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Abstract
The propagation of long interfacial waves of finite amplitude is investigated in

a two-layer fluid system where a layer of a light fluid overlies a layer of heavier one
resting on an uneven bottom. The upstream condition is imposed such that the
constant flow is in the same direction in both layers. Under appropriate balance
among nonlinearity, dispersion and topographic effect, the long term evolution of
the interfacial elevation is shown to be governed by a forced Benjamin-Ono $(\mathrm{f}\mathrm{B}\mathrm{O})$

equation. A direct soliton perturbation theory is applied to the $\mathrm{f}\mathrm{B}\mathrm{O}$ equation to study
the interaction of an algebraic soliton with a bottom topography when the Froude
number is nearly equal to unity. A system of ordinary differential equations describing
the change of the amplitude and position of the soliton is derived for a simple bottom
profile. The solutions of these equations exhibit a variety of phenomena like the
capture and repulsion of the soliton by topography and the occurrence of soliton-like
phase shifts due to the interaction of the soliton with topography. We also examine
the effect of small dissipation on the dynamics of the soliton. Special emphasis is
given to the appearance of new branch of stationary states of the soliton which has
never been observed in the absence of dissipation.

I. INTRODUCTION

There has been much interest in studying the effect of external forces on the prop-
agation of nonlinear waves. In the context of fluid dynamics, the forcing is mainly due
to a moving pressure distribution $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ a bottom topography. Many authors have been
concerned with a variety of phenomena arising from the forced systems such as the genera-
tion of solitary waves by a moving pressure force [1-4], or by uniform flow over a localized
bottom topography [5-7]. These problems have been elucidated extensively from both
analytical and numerical points of view on the basis of the Korteweg-de Vries $(\mathrm{K}\mathrm{d}\mathrm{V})$

equation with forcing terms which is called the forced $\mathrm{K}\mathrm{d}\mathrm{V}(\mathrm{f}\mathrm{l}<\mathrm{d}\mathrm{V})$ equation. It is now
well-known that the $\mathrm{f}\mathrm{l}<\mathrm{d}\mathrm{V}$ equation is derived from the underlying system of equations on
the assumptions of shallow water and weak nonlinearity together with weak topographic
effect. At this stage, a natural question arises: what kind of nonlinear evolution equa-
tions are obtained when we introduce deep-water approximation in place of shallow-water
approximation. This is a motivation of the present study.

To answer this question, we shall consider a simple two-layer fluid system where a
layer of a light fluid overlies a layer of heavier one resting on an uneven bottom. The depth
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of the upper layer is taken to be infinite corresponding to a deep-water approximation.
The upstream condition is imposed such that the constant flow is in the same direction in
both layers. We consider the two-dimensional irrotational flow of an incompressible and
inviscid fluid. Applying a singular perturbation method [8-10] developed recently to this
system, we show that the long term evolution of the interfacial elevation is governed by a
forced Benjamin-Ono (fflO) equation. In the present case, the forcing term comes from
an uneven bottom topography. We assume that the effect of topography is weak so that
it can be regarded as a small perturbation to the BO equation. It is noteworthy that a
$\mathrm{f}\mathrm{K}\mathrm{d}\mathrm{V}$ equation is derived similarly from the same system if we make the assumption of
shallow water in the upper layer [7].

While a number of problems to be resolved by the fflO equation are at hand, we
shall be concerned here with an analytical study of the interaction process of an algebraic
soliton with the bottom topography. For the purpose, we employ a direct soliton per-
turbation theory $[11,12]$ developed quite recently to examine the dynamics of interacting
algebraic solitons under small dispersive or dissipative perturbations. The present anal-
ysis predicts the phenomena like the capture and repulsion of a soliton by topography
and the occurrence of soliton-like phase shifts. We also discuss the effect of small dissi-
pation on the propagation of the soliton. Although similar problems have been studied
extensively using $\mathrm{f}\mathrm{K}\mathrm{d}\mathrm{V}$ equations with various types of forcing terms [13-16], the analysis
based on a $\mathrm{f}\mathrm{B}\mathrm{O}$ equation has not been performed as yet.

In Sec. II, we first derive a finite-depth analog of the fflO equation starting from the
basic system of hydrodynamic equations. The $\mathrm{f}\mathrm{B}\mathrm{O}$ equation is then obtained simply by
taking the depth of the upper layer infinite. In Sec. III, the interaction of an algebraic
soliton with topography is investigated on the basis of the BO equation. We focus our
attention on the situation when the Froude number is nearly equal to unity. In this
problem, the forcing term is regarded as a small perturbation to the BO equation so
that the amplitude and initial position of the soliton are no more constant and become
slowly varying functions of time. A system of ordinary differential equations describing the
change of these soliton parameters is derived by using the soliton perturbation theory. For
a simple bottom profile, the system is shown to be completely integrable. The analytical
solutions thus obtained are investigated in detail in phase plane to show that they exhibit
the interesting phenomena already mentioned above. Also we briefly discuss the effect
of small dissipation on the dynamics of the soliton. To simplify the analysis, we add the
Burgers term to the fflO equation which is proportional to the second derivative of the
wave profile. It is found that the characterist.ics of the stationary states of the soliton
are changed drastically owing to the dissipation. Section IV is devoted to summary and
outlook.

II. DERIVATION OF FORCED BENJAMIN-ONO EQUATION

A. Basic hydrodynamic equations
In this section, we shall derive the fflO equation starting from the hydrodynamic

equations subject to appropriate boundary conditions. The configuration of the two-
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layer fluid system under consideration is shown in Fig. 1.

FIG.1. Configuration of a two-layer fluid system

All the physical quantities are wnitten in terms of the dimensionless variables. The
dimensional quantities, with tildes, are related to the corresponding dimensionless ones
by the relations

$\overline{x}=lx,\overline{y}=h_{1}y,$ $t\sim=(l/c_{0})t,\overline{\phi}_{j}=(gla/c0)\phi j(j=1,2),\overline{\eta}=a\eta,\overline{h}=h_{1}h$ , (2.1)

and the dimensionless parameters are defined by

$\epsilon=\frac{a}{l},$ $\alpha_{j}=\frac{a}{h_{j}}(\dot{j}’=1,2),$
$\delta_{j}=\frac{h_{j}}{1_{}}(j=1,2),$ $F= \frac{U}{c_{0}},$ $\triangle=\frac{\rho_{1}}{\rho_{2}}$ (2.2)

where $l_{\text{ノ}},$ $a$ and $c_{0}$ are characteristic scales of length, amplitude and velocity of the wave,
respectively, $h_{1}$ is the thickness of the upper layer. The parameters $\alpha_{j}$ and $\delta_{j}$ measure the
magnitude of nonlinearity and dispersion of the wave, respectively and $\epsilon(=\alpha_{j}\delta_{j})$ is the
steepness parameter. We assume that $\epsilon,$ $\alpha_{j}(j=1,2)$ and $\delta_{2}$ are small compared to unity
while $\delta_{1}$ is very large, which is equivalent to introducing shallow-water approximation
in the lower fluid and deep-water approximation in the upper fluid in addition to weak
nonlinearity of the wave. The lower boundary is represented by the equation

