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\S 1. Introduction

For certain conservative systems, it has been shown that the exact dissipative modes

with phenomenological counterparts are expressed by generalized eigenfunctions of the

time evolution operator of distribution functions or wave functions, and the corresponding

relaxation rates by the imaginary parts of the generalized eigenvalues. It then turned out

that the mathematical basis of the generalized eigenvalue problem can be provided by a

dual pair of functional spaces, such as seen in the theory of the rigged Hilbert space, or

Gel’fand triple. Here, we will review such an approach using two examples. We begin with

some historical remarks about the use of generalized vectors in the problem of dissipation.

Perhaps, the first examples of conservative systems with dissipative time evolution

which attracted many researchers’ attention are quantum systems involving metastable

$\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}/\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}$. In his pioneering work on the $\alpha$-decay, Gamow [1] obtained the lifetime of

the $\alpha$-particle trapped by the nucleus from the imaginary part of a complex eigenvalue of

the Hamiltonian. The corresponding eigenfunction turned out to be exponentially grow-

ing and do not fit with the conventional Hilbert-space framework of quantum mechanics.

For the Lee-Friedrichs model, Nakanishi [2] explicitly constructed an eigenfunction of the

Hamiltonian with a complex eigenvalue with the aid of a delta function concentrated on

a complex number. In $70\mathrm{s}$ , several approaches have been proposed to deal with such

eigenfunctions of self-adjoint operators with complex eigenvalues. Combes et al. $[3,4]$

proposed a method known as the complex scaling, where the Hamiltonian is mapped via

a similarity transformation to some operator which admits complex eigenvalues. The

transformation brings the exponentially growing Gamow’s eigenfunction to a square in-

tegrable eigenfunction of the transformed Hamiltonian. A similar, but slightly different
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method is the spectral deformtion method of Sudarshan et al. $[5,6]$ , where all physical

quantities such as wavefunctions and operators, as functions of the energy variable, are

analytically continued to a certain contour in the complex energy plane. These approaches

avoid the explicit use of generalized vectors. Bohm et al. $[7,8]$ recognized the possible

description of unstable states in terms of the rigged Hilbert space (Gel’fand triple), which

was introduced by Gel’fand et al. [9] in connection with the spectral theory of self-adjoint

operators and was used to justify the Dirac’s formalism of quantum mechanics [10].

The mixing systems in ergod theory have some similarity to the quantum mechanical

systems with unstable states. In the former, the expectation value of a given observable

with respect to any initial distribution asymptotically tends to the one with respect to

the ergodic measure. This convergence could be regarded as a relaxation of the initial

distribution to the ‘equilibrium’ one. For two classes of mixing systems, namely axiom-A

systems and expanding maps, Pollicott [11] and Ruelle [12] have shown that the rates

of the relaxations can be characterized by the complex poles of the power spectra of the

correlation functions, known as Pollicott-Ruelle resonances. Moreover, those complex

poles are eigenvalues of the generator of motion for the distribution functions, of which

eigenfunC.tions are represented by generalized functions.

The possibility and the generality of such a characterization of the relaxation rates

in terms of the (generalized) eigenvalue problem of the evolution operator have been em-

phasized and discussed by Prigogine and coworkers [13-17] over the last thirty years in

the field of non-equilibrium statistical mechanics. One of the purposes of non-equilibrium

statistical mechanics is to explain dissipation on the macroscopic level in terms of con-

servative microscopic dynamics, and a lot of approaches have been proposed so far [18].

One of the popular approaches is the projection operator method, where ‘irrelevant’ de-

grees of freedom are projected out and the closed equation for the ‘relevant’ part of the

distribution function is derived from the Liouville-von Neumann equation. This equation

is dissipative, but is not Markovian. Prigogine and his coworkers [14] tried to relate the

solution of this equation to Markovian evolutions and reached a formulation where the
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time evolution of the distribution function is expressed as a superposition of exponen-

tially decaying terms. Later, this method is applied to the Lee-Friedrichs model [16] and

turned out to give the same results obtained by Sudarshan et al. [5]. Until very recent,

the method has been developed rather formally and did not have enough mathematical

justification. Then, it has been recognized that the method may be justified in terms

of generalized eigenvalue problem such as seen in the theory of rigged Hilbert spaces

$[15,17]$ . The novelty of this approach is that the relaxation is described at the level of the

microscopic phase-space dynamics without any modification of the laws of motion.

We review the (generalized) eigenvalue problem associated with the decay in a quan-

tum mechanical model (the Lee-Friedrichs model) in \S 2, and the diffusive relaxation in

a conservative map (the multibaker map) in \S 3. Sec. 4 is devoted to some concluding

remarks.

\S 2. Dissipative eigenvalue problem of evolution operator I

– decay modes in the Lee-Friedrichs model –

\S \S 2.1 A phenomenological approach to the decay of metastable states

Excited states of atoms and molecules as well as states in a potential well, possessing

enough energy to escape, are unstable. Phenomenologically, we know that the population

$P$ of occupying such a state decays exponentially in time:

$\frac{dP}{dt}=-2\gamma P$ , (2.1)

where $1/(2\gamma)$ is the lifetime of the state in question. $\mathrm{E}\mathrm{q}.(2.1)$ admits a decaying solution

$P$ oc $\exp(-2\gamma t)$ . (2.2)

Needless to say, the decay (2.2) is an irreversible process.

\S \S 2.2 Lee-Friedrichs model, a quantum mechanical model of a metastable state

Friedrichs [19] discussed a slovable quantum mechanical model of resonance scatter-

ing, which is referred to as the Lee-Friedrichs model since it is equivalent to the one-

particle sector of the Lee model [20]. The eigenvector of the Hamiltonian, of which
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eigenvalue is the complex pole of the $\mathrm{S}$-matrix, was constructed by Nakanishi [2] with

the aid of a delta function concentrated on a complex number. He also gave an argu-

ment about the test function space for such distributions. A complete set of left and right

eigenvectors including Nakanishi’s eigenvector as a part was obtained by Sudarshan, Chiu

and Gorini [5] by the approach without the explicit use of distributions. The same result

was derived by de Haan [16] by using a method Prigogine et al. $[13,14]$ developed in the

field of non-equilibrium statistical mechanics. In order to justfy those eigenstates of the

Hamiltonian with complex eigenvalues, Antoniou and Prigogine $[15,17]$ used the rigged

Hilbert space of Hardy class functions constructed by Bohm and Gadella [8]. Here we

review their result.

For the Lee-Friedrichs model, we conside.r a Hilbert space expressed as a direct sum

of the set of complex numbers and the space of square integrable functions on the positive

real axis (which we denote $\mathrm{R}^{+}$ ):

$\mathcal{H}=\{\psi=|\psi 0\in \mathrm{C},$ $\psi(\omega)\in L^{2}(\mathrm{R}^{+})\}$ , (2.3)

equipped with the inner product

$\langle\psi, \phi\rangle\equiv\psi_{0}^{*}\phi_{0+}\int_{0}^{\infty}d\omega\psi(\omega)^{*}\phi(\omega)$ . (2.4)

And the Hamiltonian is defined as

$H\psi\equiv$ , (2.5)

where $\lambda$ is the coupling constant, $\Omega_{0}>0$ and the real-valued function $V(\omega)$ is at least

square integrable on $\mathrm{R}^{+}$ (its precise specification will be given later by $\mathrm{e}\mathrm{q}.(2.11)$ ).

As a self-adjoint operator on the Hilbert space $\mathcal{H}$ , the Hamiltonian $H$ has only a real

spectrum and, thus, the time evolution operator $U_{t}=\exp(-iHt)$ generated by $H$ is uni-

tary. Moreover, for sufficiently small coupling constant $\lambda$ , the spectrum of $H$ just consists

of a continuous part, which coincides with the positive real axis $\mathrm{R}^{+}$ . Hence, the discrete

eigenstate of the unperturbed Hamiltonian $H|_{\lambda=0}$ corresponding to the component $\psi_{0}$ of
$\psi\in \mathcal{H}$ disappears by the interaction, but appears as a resonance in the scattering [19].
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Survival probability $P_{s}$ of the unperturbed discrete eigenstate corresponds to the

population $P$ of the decaying state in the phenomenological approach and is given by

$P_{s}(t)\equiv|\langle\phi_{0,U_{t}}\phi 0\rangle|^{2}$ , (2.6)

where $\phi_{0}=\in \mathcal{H}$ . It is known that the survival probability approximately obeys

exponential decay law $\propto\exp(-2\gamma t)$ for not too small or not too large $t[21]$ . Also, it

can be shown that the decay law of $P_{s}(t)$ deviates from the exponential one for very

short time and for very long time, because of the Hermiticity of the Hamiltonian and the

boundedness of the spectrum of $H$ from below respectively [22].

