well marked. If
root(t) € D, e(t) is strong head-normal form.

Proof . Since root(t) € D, we have e(6(t)) Z Q..

It follows from e(s) > e(6(t)) by lemma 3.5.and:

lemma 4.17 that w(e(t)) = w(e(8(2))) = e(6(t)) #
Q. , , 0.

Lemma 4.19 Let C[t] be a well-marked term. If
t — s and s is well marked, then C[s] is well
marked.

Proof It is enough to show that e(6(C'[s])) €
N Fg for any C'[] C C[] such that root(C'[s]) €
D*. Let t c'Yl - C"[¢] = s.
C[t] is well marked and lemma 4.18, we have
e(6(C'[C"[Q)))) = e(6(C'[C"[t]])) € N Fq. Since
s is well marked, we also have e(6(s')) € NFq by
lemma 4.17. We can prove e(§(C'[C"[s']])) € N Fq
by using lemma 3.5. 0

Definition 4.20 ([TSEP93]) Let p;. € Tq
and let t = Clt1,...,tk,...,tm] € T* and
5t = C[Q,...,9,...,9]. Furthermore let
e(O)Q,..., Qyp,y»- > display the leftmost di-
rection for {pa}. Then we say that ty is the left-

Since

most directed subterm of t with respect to pq.

Definition 4.21 (Functional Strategy) Let R
be a left-incompatible TRS with SRed =
[pl; ceay pn] .

the strong normal form of t is defined as follows.

The procedure HN F(t) computing

Input:
— A well-marked term t € T*.
Qutput:

—~ A well-marked term t' such that e(t’) is

a strong normal form of e(t).
Procedure HN F(t):

(1) Find the first compatible pattern pg to
e(8(t)) in the list SRed if it exists; oth-
erwise go to (5).

(2) If e(8(t)) = pa and pg € Red™, go to
(5) |

(3) If e(6(t)) = pa and pg € Red, rewrite
t tot' by the corresponding rule to pq,
and return HNF(t').

21

(4) Let s be the leftmost directed subterm of
t w.r.t. pg. Heplace s int by HNF(s)
and let s' be the resulting term. Return

HNF(s). |
(5) If root(t) € D then return
markroot(t), else return t,

where markroot(f(t1,...,1n)) denotes

f*‘(tl, e ,tn)).

Note that the matching should be done by ig-
noring the mark information of ¢ in the reduction
in step (2). However, we need not ignore the mark
information in the substitution using in the reduc-
tion.

Lemma 4.22 Let R be left-incompatible system
and let t € T* be well marked. If there exists a
normal form of e(t),

i) t Spp HNF(t),

i) the procedure HN F(t) terminates,
i) root(HNF(t)) is in (C U D*), and
iv) HNF(t) is well marked.

Proof Since > is terminating by lemma 3.15,
we can prove by induction on lexicographic com-
position of (—7y U D7) and number of unmarked
symbol in t denoted by |t |um.

- In case of the execution path (1)-(5), 1),ii)
and iii) is obvious. Since t is well marked,
Vs C t[root(s) € D* = e(6(s)) € NFq.
Since H N F(t) may differ only root symbol
from ¢ and e(8(HN F(t))) = e(6(t)), we have
to show that e(8(t)) € NFq which is fol-
lowed from condition in (1). Hence vi) is
shown.

- In case of the execution path (1)-(2)-(5), the
proof is almost the same as above. The dif-
ferences are as follows: since e(6(t)) > pg €

Red*, there are no compatible p; € Red to
e(3(t)). Hence, e(5(t)) € N F.

- In case of the execution path (1)-(2)-(3), the
reduction ¢t — t’ in (3) is obviously transitive
index reduction of ¢. Therefore, i) - vi) is
satisfied w.r.t. ¢ by induction hypothesis.
Hence, i) - vi) hold clearly.