$y=-h(x)=- \frac{\delta_{2}}{\delta_{1}}[1-\gamma\alpha_{2}^{2}B(x)]$ , (2.3)

where $B(x)$ characterizes the unevenness of the bottom topography and $\gamma$ is a positive
constant. In what follows, we assume that its profile is sufficiently smooth, localized and
hence it vanishes at infinity. When $|x|arrow\infty,$ $h$ tends to $\delta_{2}/\delta_{1}$ , implying that $h_{2}$ is the
thickness of the lower layer at infinity because it has been scaled by the thickness of the
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upper layer $h_{1}$ . The coefficient $\gamma\alpha_{2}^{2}$ measures the magnitude of $B(x)$ . While this can
be taken arbitrary, we must impose for it appropriate smallness to lead correctly to the
fflO equation, as will be shown below. The basic flow is specified at $x=-\infty$ and it
is supposed to be in the positive $x$-direction with a constant velocity $U$ in both layers.
The external force is only due to the gravitational acceleration $g$ and the effect of surface
tension is neglected. A characteristic velocity of the linear wave is given by $c_{0}=\sqrt{gl/\kappa}$

where $\kappa$ is a parameter depending on $\triangle$ and $\delta_{j}(j=1,2)$ . Here $\triangle$ is the density ratio
which is assumed to be less than unity to assure a stable equilibrium state of fluids. The
Froude number $F$ is a very important parameter characterizing the property of the flow.
Its magnitude will be specified in the analysis developed in Sec. III.

Now, the dimensionless governing equations for inviscid incompressible and irrota-
tional flow can be written as follows:
$(\mathrm{i})_{\mathrm{C}O}ntinuity$ equations

$\delta_{1}^{2}\phi_{1},xx+\phi 1,yy=0(-\infty<x<\infty, \alpha_{1}\eta<y<1)$ , $(2.4a)$

$\delta_{1}^{2}\phi 2,xx+\phi_{2,yy}=0(-\infty<x<\infty, -h(x)<y<\alpha_{1}\eta)$ . $(2.4b)$

$(\mathrm{i}\mathrm{i})kinematic$ boundary conditions at the fluid interface

$\eta_{t}+F\eta_{x}+\kappa\in\phi_{1,\eta_{x}=}x\frac{\kappa}{\delta_{1}}\phi_{1,y}(y=\alpha_{1\eta))}$ $(2.5a)$

$\eta_{t}+F\eta_{x}+\kappa\epsilon\phi 2_{\mathcal{I}},\eta x=\frac{\kappa}{\delta_{1}}\phi_{2,y}(y=\alpha_{1}\eta)$. $(2.5b)$

$(\mathrm{i}\mathrm{i}\mathrm{i})dynamic$ boundary condition at the fluid interface

$\triangle[\phi_{1,t}+\frac{\kappa\epsilon}{2\delta_{1}^{2}}\{\delta_{1}^{2}(\frac{F}{\kappa\epsilon}+\phi 1,x)2+\phi^{2}1,y\}+\eta-\eta 0]$

$= \phi_{2,t}+\frac{\kappa\epsilon}{2\delta_{1}^{2}}\{\delta_{1}^{2}(\frac{F}{\kappa\epsilon}+\phi_{2,x})^{2}+\phi_{2,y}^{2}\}+\eta-\eta_{0}(y=\alpha_{1\eta})$ . (2.6)

$(\mathrm{i}\mathrm{v})upper$ and lower boundary conditions

$\phi_{1,y}=0(y=1)$ , $(2.7a)$

$\phi_{2,y}=-\delta_{1}^{2}(\frac{F}{\kappa\epsilon}+\phi 2,x)h_{x}(y=-h(x))$. $(2.7b)$

Here, $\phi_{1}=\phi_{1}(x, y, t)$ and $\phi_{2}=\phi_{2}(x, y, t)$ are the velocity potentials for the upper
and lower fiuids, respectively about the perturbations of the upstream constant flow,
$\eta=\eta(x, t)$ is the interfacial elevation and $\eta_{0}$ is a constant determined by the undisturbed
uniform state at infinity. The subscripts $t,$ $x$ and $y$ appended to $\phi,$

$\eta$ and $h$ denote partial
differentiations. This notation is used throughout the paper.

B. Solutions for the velocity potentials
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The solutions of the Laplace equations (2.4) for the velocity potentials which sat-
isfy the boundary conditions (2.7) are constructed by following the procedure developed
recently [8-10]. For the upper fluid, it can be written in a closed form as

$\phi_{1}(x, y, t)=-i[f_{1}^{+}(x+i\delta_{1y}, t)-f_{1}^{-}(x-i\delta 1y, t)]$ , $(2.8a)$

with the complex functions $f_{1}^{\pm}$ given by

$f_{1}^{\pm}(z, t)= \pm\frac{1}{4i\delta_{1}}P\int_{-\infty}^{\infty}\coth[\pi(y-Z)/2\delta_{1}]f_{1}(y, t)dy$ $(2.8b)$

where $f_{1}$ is a real function defined appropriately on the real axis and the symbol $P$ denotes
the Cauchy principal value integral.

For the lower fluid, on the other hand, the solution is expressed in a form of infinite
series as

$\phi_{2}(x, y, t)=\sum_{n=0}[y+h(X)]^{n}\phi_{2}^{()}(nXt\infty,)$ , $(2.9a)$

where the functions $\phi_{2}^{(n)}(n=0,1, \ldots)$ are determined by the recurrence formula

$\delta_{1}^{2}[(n+1)h_{xx}\phi_{2}^{(}n+1)+(n+1)(n+2)h_{x}2\phi_{2}(n+2)+2(n+1)h_{x}\phi_{2,x}(n+1)+\phi_{2,xx}^{(n)}]$

$+(n+1)(n+2)\phi_{2}^{(n+2)}=0,$ $(n=0,1, \ldots)$ , $(2.9b)$

subject to the boundary condition (2.7b). This can be solved easily and the first two of
which are written in the form

$\phi_{2}^{(1)}=-\frac{\delta_{1}^{2}(\frac{F}{\kappa\in}+\phi 2,x(0))h_{x}}{1+\delta_{1}^{2}h_{x}^{2}}$ , $(2.10a)$

$\phi_{2}^{(2)}=-\frac{\delta_{1}^{2}(h_{xx}\phi 2+2h_{x}\phi_{2}^{()(0)}x+\phi 2,xx(1)1)}{2(1+\delta_{1}^{2}h_{x}^{2}’)}$ . $(2.10b)$

Here $\phi_{2}^{(0)}$ is an unknown function to be determined later.