\S \S 2.3 Genelarized eigenvalue problem and decaying modes

Here we introduce subspaces of the Hilbert space $\mathcal{H}$ along the argument of Bohm

and Gadella [8], and consider the eigenvalue problem in their conjugate spaces.

We begin with some definitions.

Definition 2.1 (Hardy $cla\mathit{8}\mathit{8}$ functions)

A complex valued function $f(x)$ on the set of real numbers $\mathrm{R}$ is a Hardy class function

on the upper half complex plane $\mathrm{C}^{+}$ if

1. There exists a complex valued function $f(z)$ analytic for ${\rm Im} z>0$ and the value $f(x)$

is given as the boundary value of the function $f(z)$ :

$f(x)= \lim_{y\backslash 0}f(x+iy)$ . $(2.7a)$

$2$ . For each fixed $y_{0}>0$ , the function $f(x+iy_{0})$ is square integrable as a function of $x$

and satisfies

$\sup_{y>0}\int_{-\infty}^{\infty}dx|f(x+iy)|^{2}<+\infty$ . $(2.7b)$

Let $H_{+}^{2}(\mathrm{R})$ be a set of all Hardy class functions on $\mathrm{C}^{+}$ . Then, $H_{+}^{2}(\mathrm{R})$ is a closed

subspace of the Hilbert space $L^{2}(\mathrm{R})$ of square integrable functions on $\mathrm{R}$ and, hence, is

itself a Hilbert space. By changing $\mathrm{C}^{+}$ to the lower half complex plane $\mathrm{C}^{-}$ , one can also

define the space $H_{-}^{2}(\mathrm{R})$ of Hardy class functions on $\mathrm{C}^{-}$ Note that if $f\in H_{+}^{2}(\mathrm{R})$ , then

$f^{*}\in H_{-}^{2}(\mathrm{R})$ since the analytic continuation of $f^{*}$ is $\tilde{f}(z)=f^{*}(z^{*})$ .

234



Thanks to the theorem of van Winter [8, p.49], any Hardy class function can be

reconstructed from its value on the positive real axis $\mathrm{R}^{+}$ . Therefore, if we define operators

$\theta_{\pm}:$ $H_{\pm}^{2}(\mathrm{R})arrow L^{2}(\mathrm{R}^{+})$ as the restriction of functions on $\mathrm{R}$ to the positive real axis $\mathrm{R}^{+}:$

$\theta_{\pm}f(x)=f(x)$ for $x\geq 0$ , then they are $\mathrm{o}\mathrm{n}\mathrm{e}_{-}\mathrm{t}_{0-}\mathrm{o}\mathrm{n}\mathrm{e}$ .

Let $S$ be the space of rapidly decreasing functions defined on $\mathrm{R}$ :

$S\equiv\{s(x)|S(X)$ : infinitely differentiable complex–valued function on $\mathrm{R}$

$\lim$ $x^{n}s^{(m}()x)=0$ (for $n,$ $m=0,1,2,$ $\cdots$ ) $\}$ , (2.8)
$xarrow\pm\infty$

where the topology is generated, in the standard way, by a countable set of seminorms:

$||s||_{m}2= \int_{-\infty}^{\infty}dX|\hat{N}m(Sx)|2$ $(m=0,1,2, \cdots)$ , (2.9)

with $\hat{N}=x^{2}+\frac{d^{2}}{dx^{2}}+1$ . And we define delta functions concentrated on complex numbers

[2, 8 III of Chap. III, 9 vol.2] $*)$

Definition 2.2 (Delta function concentrated on a complex number)

1. Test function $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{S}\dagger$ )

Necessary test-function spaces are given by $\theta_{\pm}(S\cap H_{\pm}^{2}(\mathrm{R}))$ equipped with a count-

able set of seminorms: $\{||\theta_{\pm}^{-1}f||m\}(m=0,1, \cdots)$ . These are nuclear Fr\’echet spaces

and are dense in the Hilbert space $L^{2}(\mathrm{R}^{+})$ [ $8$ , Chap.III].

2. Delta function concentrated on $z$

Let ${\rm Im} z>0({\rm Im} z<0)$ , and define a delta function $\delta_{z}$ concentrated on $z$ by

$\delta_{z}(f)=\int_{0}^{\infty}d\omega\delta_{z}(\omega)f(\omega)\equiv f(z)=\frac{(-)^{1}+}{2\pi i}\int_{-\infty}^{\infty}dx\frac{\theta_{\pm}^{-1}f(X)}{x-z}$ (2.10)

where $f\in\theta_{+}(S\cap H_{+}^{2}(\mathrm{R}))$ (respectively $f\in\theta_{-}(S\cap H_{-}^{2}(\mathrm{R}))$ ). $\mathrm{E}\mathrm{q}.(2.10)$ is well-

defined as an element of the topological dual of $\theta_{+}(S\cap H_{+}^{2}(\mathrm{R}))$ (respectively of
$\theta_{-}(S\cap H_{-(}2\mathrm{R})))$ .

$*)$ The test function space used in Ref.9, vol. 2 is different from the present one.
$\dagger)$ In [8], these spaces are denoted as $D_{\pm}(\mathrm{i}.\mathrm{e}., =\theta_{\pm}(S\cap H_{\pm}^{2}(\mathrm{R})))$ .
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Proof of the well-definedness: Let ${\rm Im} z>0$ , then for $f\in\theta_{+}(S\cap H_{+}^{2}(\mathrm{R})),$ $(2.10)$ is
well-defined. Also, from the last expression of (2.10), we have

$| \delta_{z}(f)|\leq\frac{1}{2\pi}\sqrt{\int_{-\infty}^{\infty}dx\frac{1}{|_{X-Z}|^{2}}}||\theta_{+}^{-1}f||0=\frac{1}{\sqrt{4\pi{\rm Im} z}}||\theta_{+}^{-1}f||_{0}$ ,

which implies the continuity of $f\mapsto\delta_{z}(f)$ and, thus, $\delta_{z}$ belongs to the topological dual
of $\theta_{+}(S\cap H_{+}^{2}(\mathrm{R}))$ . The proof for the case of ${\rm Im} z<0$ is the same. Q.E.D.

Here we specify the interaction $V(\omega)$ of the Lee-Friedrichs model (2.5):

$V(\Omega_{0})\neq 0$ , $V(\omega)\in\theta_{+}(S\cap H_{+}^{2}(\mathrm{R}))\cap\theta_{-}(S\cap H_{-}^{2}(\mathrm{R}))$ (2.11)

The second assumption of (2.11) may give a nontrivial $V(\omega)$ as the set in the right hand

side is different from $\{0\}$ [ $8\mathrm{e}\mathrm{q}.(3- 41)$ in p.60, 23].

With these preparations, we define two subspaces $\Phi_{\pm}\subset \mathcal{H}$ as

$\Phi\pm\equiv\{\psi=|\psi(\omega)\in\theta\pm(S\cap H_{\pm}^{2}(\mathrm{R}))\}$ , (2.12)

where the topology is generated by a countable set of seminorms:

$||\psi||\Phi\pm,-1=|\psi 0|$ , $||\psi||_{\Phi}^{2}\pm^{m},\sqrt{\int_{-\infty}^{\infty}dx|\hat{N}m\theta-1\psi\pm(X)|^{2}}=$ $(m=0,1, \cdots)$ . (2.13)

Then, we have

Prop. 2.1

i) The space $\Phi\pm \mathrm{i}\mathrm{s}$ complete with respect to the topology generated by the countable

set of seminorms $||\cdot||_{\Phi,m}\pm(m=-1,0,1, \cdots)$ and is nuclear, i.e., $\Phi_{\pm}$ is a nuclear

Fre’chet space.

ii) The subspace $\Phi_{\pm}$ is dense in the Hilbert space $\mathcal{H}$ and its topology is stronger than

the Hilbert space topology. Thus we have an inclusion: $\Phi_{\pm}\subset \mathcal{H}\subset\Phi_{\pm}\dagger$ , where $\Phi_{\pm}\dagger$ is

the conjugate space to $\Phi\pm$ , i.e., the linear space of continuous anti-linear functionals

over $\Phi_{\pm^{*)}}$ .