- In case of the execution path (1)-(2)-(3)-(4),
Let t = C[s]. C[] 1 pa and C[Q)#pi(1 <
i < d) from (1), and C[Qy,,; displays the
leftmost direction for {pg}. Since C[Qrp]
by lemma 4.13 and C[z] € NFgq, we have
C[QTI] by lemma 3.11. Hence t D7; s.
By induction hypothesis, i) - vi) is satisfied
w.r.t. s. It follows that s’ is well marked by
lemma 4.19.

—If e(s) = e(HNF(s)), we have
| HNF(S) lum<| 8 |um because root(s)
is in D and root(H N F(s)) is not.

— Otherwise, since s ~5p; HNF(s), We
have t = C[s] H; CIHNF(s)] = ' by
proposition 3.14.

In both of cases above, i) - vi) is satisfied
w.r.t. s'. From these facts we can easily

conclude i) - vi) w.r.t. t. a

Theorem 4.23 Let R be left-incompatible TRS
and let t € T have a normal form. The pro-
cedure HN F(t) eventually terminates and term
t' =e(HNF(t)) is a head normal form of t.
Proof Direct consequence of lemma 3.7, lemma
4.18 and lemma 4.22.

This theorem shows that we can compute head-
normal form of given term t if it has normal form.
The procedure to compute normal form of ¢ is eas-
ily constructed by applying HN F' to t in top-to-
bottom order.

5 Conclusion

This paper extends the class LI, which is still
proper sub-class of TS. It may be possible to make
more extension of LI by introducing permutations
of arguments for each defined function symbol. Al-
though the problem to find the permutations and
standard list of Red is interesting, the class is still
proper sub-class of TS, which can be shown by
following example:

Red={ f(c,a,a,9), f(c,b,Q,0a),
f(d,a7 a" Q)? f(d’ Q’ b7 a’)’
f(ey‘J',Q? a)7 f(e,Q,a,b) }

22

Acknowledgment

We would like to thank Professor Yoshihito
Toyama for useful suggestion and also thank Pro-
fessor Yasuyoshi Inagaki and Professor Toshiki
Sakabe for the discussions on this work.

References

[Dav92] A. J. T. Davie.
Functional Programming Systems Us-
ing Haskell, chapter 8. Cambridge Uni-

versity Press, 1992.

An Introduction to

[DJ90] N. Dershouwitz and J.-P. Jouannaud.
Rewrite Systems. In J. van Leeuwen,
editor, Handbook of Theoretical Com-
puter Science, volume B, chapter 6,

pages 243-320, North-Holland, 1990.

[Dur94] I Durand. Bounded, strongly sequen-
tial and forward-branching term rewrit-
ing systems. J. Symbolic Computation,

volume 18, pages 319-352, 1994.

[Hen80] P. Henderson. Functional Program-
ming, chapter 8. Prentice Hall Inter-

national, 1980.

[HL79] G. Huet and J.-J. Levy. Call by need
computations in non-ambiguous linear
term rewriting systems. Technical Re-

port 359, INRIA, 1979.

[Jon87] S. L. P. Jones

of Functional Programming Languages,

The Implementation

chapter 11. Prentice Hall International,
1987. '

[Klo92] J. W. Klop. Term rewriting sys-
tems. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of
Logic in Computer Science, volume 1.

Oxford University Press, 1992.

[Str89] R. L. Strandh. Classes of equational
programs that compile into efficient
machine code. In LNCS, volume 355,

pages 449-461. Springer-Verlag, 1989.

[TSEP93] Y. Toyama, S. Smetsers, M. van Eeke-

[Tur85]

len, and R. Plasmeijer. The Functional
Strategy and Transitive Term Rewrit-
ing Systems. In R. Sleep, R. Plasmei-
jer, and M. van Eelkelen, editors, Term
Graph Rewriting: Theory and Practice,
chapter 5, pages 61-75. John Wiley &
Sons Ltd, 1993.

D. Turner. Miranda: A non-strict func-
tional language with plimorphic types.
In LNCS, volume 201, pages 1-16.
Springer-Verlag, 1985. '

23