C. Perturbation analysis
To perform the perturbation analysis, we must specify the magnitude of the param-

eters $\alpha_{j}$ and $\delta_{j}$ . We assume the weak nonlinearity of the wave, $\mathrm{i}.\mathrm{e}$ . $\alpha_{j}<<1(j=1,2)$ as
well as the shallow-water approximation for the lower layer, i.e. $\delta_{2}<<1$ . For the upper
layer, however, we tentatively suppose $\delta_{1}=O(1)$ for the sake of generality. Furthermore,
it is necessary to balance the magnitude of nonlinearity, dispersion and topography appro-
priately to obtain forced soliton equations. In the present case, this can be accomplished
by introducing the scalings $\alpha_{2}=O(\delta_{2})$ and $\gamma=O(1)$ .
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These assumptions enable us to expand all the physical quantities in powers of the
small parameters $\alpha_{2}$ and $\delta_{2}$ . In particular, the derivatives of the velocity potentials are
easily evaluated at the fluid interface. To that end, it is convenient to introduce the
horizontal components of the interfacial velocities by

$u_{j}=\phi_{j,x}|_{y=\alpha_{1}\eta},$ $(j=1,2)$ . (2.11)

In addition, we take $\kappa=[(1-\triangle)\delta 2]-1$ to normalize the phase velocity of the linear wave
to unity since the linear dispersion relation relevant to the present problem is given by
$\omega^{2}=\kappa(1-\triangle)\delta_{2}k^{2}$ . If we retain the first two terms of the expansions, we obtain for the
upper fluid

$\phi_{1,y}|_{y=\alpha_{1}\eta}=-\delta_{1}[\overline{T}_{1}u_{1}+\epsilon\{\eta u_{1,x}+\overline{T}_{1}(\eta\overline{\tau}_{1}u1,x)\}+O(\epsilon^{2})]$ , $(2.12a)$

$(\phi_{1,t}|_{^{-}}-\alpha 1\eta)_{x}=u_{1,t}+\epsilon(\eta_{t}\overline{\tau}_{1}u_{1,x}-\eta x\overline{T}1u1,t)+O(\epsilon^{2})$ , $(2.12b)$

where $\overline{T}_{1}$ is an integral operator defined by

$\overline{T}_{1}f(X, t)=-\frac{1}{2\delta_{1}}P\int_{-\infty}^{\infty}\frac{f(y,t)}{\sinh[\pi(y-x)/2\delta_{1}]}dy$ . $(2.12_{C})$

For the lower fluid, on the other hand, the corresponding expressions take the form

$\phi_{2,y}|_{27}=\alpha_{1}\eta^{=}-\delta_{1}\delta_{2}[u_{2,x}+\alpha_{2}\{\eta u_{2,x}-\gamma(1-\triangle)FB_{x}\}+O(\alpha_{2}^{2})]$ , $(2.13a)$

$(\phi_{2,t}|_{y=\alpha_{1\eta}})_{x}=u_{2,t}+O(\alpha_{2}^{2})$ . $(2.13b)$

Finally, substituting (2.12) and (2.13) into (2.5) and (2.6) and neglecting the terms of the
order of $(\alpha_{2}^{2}, \alpha_{22,2}\delta\delta 2)$ , we obtain a closed system of equations for $\eta,$ $u_{1}$ and $u_{2}$ . We quote
only the final result:

$\eta_{t}+F\eta_{x}+(1-\triangle)-1u_{2,x}+(1-\triangle)^{-1}\alpha_{2}(\eta u2)_{x}=\gamma\alpha_{2}FB_{x}$ , (2.14)

$\eta_{t}+F\eta_{x}+\frac{1}{(1-\triangle)\delta_{2}}\overline{T}_{1}u_{1}+\frac{\alpha_{2}}{(1-\triangle)}[(u_{1}\eta)_{x}+\overline{T}_{1}(\eta\tilde{\tau}_{1}u1,x)]=0$ , (2.15)

$\triangle[u_{1,t}+Fu_{1,x}+\eta_{x}+\frac{\alpha_{2}}{2(1-\triangle)}[u_{1}^{2}+(\overline{T}_{1}u_{1})^{2}]_{x]}$

$=u_{2,t}+Fu_{2,x}+\eta_{x}+(1-\triangle)^{-1}\alpha 2u2u_{2,x}$ . (2.16)

In the above equations, the forcing term appears only on the right-hand side of (2.14) be-
cause of the present scaling hypothesis. Although these equations incorporate the lowest-
order effect of nonlinearity and dispersion, we can proceed the perturbation analysis to
include higher-order terms. However, the resulting equations become too complicated to
extract useful informations within the framework of analytical treatment. Nevertheless,
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it is nothing to say that higher-order equations are necessary particularly in dealing with
large amplitude waves.

It is also possible to derive a single equation for $\eta$ . This can be performed by
eliminating $u_{1}$ and $u_{2}$ from $(2.14)-(2.16)$ . In the same approximation used above, the
final equation thus obtained can be written as follows:

$\eta u-(1-F2)\eta_{xx}+2F\eta xt-\triangle\delta_{2}T1\eta xxx$

$+\alpha_{2}[\eta_{t}s\eta_{t}-(1+2F^{2})\eta\eta_{x}-2F\eta\eta t+F\eta_{x}S\eta_{t}]_{x}=\gamma\alpha_{2}F^{2}B_{xx}$, $(2.17a)$

where the integral operators $T_{1}$ and $S$ are defined by

$T_{1}u(X, t)= \tilde{T}_{1}^{-1}u(X, t)=\frac{1}{2\delta_{1}}P\int_{-\infty}^{\infty}\coth[\pi(y-X)/2\delta_{1}]u(y, t)dy$, $(2.17b)$

$Su(x, t)= \int_{-\infty}^{\infty}\mathrm{s}\mathrm{g}\mathrm{n}(y-x)u(y, t_{\text{ノ}})dy$, $(2.17_{C})$

While Eq. (2.17) describes interfacial waves propagating to both right and left directions,
we can separate it into two equations, each describing a unidirectional motion. Following
the standard procedure [17], we find the evolution equations

$\eta_{t}+(F-1)\eta x-\frac{3\alpha_{2}}{2}\eta\eta_{x}-\frac{\triangle\delta_{2}}{2}T_{1}\eta xx=\frac{\gamma\alpha_{2}F^{2}}{2}B_{x}$ , (2.18)

$\eta_{t}+(F+1)\eta_{x}+\frac{3\alpha_{2}}{2}\eta\eta_{x}+\frac{\triangle\delta_{2}}{2}T_{1}\eta_{xx}=-\frac{\gamma\alpha_{2}F^{2}}{2}B_{x}$. (2.19)

In the absence of the forcing term, the above equations reduce to the intermediate long
wave (ILW) equations [10,18-20]. Therefore, they may be termed the forced ILW equa-
tions. The $\mathrm{f}\mathrm{B}\mathrm{O}$ equations are simply obtained from (2.18) and (2.19) by taking the
deep-water limit $\delta_{1}arrow\infty$ . Since in this limit the operator $T_{1}$ reduces to the following
Hilbert transform

$Hu(x, t)= \frac{1}{\pi}P\int_{-\infty}^{\infty}\frac{u(y,t)}{y-x}dy$ , (2.20)