$*)P\in\Phi_{\pm^{\mathrm{m}\mathrm{e}\mathrm{a}}}\dagger \mathrm{n}\mathrm{s}$ that $\ell:\Phi_{\pm}\mapsto \mathrm{C}$ is continuous and $l(\alpha\psi+\beta\phi)=\alpha^{*}l(\psi)+\beta\ell^{*}(\phi)$ for
every $\alpha,$

$\beta\in \mathrm{C}$ and $\psi,$ $\phi\in\Phi_{\pm}$ .
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iii) For the Hamiltonian $H$ , we have $H\Phi_{\pm}\subset\Phi_{\pm}$ and $H$ is continuous there.

Proof. i) &ii) They are the restatements of the corresponding properties of $\theta_{\pm}(S\cap$

$H_{\pm}^{2}(\mathrm{R}))$ [$8$ , Chap.III].

iii) The Hamiltonian $H$ is decomposed as $H=H_{0}+\lambda\hat{V}$ :

$H_{0}\psi\equiv$ , $\hat{V}\psi\equiv$

The continuity and the invariance of $\Phi_{\pm \mathrm{W}}\mathrm{i}\mathrm{t}\mathrm{h}$ respect to $H_{0}$ follow from the corresponding

properties of the multiplication operator $\hat{\omega}$ : $f(\omega)\mapsto\omega f(\omega)$ in the spaces $\theta_{\pm}(S\cap H_{\pm}^{2}(\mathrm{R}))$

[ $8$ Chap.III]. The assumption (2.11) on the interaction $V(\omega)$ guarantees $\hat{V}\Phi_{\pm}\subset\Phi_{\pm}$ . The

continuity of $\hat{V}$ follows from the inequalities:

$||\hat{V}\psi||\Phi\pm,-1\leq||\theta_{+}^{-1}V||_{0}||\psi||_{\Phi}\pm.’ 0$ , $||\hat{V}\psi||_{\Phi}\pm,m=||\theta_{\pm}^{-1}V||_{m}||\psi||_{\Phi,-}\pm 1$ .

Q.E.D.

From this proposition, the Hamiltonian $H=H\dagger$ can be continuously extended to

the conjugate spaces $\Phi_{\pm}\dagger$ . Those extensions admit eigenvectors with complex eigenvalues,

which control the decay of the metastable state:

Prop. 2.2

i) Let $\eta^{+}(z)$ be a function analytic on the complex plane except the negative real axis:

$\mathrm{C}\backslash \mathrm{R}^{-}$ , which coincides with

$\eta(z)=z-\Omega_{0}+\lambda^{2}\int_{0}^{\infty}d\omega\frac{V_{\omega}^{2}}{\omega-z}$ , (2.14)

on the upper half complex plane $z\in \mathrm{C}^{+}$ . Then for sufficiently small coupling

constant $\lambda,$ $\eta^{+}(z)=0$ has a unique zero $z=Z_{R}$ with ${\rm Im} z_{R}<0$ in the domain

{ $z\in \mathrm{C}:{\rm Im} z>0,$ ${\rm Im} z<-c_{1}$ or ${\rm Re} z>c_{2}$ } $(\ni\Omega_{0})$ with positive constants $c_{1},$ $c_{2}$ .

For this value of $Z_{R}$ , we define anti-linear functionals

$f_{1}( \phi)\equiv\frac{1}{\sqrt{\eta^{+}’(z_{R})}}\{\phi_{0}^{*}+\lambda\int_{0}^{\infty}\mathrm{A})V(\omega)\{\frac{1}{z_{R}-\omega}-2\pi i\delta_{z}R(\omega)\}\phi^{*}(\omega)\}$ , (2.15)
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where $\phi\in\Phi_{-}$ , and

$\tilde{f}_{1}(\psi)\equiv\frac{1}{[\sqrt{\eta^{+/}(z_{R})}]^{*}}\{\psi_{0}^{*}+\lambda\int_{0}^{\infty}d\omega V(\omega)\{\frac{1}{z_{R}^{*}-\omega}+2\pi i\delta_{zR}\mathrm{s}(\omega)\}\psi*(\omega)\}$ , (2.16)

where $\psi\in\Phi_{+}$ . Then $f_{1}\in\Phi\underline{\dagger}$ and $\tilde{f}_{1}\in\Phi_{+}\dagger$ , and they are (generalized) eigenvectors

of the Hamiltonian $H$ with complex eigenvalues

$Hf_{1}(\psi)\equiv f_{1}(H\dagger_{\phi)}=z_{R}f_{1}(\phi)$ , (for $\phi\in\Phi_{-}$ ) $(2.17a)$

$H\tilde{f}_{1}(\psi)\equiv\tilde{f}_{1}(H\dagger\uparrow l))=z_{R}^{*}\tilde{f}_{1}(\psi)$ , (for $\psi\in\Phi_{+}$ ). $(2.17b)$

Note that the anti-linear functionals $f_{1}$ and $\tilde{f}_{1}$ precisely correspond to the phe-

nomenological decay modes (2.2).

ii) For any $\psi\in\Phi$ -and $\phi\in\Phi_{+}$ , we have a decomposition for $t\geq 0$ :

$\langle\phi, e^{-iHt}\psi\rangle=f_{1}(\phi)\tilde{f}1^{*}(\psi)e-izRt+w_{t}(\phi, \psi)$ , (2.18)

where $w_{t}(\phi, \psi)$ is a sesquilinear form.

Proof: i) As $V(\Omega_{0})\neq 0$ , there is a positive $c_{2}(<\Omega_{0})$ such that $V(\omega)\neq 0$ for $|\omega-\Omega 0|\leq$

$\Omega_{0-}c_{2}$ . We then choose the coupling constant $\lambda$ so that $\lambda^{2}||\theta^{-}-V1||02<c_{2}(\Omega_{0}-c_{2})$. We

have, for ${\rm Im} z>0,$ ${\rm Im} \eta^{+}(z)={\rm Im} z\{1+\lambda^{2}\int_{0}^{\infty}d\omega V(\omega)^{2}|\omega-z|-2\}>0$ and, for $\omega\in \mathrm{R}$

and $|\omega-\Omega 0|\leq\Omega_{0}-c_{2},$ ${\rm Im}\eta^{+}(\omega)=\pi\lambda^{2}V(\omega)^{2}\neq 0$ , i.e., for these values of $z,$ $\eta^{+}(z)\neq 0$ .

The other part of the analyticity of $\eta^{+}(\omega)$ will be proved with the aid of Rouch\’e’s

theorem [24]. By rotating the integration contour in the defining equation of $\eta$ from
$(0, \infty)$ to $(0, -\infty)$ , we obtain the estimation:

$| \eta^{+}(z)-(z-\Omega_{0})|\leq\frac{\lambda^{2}}{d(z,\mathrm{R}^{-})}||\theta_{-||}^{-1}V02$ , (2.19)

with $d(z,$ $\mathrm{R}^{-)}$ the distance between $z$ and the negative real axis $\mathrm{R}^{-}$ Now, for $a\geq\Omega_{0}$ ,

consider a circle $\Gamma_{a}\equiv\{z\in \mathrm{C} : |z-a|=a-c_{2}\}$ which encloses $z=\Omega_{0}$ . As easily seen

from (2.19) and the inequality for $\lambda$ , we have $|\eta^{+}(Z)-(z-\Omega 0)|<|z-\Omega_{0}|$ on $z\in\Gamma_{a}$ .

Then, by Rouch\’e’s theorem, $\eta^{+}(z)$ and $z-\Omega_{0}$ have the same number of zeros inside the

circle $\Gamma_{a}$ , obviously which is one. Hence, $\eta^{+}(z)$ has a unique zero $z=Z_{R}$ in the domain

$\bigcup_{a\geq\Omega_{0}}\{z:|z-a|<a-c_{2}\}=\{z:{\rm Re} z>c_{2}\}$. Moreover, ${\rm Im} z_{R}<0$ , because of $|zR-\Omega 0|\leq$
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$\Omega_{0^{-}}c_{2}$ and the previous observation on $\eta^{+}(z)$ . By applying the same arguments to the

family of circles $\{z : |z-ib|=b-c_{1}\}(b\geq c_{1}=\sqrt{(\sqrt{\Omega_{0}^{4}+4c_{2}(2\Omega 0-c_{2})^{2}}-\Omega_{0}^{2})/2})$ , we

find $\eta^{+}(z)\neq 0$ for $z\in\{z:{\rm Im} Z<-c_{1}\}$ .

As $\phi(\omega)\in\theta_{+}[S\cap H_{+}^{2}(\mathrm{R}+)]$ implies $\phi^{*}(\omega)\in\theta_{-}[S\cap H_{-}^{2}(\mathrm{R}^{+})],$ $f_{1}$ is well-defined and

$|f_{1}( \phi)|\leq\frac{1}{\sqrt{|\eta^{+}’(_{Z_{R}})|}}\{||\phi||_{\Phi}+,-1+\lambda(\sqrt{\int_{0}^{\infty}d\omega\frac{V_{\omega}^{2}}{|z_{R}^{*}-\omega|^{2}}}+\frac{\sqrt{\pi}|V_{z_{R}^{*1}}}{\sqrt{|{\rm Im} z_{R}|}})||\phi||\Phi+,0\}$ ,

which implies $f_{1}\in\Phi_{+}\dagger$ .
Also, by a straightforward clculation, we have $(2.17\mathrm{a})$ :

$f_{1}(H \dagger_{\phi)}=f_{1}(H\phi)=ZRf_{1}(\phi)+\frac{1}{\sqrt{\eta^{+}’(z_{R})}}(-z_{R}+\Omega_{0}+\lambda 2\int_{0}^{\infty}d\omega\frac{V(\omega)^{2}}{z_{R}-\omega}-2\pi i\lambda^{2}V^{2}zR)\phi 0*$

$=z_{R}f_{1}( \phi)-\frac{1}{\sqrt{\eta^{+}(z_{R})}},\eta^{+}(Z_{R})\phi^{*}0=zRf_{1}(\phi)$ .

The proofs of $\tilde{f}_{1}\in\Phi\underline{\dagger}$ and (2.17b) are the same.

ii) Here we follow the argument of Bohm and Gadella [8]. Let

$\langle\phi, \varphi_{\omega}^{\pm}\rangle\equiv\phi^{*}(\omega)+\frac{V(\omega)}{\eta^{\pm}(\omega)}[\phi_{0}^{*}+\int_{0}^{\infty}d\omega\frac{V(\omega’)}{\omega-\omega\pm i0}’,\phi^{*}(\omega’)]$ ,

where $\varphi_{\omega}^{\pm}$ are outgoing $(+)$ and incoming (-) scattering states [19], and

$\eta^{\pm}(\omega)=\lim_{0\epsilon\searrow}\eta(\omega\pm i\epsilon)$ , $\int_{0}^{\infty}d\omega/\frac{V(\omega^{l})}{\omega-\omega\pm i0},\phi^{*}(\omega/)=\epsilon\searrow 0\lim\int_{0}^{\infty}d\omega^{;}\frac{V(\omega’)}{\omega-\omega\pm i\epsilon},\phi^{*}(\omega’)$ .

Then as easily seen, provided $\phi\in\Phi_{+}$ and $\psi\in\Phi_{-},$ $\langle\phi, \varphi_{\omega}^{-}\rangle$ and $\langle\psi, \varphi_{\omega}^{+}\rangle*\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}$ analytic

continuation to the lower half $\omega$ -complex plane. Moreover, straightforward calculations

give
$\langle\phi, \psi\rangle=\int_{0}^{\infty}d\omega\langle\phi, \varphi_{\omega}^{+\psi}\rangle\langle, \varphi^{+}\omega\rangle*$ ,

$\langle\phi, \varphi_{\omega}^{+}\rangle=\frac{\eta^{-}(\omega)}{\eta^{+}(\omega)}\langle\phi,$ $\varphi_{\omega}^{-\rangle}$ , $\langle e^{-iH*}t\psi, \varphi_{\omega}+\rangle=e^{-it}\langle\omega\psi, \varphi\omega+\rangle*$ ,

where $\eta^{-}(\omega)/\eta^{+}(\omega)$ is the $S$-matrix element [19]. Hence, we have

$\langle\phi, e^{-iHt}\psi\rangle=l^{\infty}d\omega\langle\phi, \varphi\omega\rangle e-i\omega t\langle\psi, \varphi\omega+\rangle^{*}+=\int_{0}^{\infty}d\omega\frac{\eta^{-}(\omega)}{\eta^{+}(\omega)}e^{-}i\omega t\langle\phi, \varphi^{-}\omega\rangle\langle\psi, \varphi^{+}\omega\rangle*$

From i) above and the fact that $e^{-i\omega t}(t>0)$ is analytic in $\mathrm{C}^{-}$ and vanishes at infinity, the

integrand has a mermorphic extension to the domain $\mathrm{C}^{-}\backslash \{z\in \mathrm{C}$ : ${\rm Im} z\geq-c_{1}$ and ${\rm Re} z<$
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$c_{2}\}$ with a simple pole at $z=Z_{R}$ . Thus, by $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$

’

the integration contour from $(0, \infty)$

to $\Gamma=\{z\in \mathrm{R}, 0<z\leq c_{1}\}\cup\{z=c_{1}-iy:0\leq y<+\infty\}$ , we have the desired result:

$\langle\phi, e^{-iHt}\psi\rangle=-2\pi i\frac{\eta^{-}(z_{R})}{\eta^{+/}(z_{R})}e-iz_{R}t\langle\phi, \varphi\omega-\rangle|_{\omega=z_{R}}\langle\psi, \varphi_{\omega}+\rangle^{*}|\omega=z_{R}$

$+ \int_{\Gamma}d\omega\frac{\eta^{-}(\omega)}{\eta^{+}(\omega)}e^{-}\langle i\omega t\phi, \varphi_{\omega}^{-}\rangle\langle\psi, \varphi\omega+\rangle^{*}=f_{1}(\phi)\tilde{f}_{1}^{*}(\psi)e^{-}+w_{t}(izRt\phi, \psi)$,

where we have used

$\langle\phi, \varphi_{\omega}^{-}\rangle|_{\omega=}z_{R}=\frac{V(z_{R})}{\eta^{-}(z_{R})}\sqrt{\eta^{+/}(z_{R})}f_{1}(\phi)$ , $\langle\psi, \varphi_{\omega}\rangle^{*}+|\omega=z_{R}=\frac{V(z_{R})}{\eta^{-}(z_{R})}\sqrt{\eta^{+/}(z_{R})}\tilde{f}_{1}(\psi)^{*}$ ,

and introduced a sesquilinear form:

$w_{t}( \phi, \psi)=\int_{\Gamma}d\omega\frac{\eta^{-}(\omega)}{\eta^{+}(\omega)}e^{-}\langle i\omega t\phi, \varphi_{\omega}^{-}\rangle\langle\psi, \varphi^{+}\omega\rangle^{*}$

Q.E.D.

Remark 2.1 As firstly shown by Antoniou [15,17, see also 8], the spaces of test vectors

are ‘asymmetric’ with respect to the time evolution.

Prop. 2.3

Let $t>0$ , then $e^{iHt}\Phi_{+}\subset\Phi_{+},$ $e^{-iHt}\Phi_{+}\not\subset\Phi_{+}$ , and $e^{-iHt}\Phi_{-}\subset\Phi_{-},$ $e^{iHt}\Phi_{-}\not\subset\Phi_{-}$ .

\S 3. Dissipative eigenvalue problem of evolution operator II

– diffusive relaxation in the multibaker map –

\S \S 3.1 A phenomenological model of diffusion
Matters like ink in water have a tendency to uniformly distribute over the container.

This phenomenon is diffusion, which is a typical irreversible process. As is well known, a

simple probabilisitic model of diffusion is provided by the random walk. In the simplest

one-dimensional case, a ‘particle’ moves on a one-dimensional lattice in such a way that,

at each time, the ‘particle’ on a certain site jumps to its adjacent sites with the same

probability 1/2. Then the probability $\square _{t}(n)$ of finding the ‘particle’ at site $n(n=$

$0,$ $\pm 1,$ $\pm 2,$ $\cdots)$ and at time $t(t=0,1,2, \cdots)$ obeys

$\Pi_{t}(n)=\frac{1}{2}\{\Pi_{t1}-(n+1)+\Pi_{t-1}(n-1)\}$ . (3.1)
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Note that the probability $\Pi_{t}(n)$ can be regarded as the concentration of the diffusing

matter. As easily seen, (3.1) admits eigenfunctions $\exp(\pm iqn)(-\pi<q\leq\pi)$ decaying at

the rate of $\ln\cos q$ :

$\Pi_{t}(n)\propto(\cos q)^{t}\exp(\pm iqn)$ , (3.2)

which expresses the uniformization process of the distribution.