Eqs. (2.18) and (2.19) become

$\eta_{t}+(F-1)\eta_{x}-\frac{3\alpha_{2}}{2}\eta\eta_{x}-\frac{\triangle\delta_{2}}{2}H\eta xx--\frac{\gamma\alpha_{2}F^{2}}{2}B_{x}$ , (2.21)

$\eta_{t}+(F+1)\eta_{x}+\frac{3\alpha_{2}}{2}\eta\eta_{x}+\frac{\triangle\delta_{2}}{2}H\eta_{xx}=-\frac{\gamma\alpha_{2}F^{2}}{2}B_{x}$. (2.22)

It is obvious that Eq. (2.22) describes unidirectional motion of the wave moving to the
right. However, the situation is quite different for Eq. (2.21). In fact, the direction of
propagation will change according to the magnitude of $F$ as well as the amplitude of
the wave. Furthermore, the forcing term may affect the propagation characteristics even
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if it is small when compared to other terms. In view of this observation, Eq. (2.21) is
supposed to have a richer structure than Eq. (2.22) has in describing underlying physical
phenomena. This is a reason why we use Eq. (2.21) extensively in the next section.

III. INTERACTION OF ALGEBRAIC SOLITON WITH TOPOGRAPHY

A. Statement of the problem
While the $\mathrm{f}\mathrm{B}\mathrm{O}$ equation (2.21) has wide applications in real physical phenomena,

we shall study the interaction of an algebraic soliton with topography in the presence of
nearly critical flow, namely

$F=1+\alpha_{2}\Gamma$ , (3.1)

where $\Gamma$ is a parameter which measures the departure of the Froude number from unity.
Furthermore, we assume that the effect of topography is weak in comparison with other
terms. More specifically, we introduce the scaling $\alpha_{2}<<\gamma<<1$ . Under these conditions,
the second to fourth terms on the left-hand side of Eq. (2.21) enter at the same order
whereas the forcing term becomes higher order and hence it can be treated as a small
perturbation to the BO equation. It should be noted that the inequality $\alpha_{2}<<\gamma$ ensures
that the forcing term is still larger than neglected terms of order $(\alpha_{2}^{2}, \alpha_{2}\delta_{2}, \delta_{2}2)$ in deriving
Eq. (2.21), which is consistent with the perturbation analysis developed in Sec. II.

To proceed the analysis further, it is convenient to rescale the variables according to
$tarrow(\triangle\delta_{2}/\alpha_{2}^{2})t,$ $xarrow(\delta_{2}/\alpha_{2})x,$ $\etaarrow(8/3)u$ and $Barrow(16/3F^{2})B$ . Then, Eq. (2.21) takes
the following form

$\prime u_{t}+\Gamma u_{x}-4uu_{x}-Hu_{xx}=\gamma B_{x}$ . (3.2)

It is well-known that if the forcing term is absent, Eq. (3.2) exhibits soliton solutions
of algebraic type [21-23]. The main concern here is to investigate the effect of small
perturbation which originates from localized topography on the dynamics of an algebraic
soliton. For the purpose, we shall consider a symmetric isolated bottom topography of
the form

$B(x)= \frac{\lambda b}{(bx)2+1},$ $(\lambda=\pm 1)$ , (3.3)

where $b^{-1}$ is a typical length scale of topography and $\lambda$ characterizes the nature of forcing.
Although the functional form of $B$ adopted here is rather specific, an advantage is that
the resulting motion of a soliton is described by an integrable Hamiltonian system, as will
be seen below. The problem under consideration can now be dealt with by means of the
soliton perturbation theory, which we shall describe briefly.

B. Soliton perturbation theory
A direct multisoliton perturbation theory for the BO equation has been developed

quite recently using multiple time scale expansion $[11,12]$ . We shall summarize the main
ingredient of the theory.

We write the perturbed BO equation in the form

$u_{t}+4uu_{x}+Hu_{x}x=\epsilon R[u]$ , (3.4)
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where $\epsilon R[u]$ represents a perturbation. We first introduce the different time scales $t_{j}$

by $t_{j}=\epsilon^{j}t(j=0,1, \ldots)$ so that the time derivative is replaced by the relation $\partial/\partial t=$

$\sum_{j=0^{\epsilon^{j}}}^{\infty}\partial/\partial tj$ . If we expand $u$ into an asymptotic series of the form $u= \sum_{j=0}^{\infty}\epsilon^{j}uj,$ $u_{j}=$

$u_{j}$ ($x,$ to, $t1,$ $\ldots$ ), substitute these expressions into (3.4) and equate the coefficient of like
powers of $\epsilon$ , we obtain the hierarchy of equations for $u_{j}$ , the first two members of which
read in the form

$u0,t_{00}+4u0u,x+Hu0_{x},x=0$ , (3.5)

$u_{1,t_{0}}+4(u_{0}u1)_{x}+Hu_{1,xx}=R[u_{0}]-u0,t_{1}$ . (3.6)

Equation (3.5) is just the BO equation. We solve the above system of equations succes-
sively starting with a specific solution of Eq. (3.5). Since we are interested in the soliton
problem, we take it the $N$-soliton solution which includes the $N$ amplitude parameters
$a_{j}$ and the $N$ position parameters $\xi_{j}(j=1,2, \ldots)$ . In the absence of the perturbation, $a_{j}$

are constant independent of $t_{0}$ and $\xi_{j}=a_{j}t_{0}+\xi_{j0}$ with $\xi_{j0}$ being the initial position of
the $j\mathrm{t}\mathrm{h}$ soliton. Under the action of the perturbation, these parameters would be modu-
lated slowly on the time scale of order $\epsilon^{-1}$ , so we may assume their time dependence as
$a_{j}=a_{j}(t_{1}, t_{2}, \ldots)$ and $\xi_{j0}=\xi_{j0}(t_{1}, t2, \ldots),$ $(j=1,2, \ldots, N)$ .

The time evolution of $a_{j}$ and $\xi_{j0}$ is determined by requiring that the correction term
$u_{1}$ is no more singular than the leading-order solution $u_{0}$ . This turns out to be equivalent
to imposing the following compatibility conditions

$(g_{j}, R[u_{0}]-u0,t_{1}) \equiv\int_{-\infty}^{\infty}g_{j}(R[u0]-u0,t_{1})dx=0,$ $(j=1,2, \ldots)$ . (3.7)

Here $g_{\dot{j}}$ are solutions of the adjoint equation for the homogeneous part of (3.6)

$g_{j,t_{0}}+4u0gj,x+Hg_{j,xx}=0,$ $(j=1,2, ..)$ . (3.8)

The $2N$ independent bounded solutions for (3.8) are found to be as

$g_{j}= \int_{-\infty}^{x}\frac{\partial u_{0}}{\partial a_{j}}dx,$ $g_{j+N}= \int_{-\infty}^{x}\frac{\partial u_{0}}{\partial\xi_{j0}}dx,$ $(j=1,2, \ldots, N)$ . $(3.9a, b)$

The final step of our perturbation scheme is to calculate the inner products in (3.7) with
the aid of certain orthogonality relations which hold between $g_{j}$ and $\partial u_{0}/\partial p_{j}$ where $p_{j}$

stands for $a_{j}$ or $\xi_{j0}$ while noting the relation $u_{0,t_{1}}= \sum_{j=1}^{N}(a,u_{0}J^{t_{1}},a_{j}+\xi_{j,t_{1}}u_{0,\xi j})$ . These
orthogonality relations are derived directly from (3.5) and (3.9) and they are expressed as
$(g_{i}, u_{0},\xi_{j}0)=-(g_{i+N}, u0,aj)=(\pi/4)\delta_{ij},$ $(g_{i}+N, u0,\xi_{j}0)=(g_{i}, u_{0},)a_{j}=0(i, j=1,2, \ldots, N)$

where $\delta_{ij}$ is Kronecker’s delta. The evolution equations for the soliton parameters thus
obtained are written in terms of the original time variables as follows:

$\frac{da_{j}}{dt}=-\frac{4\epsilon}{\pi}(g_{j+N}, R[u\mathrm{o}]),$ $\frac{d\xi_{j}}{dt}=a_{j}+\frac{4\epsilon}{\pi}(g_{j}, R[u\mathrm{o}]),$ $(j=1,2, \ldots, N)$ , $(3.10a, b)$

where the position parameter $\xi_{j}$ of the $j\mathrm{t}\mathrm{h}$ soliton has been used instead of $\xi_{j0}$ for prac-
tical convenience. It should be emphasized that for the purpose of calculating the inner
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products in (3.10) we only need the information of the $N$-soliton solution which can be
usually obtained without recourse to inverse scattering transform method [21-23]. In this
respect, it is worth remarking that the soliton perturbation theory based on the inverse
scattering transform method has not been applied as yet to a certain class of integrodif-
ferential evolution equations like the BO and ILW equations.

C. Perturbation equations for soliton parameters
Now let us derive the perturbation equations for the soliton parameters on the basis

of Eq. (3.10). In the present one-soliton problem, one can take an algebraic soliton

$u_{0}= \frac{a}{a^{2}(x-\xi)^{2}+1}$ , (3.11)

as a lowest-order solution of Eq. (3.2) where $a$ and $\xi$ are the amplitude and position of
the soliton, respectively. Under th. $\mathrm{e}$

.
action of small perturbation, $a$ and $\xi$ evolve according

to the equations
$\frac{da}{dt}=-\frac{4\gamma}{\pi}(g_{2}, B_{x}),$ $\frac{d\xi}{dt}=\Gamma-a+\frac{4\gamma}{\pi}(g_{1}, B_{x})$ , $(3.12a, b)$

where

$g_{1}= \int_{-\infty}^{x}\frac{\partial u_{0}}{\partial a}dx=\frac{x-\xi}{a^{2}(x-\xi)^{2}+1},$ $g_{2}= \int_{-\infty}^{x}\frac{\partial u_{0}}{\partial\xi}dx=-\frac{a}{a^{2}(x-\xi)^{2}+1}$ . $(3.13a, b)$

It is pointed out that the amplitude equation (3.12a) coincides with the equation derived
from the energy balance equation $\partial(u, u)/\partial t=2\gamma(u, B_{x})$ with $u$ given by (3.11). However,
the momentum balance equation $\partial(1, u)/\partial t=\gamma(1, B_{x})=0$ gives rise to a trivial result
$0=0$ since $\int_{-\infty^{u}}^{\infty}dx=\pi$ in the leading order of the expansion. As for the latter equation,
the situation is quite different from the corresponding one for the $\mathrm{f}\mathrm{K}\mathrm{d}\mathrm{V}$ equation where
the integral $\int_{-\infty^{u_{0}d}}^{\infty}X$ depends on a soliton amplitude.

The inner products in (3.12) are now evaluated by using the $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}}1\mathrm{a}\mathrm{s}.$

.

$\int_{-\infty}^{\infty}\frac{x}{[a^{2}(x-\xi)2+1](b2+X^{2}1)^{2}}d_{X}=\frac{\pi}{ab^{3}}\frac{(\frac{1}{a}+\frac{1}{b})\xi}{[\xi^{2}+(\frac{1}{\mathrm{c}\iota}+\frac{1}{b})^{2}]^{2}}$ , $(3.14a)$

$\int_{-\infty}^{\infty}\frac{x^{2}}{[a^{2}(x-\xi)2+1](b2+X^{2}1)^{2}}dX=\frac{\pi}{2ab^{3}}\frac{(\frac{1}{a}+\frac{2}{b})\xi^{2}+\frac{1}{a}(\frac{1}{(\iota}+\frac{1}{b})^{2}}{[\xi^{2}+(\frac{1}{a}+\frac{1}{b})^{2}]^{2}}$. $(3.\mathrm{i}4b)$

After some algebras, we obtain the final evolution equations for the soliton parameters $a$

and $\xi$ as follows:

$\frac{da}{dt}=-\frac{8\lambda\gamma(\frac{1}{a}+\frac{1}{b})\xi}{[\xi^{2}+(\frac{1}{a}+\frac{1}{b})^{2}]^{2}},$ $\frac{d\xi}{dt}=\Gamma-a+\frac{4\lambda\gamma}{a^{2}}\frac{\xi^{2}-(\frac{1}{a}+\frac{1}{b})^{2}}{[\xi^{2}+(\frac{1}{a}+\frac{1}{b})^{2}]^{2}}$ . $(3.15a, b)$

In the absence of the perturbation, i.e. $\gamma=0,$ $a$ remains its initial value while $\xi=$

$(\Gamma-a)t+\xi_{0}$ with $\xi_{0}$ being the initial position. Furthermore, if we introduce a new
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dependent variable $\theta$ by $\theta=(\frac{1}{a}+\frac{1}{b})^{-1}\xi$ , we can transform Eqs. (3.15) into the more
transparent forms as

$\frac{da}{dt}=-\frac{8\lambda\gamma}{(\frac{1}{a}+\frac{1}{b})^{2}}\frac{\theta}{(\theta^{2}+1)^{2}},$ $\frac{d\theta}{dt}=\frac{\Gamma-a}{\frac{1}{a}+\frac{1}{b}}-\frac{4\lambda\gamma}{a^{2}(\frac{1}{a}+\frac{1}{b})^{3}}\frac{1}{\theta^{2}+1}$. $(3.16a, b)$

Remarkably, we find that the above system of equations is completely integrable. To
show this, we define a new variable $A$ by $A=a/b+\ln$ $a$ and a Hamiltonian $H$ given by

$H=H(A, \theta)=\Gamma a-\frac{a^{2}}{2}-\frac{1}{\frac{1}{a}+\frac{1}{b}}\frac{4\lambda\gamma}{\theta^{2}+1},$ $(a=a(A))$ . (3.17)

Note that $a$ is a single-valued function of $A$ . Then, Eqs. (3.16) are seen to be equivalent
to Hamilton’s equations

.
$\frac{dA}{dt}=-\frac{\partial H}{\partial\theta},$ $\frac{d\theta}{dt}=\frac{\partial H}{\partial A}$ . $(3.18a, b)$

Since the Hamiltonian (3.17) does not depend on time explicitly, it becomes a constant
of motion. For later use, we wnite it in the form

$[(a- \Gamma)^{2}+p](\frac{1}{a}+.\frac{1}{b})=-\frac{8\lambda\gamma}{\theta^{2}+1}$ , (3.19)

where $p$ is an integration constant which can be determined by the initial conditions for
$a$ and $\theta$ .