\S \S 3.2 Multi-baker map, a reversible dynamical model

The multibaker map is a reversible dynamical model of the random walk and is de-

fined on a periodic array of countably many unit squares, where each square corresponds

to each site in the random walk. The transition of a ‘particle’ from one square to its neigh-

bors is controlled by a baker map instead of a random process. A 4-adic multibaker map

has been proposed by Gaspard [25] and the properties of diffusion and nonequilibrium

states have been rigorously studied with the aid of zeta functions and of the “thermody-

namic formalism”. Multibaker maps admit the Lebesgue measure as an invariant measure

and the relaxation of the deviations from this equilibrium state is described by the cor-

responding Frobenius-Perron operator. The spectral properties of the Frobenius-Perron

operator are recently studied by Gaspard [26], Hasegawa and Driebe [27] and Tasaki,

Hakmi and Antoniou [28]. The logarithms of its eigenvalues give the decay rates of the

correlation functions, which are known as Pollicott-Ruelle resonances $[11,12]$ . Here we

discuss about the generalized eigenfunctions associated with Pollicott-Ruelle resonances.

The multibaker map discussed here is defined on a one-dimensional array of unit

squares:

$B(n, x, y)=\{$

$(n-1,2x,$ $\mathrm{A})2$ , $0 \leq x<\frac{1}{2}$

$(n+1,2x-1,$ $\frac{y+1}{2})$ , $\frac{1}{2}\leq x<1$

(3.3)

where an integer $n$ labels the unit squares and a pair $(x, y)$ of real numbers $(0\leq x<$

$1,0\leq y<1)$ stands for the coordinates in each unit square. This map is conservative

so that it admits the Lebesgue measure, $dxdy$ , as an invariant measure. The multibaker

map $B$ is uniformly hyperbolic with a stretching factor 2 and, thus, possesses a positive

Lyapunov exponent equal to $\log 2$ .
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The evolution operator of the distribution functions (i.e., the Frobenius-Perron op-

erator) $U$ is then given by

$U\rho(n, x, y)\equiv\rho(B^{-1}(n, x, y))=\{$

$\rho(n+1,$ $\frac{x}{2},2y)$ , $0 \leq y<\frac{1}{2}$

$\rho(n-1,$ $\frac{x+1}{2},2y-1)$ , $\frac{1}{2}\leq y<1$

(3.4)

The evolution operator $U$ is unitary in the Hilbert space $\tilde{\mathcal{H}}$ of square integrable functions:

$\tilde{\mathcal{H}}\equiv\{f(n, x, y)|\sum_{=n-\infty}\infty\int_{[1)^{2}}0,(dXdy|fn, x, y)|^{2}<+\infty\}$ , (3.5)

which is equipped with the inner product: $\langle f, g\rangle\equiv\sum_{n}\int_{[0,1]^{2}}dxdyf^{*}(n, x, y)g(n, x, y)$ .

Therefore, the spectrum of $U$ on the Hilbert space $\tilde{\mathcal{H}}$ is a unit circle: $\{z:|z|=1\}$ .

Because of the periodicity of the system, it is convenient to introduce the Fourier

representation:
$+\infty$

$\mathcal{F}\rho(q, x, y)\equiv\sum_{n=-\infty}e-inq\rho(n, x, y)$
, (3.6)

where $-\pi<q\leq\pi$ . Then, the expectation value of the complex conjugate of a given

observable $A$ at time $t$ with respect to the initial distribution $\rho$ can be rewritten as

$\langle A^{*}\rangle_{t}\equiv\langle A, U^{t}\rho\rangle=\sum_{\infty n=-}\int_{[)}0,12)+\infty dxdyA*(n,x,y)Ut(\rho n,x,y$

$= \int_{-\pi}^{\pi}\frac{dq}{2\pi}$ $\int_{[0,1})^{2})d_{X}dy\mathcal{F}A(q, x, y)^{*}U_{q}t\mathcal{F}\rho(q,$$x,$ $y$ , (3.7)

where $U_{q}$ is the Fourier component of the evolution operator given by

$U_{q}\mathcal{F}\rho(q, x, y)\equiv\{$

$e^{iq}\mathcal{F}p(q,$ $\frac{x}{2},2y)$ , $0 \leq y<\frac{1}{2}$

$e^{-iq}\mathcal{F}\rho(q,$ $\frac{x+1}{2},2y-1)$ , $\frac{1}{2}\leq y<1$

(3.8)

\S \S 3.3 Genelarized eigenvalue problem and decaying modes

Here we introduce two subspaces of the Hilbert space $\tilde{\mathcal{H}}$ and consider the eigenvalue

problem in their conjugate spaces.
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First we define $C_{x}^{2}\subset\overline{\mathcal{H}}$ as

$C_{x}^{2}\equiv\{f(n, x, y)|\mathrm{i})$ for almost every $y,$ $\mathcal{F}f(q, x, y)$ is two times continuously

differentiable in $x$ and continuous in $q$ ,

ii) for fixed $x$ and $q,$ $\mathcal{F}f(q, x, y)$ is square integrable in $y$ ,

$\mathrm{i}\mathrm{i}\mathrm{i})\int_{0}^{1}dy-\pi\leq \mathrm{s}\mathrm{u}\mathrm{p}q\leq\pi 0\leq x\leq\sup 1|\partial_{x}^{j}\mathcal{F}f(q, x, y)|^{2}<+\infty$ $(j=0,1,2)$ $\}$ .

(3.9)

The space is endowed with the norm

$||f||c_{x} \equiv\sum_{j=0}\sqrt{\int_{0}^{1}dy\sup_{-\pi\leq q\leq\pi 0}\sup|\partial_{x}^{j}\leq x\leq 1\mathcal{F}f(q,x,y)|^{2}}2$ . (3.10)

The other subspace $C_{y}^{2}$ of twice $y$-differentiable functions is given by interchanging $x$ and $y$

in the definition of $C_{x}^{2}$ , and is endowed with a norm $||f||c_{y} \equiv\sum_{j=0}^{2}\sqrt{\int 0^{1}\sup_{q}\sup y|d_{X}\partial j\mathcal{F}yf|^{2}}$.

For these spaces, we have

Prop. 3.1

i) The space $C_{x}^{2}$ is a Banach space with respect to the norm $||\cdot||_{C_{x}}$ . And thus, it is

not nuclear.

ii) The subspace $C_{x}^{2}$ is dense in the Hilbert space $\tilde{\mathcal{H}}$ and its norm topology is stronger

than the Hilbert space topology. Thus we have an inclusion: $C_{x}^{2}\subset\tilde{\mathcal{H}}\subset C_{x}^{2\uparrow}$ , where
$C_{x}^{2\dagger}$ is the space of continuous antilinear functionals on (i.e., the conjugate space to)

$C_{x}^{2}$ .

iii) The space $C_{x}^{2}$ is invariant with respect to the evolution operator $U:UC_{x}^{2}\subset C_{x}^{2}$ and

is bounded there: $||Uf||_{C_{x}}\leq||f||_{C_{x}}$ . But, it is not invariant with respect to $U\dagger$ .

The above statements i) and ii) are valid for $C_{y}^{2}$ and, instead of iii), $U\dagger c_{y}^{2}\subset C_{y}^{2}$ holds

where $U\dagger$ is the adjoint operator of $U$ .

Proof. i) We show that $C_{x}^{2}$ is complete. Let $\{f_{n}\}\subset C_{x}^{2}$ be a Cauchy sequence. Then,

$\sqrt{\int_{0}^{1}dy\sup_{q}\sup|\partial^{S}(\mathcal{F}fn(q,x,y)-\mathcal{F}fm(q,x,y))xx|^{2}}\leq||f_{n}-f_{m}||c_{x}arrow 0$ $(n, marrow\infty)$ .