Lastly, we shall comment on an analogous work based on a $\mathrm{f}\mathrm{K}\mathrm{d}\mathrm{V}$ equation. Using
a second-order perturbation theory, Grimshaw et al [16] obtained the equations for the
amplitude and position of a soliton that correspond to Eqs. (3.15), where they introduced
a simple sech-type forcing. However, they restricted their analysis to the two extreme
cases when the external force has a lengthscale much greater than the soliton (broad
forcing) and when it is much less (narrow forcing). They found that the second-order
perturbation equations turn out to be integrable only for the broad forcing where the
soliton behaves like a delta function. On the other hand, the present second-order equa-
tions (3.15) become to be integrable without any assumption on the lengthscale of the
forcing as just proved. It is not clear, however, whether the structural difference between
the two dynamical systems mentioned above should be attributed to the perturbation
schemes employed or to any other reason such as the structure of the underlying forced
soliton equations.

D. Properties of solutions
1. Stationary solutions and their linear stability

Before discussing the properties of solutions which evolve from various initial con-
ditions, we look for stationary solutions of Eqs. (3.15) and consider their stability char-
acteristics. In the following analysis, we put $b=1$ without loss of generality. If we
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denote the stationary solutions by $a_{s}$ and $\xi_{s}$ , we immediately find from the equations
$da_{s}/dt=d\xi_{s}/dt=0$ that these are determined by the relations

$\Gamma-a_{s}=\frac{4\lambda\gamma}{(a_{S}+1)2},$ $\xi_{s}=0$ . $(3.20a, b)$

Figure 2 is a plot of the stationary amplitude $a_{s}$ as a function of the parameter $\Gamma$ for
$\gamma=0.05$ and $\lambda=\pm 1$ .

FIG. 2. Plot of the stationary amplitude $a_{\mathrm{s}}$ as a function of $\Gamma$ .

In the case of $\lambda=-1$ , we can see that for any value of $\Gamma$ within the range $\Gamma>-4\gamma$ , there
exists one stationary amplitude. On the other hand, in the case of $\lambda=+1$ , there exists
one stationary amplitude only if $\Gamma>4\gamma$ . To discuss the linear stability of the solution
(3.20), we linearize Eqs. (3.15) around the solution stationary solution as

$a=a_{s}+\hat{a},$ $\xi=\xi_{s}+\hat{\xi}$ . $(3.21a, b)$

Then we obtain a system of linearized equations for \^a and $\hat{\xi}$

$\frac{d\hat{a}}{dt}=-\frac{8\lambda\gamma a_{s}^{3}\hat{\xi}}{(a_{s}+1)3},$ $\frac{d\hat{\xi}}{dt}=-[1-\frac{8\lambda\gamma}{(a_{s}+1)^{3}}]\hat{a}$. $(3.22a, b)$

Elimination of the variable $\hat{\xi}$ from the above system of equations yields a second-order
differential equation for \^a

$\frac{d^{2}\hat{a}}{dt^{2}}=\frac{8\lambda\gamma a_{s}^{3}}{(a_{s}+1)3}[1-\frac{8\lambda\gamma}{(a_{\mathrm{s}}+1)3}]\hat{a}$ . (3.23)

Since $a_{s}>0$ and $0<\gamma<<1$ , the coefficient of \^a on the right-hand side of (3.23) becomes
negative (positive) for $\lambda=-1(\lambda=+1)$ . Substituting the solution of the form $\hat{a}\propto\exp(\sigma t)$

and examining the sign of the eigenvalue $\sigma$ , we find that the solution corresponding to
$\lambda=-1(\lambda=+1)$ is stable (unstable) against infinitesimal perturbations. In the case of
$\lambda=-1$ , the stable points represent centers since the corresponding eigenvalues are pure
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imaginary while for $\lambda=+1$ , the unstable points are seen to be unstable nodes with one
of the two eigenvalues being real and positive.

As an important remark, we point out that Eq. (3.2) exhibits an exact stationary
solution for a special value of $\Gamma$ . Indeed, careful investigation of the stationary form of
Eq. (3.2) shows that an exact solution which satisfies the boundary condition $uarrow \mathrm{O}$ as
$|x|arrow\infty$ exists when $\Gamma=1+\lambda\gamma$ . Explicitly, it reads in the form

$u_{s}= \frac{1}{x^{2}+1}$ . (3.24)

It turns out that this solution corresponds to the stationary solutions $a_{\mathrm{s}}=1$ and $\xi_{s}=0$

of Eq. (3.15) as seen from (3.20).
2. Analysis of solutions in phase plane

Let us now investigate the properties of the general solution. As already demon-
strated, the system of equations (3.16) exhibits a first integral given by (3.19). Using this
fact, the explicit time dependence of the variables $a$ and $\xi$ can be obtained in principle
by integrating the equations of the form $da/dt=f(a)$ and $d\xi/dt=g(\xi)$ where $f$ and
$g$ are known functions. These integrals are, however, found to be difficult to perform
analytically. Here we shall analyze the solutions in phase plane $(a, \theta)$ for the following
four different combinations of the parameters $\lambda$ and $\Gamma$ :
$\mathrm{a}$ . $\lambda=-1,$ $\Gamma>-4\gamma$

This case represents a bottom topography which is concave downward. Figure 3
shows a typical phase portrait of the solution (3.19) for various values of the constant $p$

where the parameters $\Gamma$ and $\gamma$ have been chosen as 1.0 and 0.05, respectively. The arrow
in each trajectory indicates the direction of the motion of a soliton. Note in this case
that there exists only one linearly stable stationary amplitude for a given $\Gamma$ as seen from
Fig. 2.

FIG. 3. Phase portrait of the solution (3.19) with $\lambda=-1,$ $\Gamma=1.0$ and $\gamma=0.05$ for various
values of $p$ .

If the initial amplitude of the soliton is either much larger or much less than unity,
the soliton interacts with the bottom topography whereby it suffers a small change of the
amplitude near the origin $\theta=0$ . After passing through topography, the soliton gradually
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recovers its initial amplitude. The orbit of the solution is then described by the equation

$(a-a_{\infty})(a+a_{\infty}-2)( \frac{1}{a}+1)=\frac{0.4}{\theta^{2}+1}$ , (3.25)

in the present example, where $a_{\infty}$ is the amplitude of the soliton when $\thetaarrow\pm\infty$ . While
there is no net change in the amplitude after interaction, the soliton exhibits a phase shift
which may be given by the relation

$\triangle\xi=\int_{-\infty}^{\infty}[\frac{d\xi}{dt}-(\Gamma-a_{0})]dt$ , (3.26)

where $a_{0}$ is the initial amplitude of the soliton. The second term $\Gamma-a_{0}$ in the brackets
represents the soliton velocity in the absence of the interaction and hence (3.26) yields a
net phase shift due to the interaction. Substituting (3.15b) into (3.26), we can write it in
the form

$\triangle\xi=\int_{-\infty}^{\infty}[a-a_{0}+\frac{4\lambda\gamma}{a^{2}}\frac{\xi^{2}-(\frac{1}{a}+1)^{2}}{[\xi^{2}+(\frac{1}{a}+1)^{2}]2}]dt$. (3.27)

If we use (3.15a) and (3.19), we can transform (3.27) into an integral with respect to $a$ .
The resulting expression is, however, too complicated to calculate analytically. Instead of
performing numerical integration, we shall evaluate (3.27) by a successive approximation.
We readily find from (3.15) that in the approximation up to order $\gamma$

$a=a_{0}+ \frac{4\lambda\gamma}{\Gamma-a_{0}}\frac{\frac{1}{a_{0}}+1}{[(\Gamma-a\mathrm{o})t+\xi 0]^{2}+(\frac{1}{a_{0}}+1)^{2}}+O(\gamma)2$ , $(3.28a)$

$\xi=(\Gamma-a_{0})t+\xi_{0}+O(\gamma)$ , $(3.28b)$

where $\xi_{0}$ is the initial position of the soliton. Introducing (3.28) into (3.27) and performing
the integral with respect to $t$ , we obtain the expression of $\triangle\xi$ correct up to order $\gamma$ as

$\triangle\xi=-\frac{4\pi\lambda\gamma}{(\Gamma-a_{0})^{2}}\mathrm{s}\mathrm{g}\mathrm{n}(\Gamma-a\mathrm{o})$ . (3.29)

Note that this quantity is proportional to the cross-sectional area of the bottom topog-
raphy because $\int_{-\infty}^{\infty}B(x)dX=\pi\lambda$ from (3.3). The phase shift of the soliton predicted by
(3.29) is quite interesting since algebraic solitons usually exhibit no phase shift after their
collisions [21-23].

Figure 3 also indicates another fascinating aspect of the solutions. To be more
specific, if the soliton enters from the right with an amplitude a bit larger than unity, it
interacts with topography and then propagates to the left direction while decreasing its
amplitude. After a lapse of time, the soliton changes its direction and goes back to the
right. The motion is repeated in the same way. One observes that the orbit of the soliton
becomes periodic around a stationary state $a_{s}=$ 1.048 and $\xi_{s}=0$ which turns out to
be a center in the present example. This phenomenon implies that the soliton has been
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captured by topography while oscillating around the stationary state indicated above.
We find from (3.19) that the capture occurs inside the orbit

$(a-1)^{2}( \frac{1}{a}+1)=\frac{0.4}{\theta^{2}+1}$ . (3.30)

Note that Eq. (3.30) represents two curves coalescing at $\theta=\pm\infty$ since it always possesses
two positive amplitude solutions for a given $\theta$ .
$\mathrm{b}$ . $\lambda=-1,$ $\Gamma<-4\gamma$

Different from the case a, there exist no stationary amplitudes in the parameter range
$\Gamma<-4\gamma$ . The figure corresponding to Fig. 3 is drawn in Fig. 4 where the parameters
are given by $\Gamma=-1.0$ and $\gamma=0.05$ .

FIG. 4. As in FIG. 3 except 1 $=-1$ .U.

This case is not so interesting because solitons propagate to the left direction irre-
spective of their initial amplitudes and positions. In fact, one can see that the velocity
of the soliton given by (3.15b) always becomes negative provided that $\gamma<<1$ . The only
effect due to the interaction with topography is a phase shift given by (3.29).
$\mathrm{c}$ . $\lambda=+1,$ $\Gamma>4\gamma$

This corresponds to a bottom topography which is convex upward. In the parameter
range $\Gamma>4\gamma$ , there is only one linearly unstable stationary amplitude. A typical phase
portrait is depicted in Fig. 5 for various values of $p$ where we have put $\Gamma=1.0$ and
$\gamma=0.05$ .

As seen from the figure, solitons with larger or smaller amplitudes compared to unity
pass through topography while suffering small phase shifts. On the other hand, solitons
with amplitudes a bit larger than unity decrease gradually their amplitudes in the course
of the propagation to the left direction and eventually they are repelled by topography
so that they propagate back to the right direction with amplitudes smaller than unity.
The two types of the propagation characteristics of the solutions described above are
separated by the orbit

$[(a-1)^{2}-0.197]( \frac{1}{a}+1)=-\frac{0.4}{\theta^{2}+1}$ , (3.31)
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in the present example. Equation (3.31) represents two curves intersecting at a stationary
state given by $a_{s}=$ 0.947 and $\theta_{s}=0$ which is seen to be an unstable node from the
preceding stability analysis. Thus, inside the above orbit, the repulsion of solitons occurs
due to topographic effect.
$\mathrm{d}$ . $\lambda=+1,$ $\Gamma<4\gamma$

In the parameter range $\Gamma<4\gamma$ , there exist no stationary amplitudes. The figure
corresponding to Fig. 5 is drawn in Fig. 6 for the values of $\Gamma=-1.0$ and $\gamma=0.05$ .

The properties of the orbits of solitons are similar to those of the case $\mathrm{b}$ . When
solitons enter from the right, they always pass through topography. The net effect is a
phase shift given by (3.29).

FIG. 5. As in FIG. 3 except $\lambda=+1.0$ . FIG. 6. As in FIG. 3 except $\lambda=+1.0$ and $\Gamma=-1.0$ .

E. Effect of small dissipation
In the analysis developed so far, the effect of dissipation has been neglected. In real

physical phenomena, however, there exist many situations where the dissipation would
play an important role. For instance, in the description of long internal waves in the
stratified lower atmosphere, turbulent dissipation would become to be significant [24].
In order to elucidate the effect of dissipation on the dynamics of algebraic solitons in
addition to topographic effect, we consider the following model equation

$u_{t}+\Gamma u_{x}-4uu_{x}-Huxx=\gamma B_{x}+\mu u_{xx}$ , (3.32)

where $\mu$ is a small positive parameter which measures the magnitude of dissipation. When
$\gamma=0$ , Eq. (3.32) reduces to the so-called BO-Burgers equation introduced in $[24,25]$ .

While Eq. (3.32) can be used to investigate various problems associated with it, we
shall here focus our attention on the study of the dynamics of an algebraic soliton under
the action of small dissipation. For the purpose, it is appropriate to employ the soliton
perturbation theory developed previously.