(3.11)
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In the same way as the proof of the completeness of $L^{p}$ [$29$ p.192], one can find a subse-

quence $\{f_{n_{j}}\}$ of $\{f_{n}\}$ which satisfies, for $s=0,1$ , or 2,

$\sup_{q}\sup_{l}|\partial_{x}^{s}(\mathcal{F}f_{n_{j}}(q, x, y)-\mathcal{F}fn_{k}(q, x, y))|arrow 0$ ($j,$ $karrow\infty$ ; for almost every $y$). (3.12)

Since the space of functions twice differentiable in $x$ and continuous in $q$ defined on a

compact subset $(q, x)\in[-\pi, \pi]\cross[0,1]$ of $\mathrm{R}^{2}$ is complete with respect to the norm $||f||=$

$\sum_{s=0}^{2}\sup_{q}\mathrm{s}\mathrm{u}\mathrm{p}x|\partial_{x}^{s}f(q, X)|,$ $(3.12)$ implies that, for each $y$ , the sequence $\{\mathcal{F}f_{n_{j}}(q, x, y)\}$

converges uniformly to a function $g(q, x, y)$ which is two times continuously differentiable

in $x$ and continuous in $q$ .
Now we show that $\mathcal{F}^{-1}g\in C_{x}^{2}$ and $||f_{n}-\mathcal{F}^{-1}g||cxarrow 0$ for $narrow\infty$ . For an arbitrary

$\epsilon>0$ , we $\mathrm{c}\mathrm{h}_{\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{e},\prime}N\in \mathrm{N}$ such that for $n,$ $m\geq N,$ $||f_{n}-f_{m}||c_{x}<\epsilon$ . Then, for any $m>N$ ,

$\sqrt{\int_{0}^{1}dy|g(q,x,y)-\mathcal{F}f_{m}(q,x,y)|2}$

$\leq\sum_{s=0}^{2}\sqrt{\int_{0}^{1}dy\sup_{q}\sup|\partial S(g(q,x,y)-\mathcal{F}fm(q,xxx’ y))|^{2}}$

$= \sum_{s=0}^{2}\sqrt{\int_{0}^{1}dy\sup_{q}\sup\lim\inf_{\infty}|\partial^{s}(xf_{n}\mathcal{F}(jq,x,y)xjarrow-\mathcal{F}fm(q,X,y))|^{2}}$

$= \sum_{s=0}^{2}\sqrt{\int_{0}^{1}dy\lim_{jarrow}\inf_{\infty}\sup_{q}\sup_{x}|\partial_{x}^{S}(\mathcal{F}f_{n_{j}}(q,x,y)-\mathcal{F}fm(q,X,y))|^{2}}$

$\leq\sum_{s=0}^{2}\sqrt{\lim_{jarrow}\inf_{\infty}\int^{1}\mathrm{o}x)dy\sup_{q}\sup|\partial_{x}^{S}(\mathcal{F}fnj(q,X,y)-\mathcal{F}fm(q,x,y)|^{2}}$

$= \lim_{jarrow}\inf_{\infty}||f_{n_{j}}-f_{m}||c_{x}\leq\epsilon$ , (3.13)

where we have used the uniformity in $x$ and $q$ of the convergence of $\{\mathcal{F}f_{n_{j}}\}$ in the second

equality, Fatou’s lemma [29, p.172] in the second inequality and the fact $||f_{n_{j}}-f_{m}||c_{x}<$

$\epsilon$ for all $j$ satisfying $n_{j}>N$ , in the third inequality.

Inequality (3.13) shows the square integrability of $g$ for fixed $x,$ $q$ and, as $g$ is con-

tinuous in $x$ and $q$ , its square integrability with respect to $x,$ $y$ and $q$ . The latter implies

the well-definedness of $\mathcal{F}^{-1}g$ . As stated above, $\mathcal{F}\mathcal{F}^{-1}g=g$ has the desired smoothness

in $x$ and $q$ . Moreover, (3.13) shows $||\mathcal{F}^{-1}g-fm||_{C_{x}}\leq\epsilon$ for $m>N$ , which means that
$\mathcal{F}^{-1}g\in C_{x}^{2}$ and $\{f_{n}\}$ converges to $\mathcal{F}^{-1}g$ in $C_{x}^{2}$ -norm. Therefore, $C_{x}^{2}$ is a Banach space.

As $C_{x}^{2}$ is of infinite dimension, it is not nuclear $[$30, $\mathrm{c}\mathrm{h}$ . 50-12$]$ .
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ii) Because of the denseness of the space of continuous functions in the Hilbert space of

square integrable functions [29 p.197, Theorem 13.21] and the Stone-Weierstrass theorem

of polynomial approximation of continuous functions [29 p.95, Theorem 7.30], the space

$\mathcal{P}\equiv\{f\in\tilde{\mathcal{H}}|$ for each $l,$ $f(l, x, y)$ is a polynomial of $x$ and $y$ ,

and for $l<-M$ or $l>N,$ $f(l, x, y)=0$ . }

is dense in the Hilbert space $\overline{\mathcal{H}}$ . As $C_{x}^{2}$ contains the set $P$ , it is also dense in $\tilde{\mathcal{H}}$ . Moreover,

as a result of the unitarity of the Fourier transformation $\mathcal{F},$ $\langle f, f\rangle=\int_{2\pi}^{d}\Delta dXdy|\mathcal{F}f(q, x, y)|2\leq$

$||f||_{C_{x}}2$ for $f\in C_{x}^{2}$ and, thus, the topology of $C_{x}^{2}$ is stronger than that of $\tilde{\mathcal{H}}$ .

iii) The twice continuous differentiability of $\mathcal{F}Uf(q, x, y)$ in $x$ and the continuity in $q$

immediately follow from $\mathcal{F}Uf(q, x, y)=U_{q}\mathcal{F}f(q, x, y)$ and the definition (3.8) of $U_{q}$ . As

easily seen from (3.8), we also have

$\sqrt{\int_{0}^{1}dy|\mathcal{F}Uf(q,x,y)|2}\leq\sum_{j=0}^{2}\sqrt{I_{0}^{1}dy\sup_{q}\sup_{x}|\partial j\mathcal{F}xUf(q,X,y)|^{2}}$

$= \sum_{j=0}^{2}\sqrt{\frac{1}{2^{j}}\int_{0}^{1}dy\sup_{q}\sup|U\partial_{x}j\mathcal{F}fq(qx)x,y|^{2}},\leq\sum_{0j=}^{2}\sqrt{\frac{1}{2^{j}}\int_{0}^{1}dy\sup\sup_{xq}|\partial_{x}j\mathcal{F}f(q,x,y)|^{2}}\leq||f||c_{x}$

which implies the square integrability of $\mathcal{F}Uf(q, x, y)$ with respect to $y$ for fixed $x,$ $q$ as

well as $Uf\in C_{x}^{2}$ . Thus, $UC_{x}^{2}\subset C_{x}^{2}$ . The above inequality also shows $||Uf||c_{x}\leq||f||_{C_{x}}$ .
$U\dagger c_{x}^{2}\not\subset C_{x}^{2}$ holds since, in general, $U^{\uparrow}$ introduces a discontinuity at $x=1/2$ .

The proof for $C_{y}^{2}$ is the same as above. Q.E.D.

From this proposition, the adjoint $U\dagger$ of the evolution operator can be continuously

extended to the conjugate space $C_{x}^{2\uparrow}$ and $U$ to $C_{y}^{2\dagger}$ . These extensions admit decaying

eigenfunctions, which control the decay of expectation values. More precisely, we have

the following proposition, which is the main result of this section

Prop. 3.2

i) Suppose the observable $A\in C_{y}^{2}$ and the initial distribution $\rho\in C_{x}^{2}$ . Then there

exist antilinear functionals $F_{0q},$ $F_{1q}^{a},$
$F_{1q}^{b}\in C_{y}^{2\uparrow}$ and $\tilde{F}_{0q},\tilde{F}_{1q}^{a},\tilde{F}_{1q}^{b}\in C_{x}^{2\dagger}$ , which are
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principal vectors of the extensions (i.e., generalized principal vectors) of $U$ and $U^{\uparrow}$

respectively:

$\{$

$UF_{0q}(A)\equiv F_{0q}(U^{\uparrow}A)=\cos qF0_{q}(A)$ ,
$UF_{1q}^{a}(A)=*^{\cos}F_{1q}^{a}(A)+ \frac{1}{16\cos q}F_{1q}^{b}(A)$ ,
$UF_{1q}^{b}(A)=\#\cos b(1qAF)$ ,

(3.14)

$\{$

$U^{\uparrow_{\tilde{F}_{0}(\rho)\equiv\tilde{F}(})}q0qU\rho)=\cos q\tilde{F}0q(\rho$ ,
$U\dagger_{\tilde{F}_{1q}^{a}()}\rho=\not\simeq\underline{\mathrm{C}}\mathrm{O}\mathrm{S}a(\tilde{F}1q\rho)$ ,
$U^{\uparrow_{\tilde{F}_{1qq}^{b}}(}( \rho)=\frac{\cos q}{2}\tilde{F}1b\rho)+\frac{1}{16\cos q}\tilde{F}_{1q}a(\rho)$ .