If we introduce again the profile of the bottom topography given by (3.3), the per-
turbation equations for the amplitude and position of the soliton are now written as
follows:

$\frac{da}{dt}=-\frac{8\lambda\gamma(\frac{1}{a}+\frac{1}{b})\xi}{[\xi^{2}+(\frac{1}{a}+\frac{1}{b})^{2}]^{2}}-\mu a^{3}$ , $(3.33a)$
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$\frac{d\xi}{dt}=\Gamma-a+\frac{4\lambda\gamma}{a^{2}}\frac{\xi^{2}-(\frac{1}{a}+\frac{1}{b})^{2}}{[\xi^{2}+(\frac{1}{a}+\frac{1}{b})^{2}]^{2}}$ . $(3.33b)$

When compared to the corresponding equations (3.15) in the absence of dissipation, the
dissipative effect appears only in the amplitude equation (3.33a). Owing to the dissipative
term $\mu a^{3}$ , however, the complete integrability of the system is lost perfectly. Instead, the
dynamics of the soliton are found to exhibit a variety of phenomena which have never
been observed in the absence of dissipation. Here we shall first seek stationary solutions
of Eqs. (3.33) and subsequently examine their stability against small perturbations.
1. Stationary solution

It now follows from the equations $da_{s}/dt=d\xi_{s}/dt=0$ that the amplitude and
position of the soliton corresponding to the stationary state are obtained by solving the
nonlinear algebraic equations

$\frac{(\Gamma-a_{s})^{2}+(\mu a_{s})2}{\Gamma-a_{s}+\mathrm{s}\mathrm{g}\mathrm{n}(\Gamma-a_{S})\sqrt{(\Gamma-a_{s})2+(\mu a_{s})^{2}}}=\frac{2\lambda\gamma}{(a_{s}+1)^{2}})$ $(3.34a)$

$\xi_{s}=\frac{1}{\mu a_{s}^{2}}(a_{s}+1)[\Gamma-a_{S^{-}}\mathrm{s}\mathrm{g}\mathrm{n}(\Gamma-a_{s})\sqrt{(\Gamma-a_{s})^{2}+(\mu a_{s})2}]$ , $(3.34b)$

$r$

where we have put $b=1$ . When $\mu$ tends to zero, these expressions reduce to Eqs. (3.20).
It is evident that the characteristics of stationary states given by (3.34) depend on

the parameters $\Gamma,$
$\gamma$ and $\mu$ . We shall particularly pay our attention to elucidating the

effect of $\mu$ while fixing $\Gamma$ and $\gamma$ to typical values. A plot of the stationary amplitude $a_{s}$

as a function of $\mu$ is shown in Fig. $7(\mathrm{a})$ for the values of the parameters $\Gamma=1.0$ and
$\gamma=0.05$ where Newton’s method has been used to solve Eq. (3.34a).

FIG.7. Plot of the stationary amplitude $a_{s}$ and the stationary position $\xi_{s}$ as a function of $\mu$

for the values of the parameters $\Gamma=1.0$ and $\gamma=0.05$ .

Also, the corresponding plot of the stationary position $\xi_{s}$ is given in Fig. $7(\mathrm{b})$ for the
same parameter values. The branch OAB in the figures represents the stationary states for
$\lambda=-1$ whereas the branch $\mathrm{O}\mathrm{A}’\mathrm{B}’$ corresponds to those for $\lambda=+1$ . In the case of $\lambda=-1$ ,
one can see from Fig. $7(\mathrm{a})$ that for the range of the parameter $0<\mu<0.025$ , there is only
one stationary amplitude for a given $\mu$ . If $\mu$ excee&the value 0.025, a new amplitude
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appears and hence we find a total of two stationary amplitudes. This happens until $\mu$

reaches a value $\mu=0.0314$ which corresponds to the point A in the figure. Furthermore, if
$\mu$ exceeds the point $\mathrm{A}$ , no stationary amplitudes are found to exist. This last phenomenon
is easily understood from the physical point of view. Indeed, when the magnitude of
$\mu$ exceeds certain critical value ($\mu=$ 0.0314 in the present example), the dissipative
effect becomes dominant and hence it suppresses both nonlinear and topographic effects.
Consequently, the amplitude of the soliton decreases indefinitely without approaching any
stationary value. The similar explanation is given to the case $\lambda=+1$ where the value of
$\mu$ corresponding to the point $\mathrm{A}’$ is 0.0338.
2. Linear stability

In order to study the stability of the stationary solutions obtained above, we have
performed the linear stability analysis. Applying the same procedure as that used for
the system of equations (3.15), we have arrived at the following conclusion.

For $\lambda=-1$ , the solutions on the branch AB are stable, representing stable focuses
because in this case the corresponding two eigenvalues are found to be complex conjugate
with a negative real part. On the other hand, the solutions on the branch OA become
unstable with one of the two eigenvalues being real and positive and hence these may be
termed unstable nodes. For $\lambda=+1$ , the solutions on the branch $\mathrm{A}’\mathrm{B}’$ become unstable
nodes whereas those on the branch $\mathrm{O}\mathrm{A}’$ are seen to be stable focuses.

IV. SUMMARY AND OUTLOOK

In this paper, we have studied the interaction of an algebraic soliton with localized
bottom topography on the basis of the $\mathrm{f}\mathrm{B}\mathrm{O}$ equation which is derived from a simple
two-layer fluid system by means of an asymptotic approach. Under appropriate scaling
hypothesis, the topographic effect is shown to become a small pertur.bation to the BO
equation. This enables us $\mathrm{t}\mathrm{o}\backslash$ apply a direct soliton perturbation theory to the system
under consideration.

In spite of the introduction of a simple profile of the bottom topography, the present
analysis exhibits a variety of phenomena. In particular, the prediction of the capture
and repulsion of a soliton by topography is interesting because of the possibility of their
appearance in lower atmospheric systems, for instance where a mountain may be modeled
by a localized topography. We have also found that the above phenomena are closely
related to the stability characteristic of the system while employing the linear stability
analysis.

Although the dynamical system describing the change of the amplitude and position
of the soliton is shown to be completely integrable, an addition of small dissipation al-
ters drastically the properties of solutions. In fact, for certain range of the dissipation
parameter, we have found the two types of stationary states for each bottom topography
in which one is stable and another is unstable against small perturbation.

In conclusion, we shall point out that in comparison with a large number of works
concerning the ffldV equation, there is a dearth of study devoted to the BO equation.
Indeed, many subjects are left for future studies. Among them, of practical importance is
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to examine whether disturbances generated in the vicinity of topography can propagate
far upstream under the condition that the basic flow is near resonance, i.e. when the
Froude number is nearly unity. This problem may be resolved by integrating Eq. (3.2)
numerically with zero initial condition $u(x, 0)=0$ . In the analysis developed in this
paper, we have addressed ourselves to soliton solutions. As is well-known, however,
the BO equation exhibits an exact periodic solution expressed in terms of trigonometric
functions $[26,27]$ . The modulation of periodic wave train due to external forcing is an
interesting problem which may be analyzed by the similar procedure to that used for the
corresponding problem within the framework of the ffldV equation $[6,28]$ .
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