(3.15)

The concrete forms of the functionals are given below. Note that the functionals $F_{0q}$

and $\tilde{F}_{0q}$ precisely correspond to the phenomenological decay modes (3.2).

ii) The time evolution of the expectation value of $A$ at time $t$ is given by

$\langle A,U^{t}\rho\rangle=\int_{1q|}\cos>1/4q\frac{dq}{2\pi}\cos qFt(\mathrm{o}qA)\tilde{F}_{0(\rho)^{*}}$

$+ \int_{|\cos q}|>1/2\frac{dq}{9,\sim\pi}(\frac{\cos q}{2})^{t}[F_{1q}^{a}(A)\tilde{F}^{a}q1(p)*+F_{1q}b(A)\tilde{F}_{1}b(q\rho)^{*}+\frac{t}{8\cos^{2}q}Fb(1q)A\tilde{F}_{1}a(q\rho)*]$

$+W_{t}(A, \rho)$ . $(3.16a)$

In (3.16a), $W_{t}(A, \rho)$ is a sesquilinear form satisfying

$|W_{t}(A, \rho)|\leq\frac{1}{4^{t}}\{I\mathrm{i}_{3}^{r}t^{\mathrm{s}}+K_{2}t^{2}+K_{1}t+I\mathrm{i}_{0}^{r}\}$ , $(3.16b)$

where $I\acute{\mathrm{t}}_{j}’ \mathrm{s}$ are positive constants depending on $A$ and $\rho$ .

Before going to the proof of the above proposition, we describe the antilinear func-

tionals $F_{0q},$ $F_{1q}^{a},$ $F_{1q}^{b}$ and $\tilde{F}_{0q},\tilde{F}_{1q}^{a},\tilde{F}_{1q}^{b}$ . For that purpose, first we introduce continuous

functions $G_{q},$ $G_{q}^{1}$ (where $|\cos q|>1/2$ ) and $\overline{G}_{q}$ (where $1/2\geq|\cos q|>1/4$ ), which are de-

fined respectively as unique solutions of functional equations of de Rham type [31,32,33]:

$G_{q}(x)=\{$

$\frac{e^{tq}}{2\cos q}G_{q}(2_{X})$ , $0\leq x\leq 1/2$

$\frac{e^{-\dot{\cdot}q}}{2\cos q}c_{\tau_{q}}(2X-1)+\frac{e^{q}}{2\cos q}.\cdot$ , $1/2\leq x\leq 1$

$(3.17a)$

$G_{q}^{1}(x)=\{$

$\frac{e^{iq}}{2\cos q}G_{q}^{1}(2x)+\frac{G_{q}(x)}{8\cos^{2}q}-\frac{e^{-:_{q}}}{2\cos q}\int^{x}\mathrm{o}d_{X}\prime c(_{X}q)/$ , $0\leq x\leq 1/2$

$\frac{e^{-\cdot q}}{2\cos q}.G_{q/2}^{1}(2x-1)+\frac{G_{q}(x)-G_{q}(1/2)}{8\cos^{2}q}-\frac{e^{iq}}{2\cos q}\int_{1}xdx’[1-^{c(}qx)/]$ , $1/2\leq x\leq 1$

$(3.17b)$
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and

$\overline{G}_{q}(x)=\{$

$\frac{e^{*q}}{4\cos q}\overline{G}_{q}(2_{X)}$ ,

$\frac{e^{-:}q}{4\cos q}\overline{G}_{q}(2x-1)+\frac{e:q}{2\cos q}x-\frac{1}{8\cos^{2}q}$

$0\leq x\leq 1/2$

$1/2\leq x\leq 1$

$(3.17_{C)}$

The uniqueness and the continuity of the solutions of the above equations can be shown

easily $[32,33]$ : Firstly, we observe that the right hand sides of $\mathrm{e}\mathrm{q}\mathrm{s}.(3.17\mathrm{a}- \mathrm{C})$ , by regarding

$G_{q},$ $G_{q}^{1}$ and $\overline{G}_{q}$ respectively as operands, define operators in the space of bounded func-

tions, which are contractive and preserve continuity. Then, these opeartors admit unique

continuous fixed points, which are, respectively, $G_{q},$ $G_{q}^{1}$ and $\overline{G}_{q}$ . These functions are not

necessarily regular. Indeed, the function $G_{q}$ is of infinite variation and has a fractal graph

[33].

In terms of these functions, antilinear functionals $F_{0q},$ $F_{1q}^{a}$ , and $F_{1q}^{b}$ are given by

$F_{0q}(A)\equiv\{$

$\int_{[}0,1)^{2}*dXdG_{q}(y)\mathcal{F}A(q, x, y)$ (for $|\cos q|>1/2$)

$\int_{0}^{1}dx\mathcal{F}A(q, X, 1)^{*}-\int_{[1}0,)^{2}*dxd\overline{G}_{q}(y)\partial_{y}\mathcal{F}A(q, x, y)$ (for $1/2\geq|\cos q|>1/4$ )

$(3.18a)$

$F_{1q}^{a}(A) \equiv\int_{[0,1)^{2}}dxdG(qy)(x-\frac{e^{-\iota’q}}{2\cos q})\mathcal{F}A(q, X, y)*-\int_{0}[,1)2xd_{X}dG_{q}1(y)\partial_{y}\mathcal{F}A(q,, y)^{*}$ ,

$(3.18b)$

$F_{1q}^{b}(A) \equiv\int_{[0,1)}2*dXdG_{q}(y)\partial \mathcal{F}yA(q, x, y)$ , $(3.18_{C)}$

where the integrals with respect to $y$ are the Riemann-Stieltjes ones, which are well-

defined [34] since the functions $G_{q},$ $G_{q}^{1}$ and $\overline{G}_{q}$ are continuous and the integrands are of

finite variation with respect to $y$ as a result of $A\in C_{y}^{2}$ . Similarly, we have

$\tilde{F}_{0q}(\rho)\equiv\{$

$\int_{[0,1)^{2}}dG^{*}(qx)dy\mathcal{F}\rho(q, x, y)*$ (for $|\cos q|>1/2$ )

$\int_{0}^{1}dy\mathcal{F}\rho(q, 1, y)^{*}-\int_{[0,1)^{2}}d\overline{c}*(X)dy\partial_{x}\mathcal{F}\rho(q, x, y)*q$ (for $1/2\geq|\cos q|>1/4$ )

$(3.19a)$

$\tilde{F}_{1q}^{a}(\rho)\underline{=}\int_{1^{0}},1)^{2}qdG*(x)dy\partial_{x}\mathcal{F}\rho(, xq’ y)^{*}$ , $(3.19b)$

$\tilde{F}_{1q}^{b}(\rho)\equiv\int_{[0,1)}2Xdc^{*}q()dy(y-\frac{e^{iq}}{2\cos q})\mathcal{F}\rho(q, X, y)*-\int_{[0,1)}2xdG_{q}^{1}*(X)dy\partial_{x}\mathcal{F}\rho(q,, y)^{*}$ ,

$(3.19_{C)}$
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where the integrals with respect to $x$ are again the Riemann-Stieltjes ones.

Proof of Proposition 3.2 i) We consider the functional $F_{1q}^{b}$ . As $\mathcal{F}A(q, x, y)$ is continuous

in $q$ , the value $F_{1q}^{b}(A)$ is well-defined for each $q$ . With the aid of integration by parts [34]

and $G_{q}(1)=1$ ,

$F_{1q}^{b}(A)= \int^{1}\mathrm{o}qdx\partial_{y}\mathcal{F}A(, x, 1)*-\int_{0,1}[)^{2}dXdyc_{q}(y)\partial_{y}^{2}\mathcal{F}A(q, x, y)^{*}$ ,

which leads to

$|F_{1q}^{b}(A)| \leq\{1+\sup_{y0\leq\leq 1}|c_{q}(y)|\}$
$||A||c_{\nu}$ ,

and, thus, to $F_{1q}^{b}\in C_{y}^{2\dagger}$ .

The last equation of (3.14) can be shown easily: Indeed, because $\partial_{y}\mathcal{F}U^{\uparrow_{A}(q},$

$x,$ $y$ ) $=$

$(1/2)U_{q}\dagger_{\partial y}\mathcal{F}A(q, x, y),$ $e^{iq}dG_{q}(2y)=2\cos qdG_{q}(y)$ and $e^{-iq}dG_{q}(2y-1)=2\cos qdG_{q}(y)$

(cf. $\mathrm{e}\mathrm{q}.(3.17\mathrm{a})$ ), we obtain the desired relation:

$F_{1q}^{b}(U^{\uparrow A)}= \frac{1}{2}\int_{[0,1)}2dxdGq(y)\{^{iq}e\overline{\theta}(x)\hat{A}_{y}(q, 2X, \frac{y}{2})*+e^{-iq}[1-\overline{\theta}(X)]\hat{A}y(q, 2x-1, \frac{y+1}{2})*\}$

$= \frac{1}{4}\int_{0}^{1}dx\int_{0}^{1/2}e^{i}dG(q)\hat{A}(yq, xq2y, y)^{*}+\frac{1}{4}\int_{0}^{1}dx\int_{1/2}^{1}e^{-i}dqc_{q}(2y-1)\hat{A}y(q, x, y)^{*}$

$= \frac{\cos q}{2}\int_{[0,1)^{2}}dxdG_{q}(y)\hat{A}(yq, x, y)^{*}=\frac{\cos q}{2}F_{1q}^{b}(A)$ ,

where $\hat{A}_{y}$ is the abbreviation of $\partial_{y}\mathcal{F}A$ and $\overline{\theta}$ is the function defined as $\overline{\theta}(x)=1$ for

$x\leq 1/2$ and $=0$ otherwise.

The proofs for the other antilinear functionals are the same as above.

ii) The key idea of deriving (3.16) is to convert the weak convergence of $U^{t}\rho$ into

the uniform one. This is realized by considering an integrated distribution function:
$\mathcal{G}_{t}=\int_{0}^{y}dy’\int \mathrm{o}y\rho(y’d//Utyn, X,)//$ , which converges uniformly for $tarrow\infty$ . The deviation
$\mathcal{G}_{t}-\mathcal{G}_{\infty}$ consists of terms which decay exponentially at different rates and provide gen-

eralized eigenfunctions. The details of the calculations will be discussed elsewhere [35].

Q.E.D.

Remark 3.1: The expression (3.16a) may be regarded as a special case of the Pollicott-

Ruelle theorem $[11,12]$ , which is valid for axiom A systems. But, the setting of the

248



functional spaces is different (in the former, the spaces of H\"older continuous functions are

used).

Remark 3.2: At first sight, it seems that the decay property as expressed by (3.16a)

is the operator property of $U$ restricted to the subspace $C_{x}^{2}$ . However, it is not the case

and (3.16a) is the property of a triple $(C_{y}^{2}, C_{x}2, U)$ . Indeed, for the operator $U$ restricted

to $C_{x}^{2}$ , we have

Prop. 3.3

The spectral set $\sigma(U|_{C_{x}^{2}})$ of $U$ restricted to the space $C_{x}^{2}$ satisfies

$\{z:1/4<|z|<1\}\subset\sigma(U|C_{x}^{2})\subset\{z:|z|\leq 1\}$ . (3.20)

Proof From Prop. 3.1, $||U||_{C_{x}}\leq 1$ and, then, the spectral radius formula [36, Theorem

VI.6] gives (spectral radius of $U|_{C_{x}^{2}}$ ) $= \lim_{narrow\infty}||U^{n}||c_{x}1/n\leq 1$ , which implies the second

inclusion. To show the first inclusion, we use the lemma

Lemma
. Le.$\mathrm{t}U$ : $Xarrow X$ be a bounded operator on a Banach space $X$ and suppose, for $\lambda\in \mathrm{C}$ ,

there exists an element $y^{*}(\neq 0)$ of the conjugate space $x\dagger$ such that $y^{*}(Ux)=\lambda y^{*}(x)$

holds for any $x\in X$ . Then $\lambda$ is the spectrum of $U:\lambda\in\sigma(U)$ .

To show the first inclusion, we construct $h_{z}\in C_{x}^{2\}}$ satifying $h_{z}(U\rho)=zh_{z}(\rho)(\rho\in$

$C_{x}^{2})$ for an arbitrary $z\in\{z:1/4<|z|<1\}$ . We set

$h_{z}( \rho)=\sum_{n=1}z^{n}\infty\int_{[0,1}]^{2}xd_{X}dyh\mathrm{o}(X)[U^{-n_{\mathcal{F}}}\rho(q,, y)]^{*}q$

$+ \sum_{n=0}^{\infty}(\frac{1}{4z})n\int_{[0,1]}2dxdyh_{0}(X)[J_{x}U_{q}^{n}\partial_{x}^{2}\mathcal{F}\rho(q, x, y)]*$ , (3.21)

where $h_{0}(x)$ is a continuous function to be determined and the operator $J_{x}$ is defined by
$J_{x}f(q, x, y) \equiv\int_{0}^{x_{d}}X’\int_{0}^{x’}dXf(///,)q, x’y$ . Each term of (3.21) is well-defined for $\rho\in C_{x}^{2}$

and, for any $z\in\{z : 1/4 <|z|<1\}$ , we have $h_{z}\in C_{x}^{2\uparrow}$ because (3.21) converges

absolutely and

$|h_{z}( \rho)|\leq\sqrt{\int_{0}^{1}dx|h_{0}(x)|^{2}}[\frac{|z|}{1-|z|}+\frac{2\sqrt{2}|z|}{4|z|-1}]$
$||\rho||_{C_{x}}$ .
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Now we consider $h_{z}(U\rho)$ . Because of $\mathcal{F}U\rho(q, x, y)=U_{q}\mathcal{F}\rho(q, X, y)$, we have

$h_{z}(U \rho)-Zh(z\rho)=\int_{0}^{1}dy\{\mathcal{F}\rho(q, \mathrm{o}, y)^{*}\int_{0}^{1}d_{X}h0(X)+\partial_{x}\mathcal{F}\rho(q, 0, y)^{*}\int_{0}^{1}d_{XX}h_{0}(x)\mathrm{I}$ .

Hence, provided

$\int_{0}^{1}dxh_{0}(X)=0$ , $\int_{0}^{1}d_{X}xh_{0}(X)=0$ ,

(e.g., $h_{0}(x)=x^{2}-X+1/6$), $h_{z}$ becomes the desired element of the conjugate space:

$h_{z}(U\rho)=Zhz(\rho)$ . Q.E.D.

\S 4. Conclusion

We have rigorously constructed decay modes, which have phenomenological counter

parts, as generalized eigenfunctionals of the evolution operator for the Lee-Friedrichs

model and the multibaker map. The generalized eigenfunctionals are defined as eigenvec-

tors of the extension of the evolution operator to the conjugate space of a certain ‘test

function’ space. This result suggests the possibility of a purely dynamical characteri-

zation of relaxation prossesses for (a certain class of) conservative systems without any

approximation.

One of the problems related to the problem of dissipation in conservative systems

is the problem of understanding macroscopic irreversibility based on a reversible micro-

scopic laws of dynamics. The Lee-Friedrichs model and the multibaker map are not only

conservative, but also reversible. In the previous sections, we have constructed decaying

eigenmodes which represent irreversible changes and, thus, our results give some insights

to the solution of this problem. Here, we point out one of such aspects resulting from the

asymmetric time evolution of test vector spaces. As we have seen, the ‘test vector’ space

$\tilde{\Phi}_{+}$ for the right eigenvectors is invariant under the adjoint $U_{t}\dagger$ of the forward time evolu-

tion $t>0$ , but not invariant under the adjoint $U_{t}\dagger=U_{|t|}$ of the backward time evolution

$t<0$ (cf. Prop. 2.3 for the Lee-Friedrichs model and iii) of Prop. 3.1 for the multibaker

map). As a result, only the forward evolution operator $U_{t}(t>0)$ can be defined on
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the conjugate space $\tilde{\Phi}_{+}\dagger$ . In other words, the family $\{U_{t}\}$ of time evolution operators,

which is a group (i.e., reversible) on the Hilbert space, becomes a forward semi-group

(i.e., irreversible) on the extended space $\tilde{\Phi}_{+}\dagger$ . Similarly, on the conjugate space $\tilde{\Phi}\underline{\dagger}$ of

‘test vectors’ for the left eigenvectors, the family $\{U_{t}\}$ becomes a backward semi-group

since only the backward evolution $U_{t}(t<0)$ can be defined there.

There is an objection [37] to the use of formalisms like rigged Hilbert spaces to de-

scribe resonances since such formalisms may allow all complex numbers to be eigenvalues

of a given operator [see also Prop. 3.3]. However, at least in the models described here,

there are appropriate generalized eigenvectors which have phenomenological counter parts

and correctly describe the dissipative phenomena. So we believe that the approach ex-

plained in this article will provide an interesting perspective to the problem of dissipation

and irreversibility in $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}$ systems.
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