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ON FUNCTIONAL EQUATIONS OF
PREHOMOGENEQUS ZETA DISTRIBUTIONS
OVER A LOCAL FIELD OF CHARACTERISTIC P

TaTsuo KIMURA, Makiko FUJINAGA aND TAKeYosHl KOGISO

Institute of Mathematics
University of Tsukuba
IBARAKI, 305, JAPAN

ABSTRACT. For a local field of characteristic 0, the functional equations of zeta
distributions of prehomogeneous vector spaces are obtained by M.Sato, T.Shintani,
J.Igusa and F.Sato ( See [17], [9], [13], [15] ). In this paper, we shall consider the
case of local fields of characteristic p > 0.

§1. K-regular P.V.’s

We fix a local field K of characteristic p > 0. Let G be a connected linear
algebraic group, p its rational representation of G' on a finite-dimensional vector
space V, all defined over an algebraic closure K of K. We call a triplet (G,p,V) a
prehomogeneous vector space (abbrev. P.V. ) if V has a Zariski-dense G-orbit Y.

Any point of Y is called a generic point and the isotropy subgroup

G, = {9 € G;p(g)y = y} of a generic point y is called a generic isotropy
subgroup. Note that we have dim Gy = dim G —dim V if and only if y € Y.
A mnon-zero rational function f(z) on V is called a relative invariant of (G, p,V)
if f(p(g)x) = x(g)f(z) holds for any g € G and z € Y where x : G — GL; is a
rational character of G.

The complement S of Y is a Zariski-closed set which is called the singular set of
the P.V. (G, p, V). Now we assume that (G, p, V') is defined over K, i.e., G,p,V are
all defined over K. Let S; = {z € V; fi(z) = 0} (¢ = 1,....,1) be the K-irreducible
component of the K-rational points Sk of S of codimension one defined by a K-
irreducible (not necessarily absolutely irreducible ) polynomial fi(z) (i =1,--+,1).
Then fi(z),....... , fi(z) are algebraically independent relative invariants and any
relative invariant f(z) in K(V) is of the form f(z) = ¢+ fi(z)™ - ---fi(z)™ (c €
KX, (my,..ymy) € ZY). We call fi(z),- -, fi(z) the basic K-relative invariants of
(G, p,V). Let x; be the rational character of G corresponding to fii =1,..,10).
Let X(G)x be the group of K-rational characters of G, X1(G)k its subgroup
corresponding to K-relative invariants. Then X;(G)x is a free abelian group of
rank [ generated by xi,....., Xi-



Let G1 be a subgroup of G generated by the commutator subgroup [G, G] and
a generic isotropy subgroup. This does not depend on a choice of a generic point.
For x € X(G)k, it is in X,(@)k if and only if x|g, = 1. For a relative invariant
f(z) of (G, p,V), we can define a rational map ¢;: Y — V* by

e Lo, 1 of
SOf(w)— (f(.’E) azl( ), """" 3 f(flf) a.’l)n( ))
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where V™ is the dual vector space of V. We sometimes denote @¢(z) by grad log f(z).

By a direct calculation, we have

(1) ¢5(p(9)x) = p*(g9)ps(z) for g € G and z € Y where p* denotes the contra-
gradient representation of p,

and

(2) (dp(A)z, py(z)) = 6x(A) for z € Y and A € Lie(G) where dp ( resp. 6x ) is
the infinitesimal representation of p (resp. the infinitesimal character of x) of the
Lie algebra Lie(G) of G.

A relative invariant f(z) is called non-degenerate if ¢; : Y — V* is dominant
and the Hessian Hy(z) = det(%?%) is not identically zero. In this case, a rational

function F(z) = &% (n = dim V) is a relative invariant corresponding to the
Hy(z) 8

character xo(g) = det p(g)2.

If there exists a non-degenerate relative invariant f(z) in K(V), we say that
(G,p,V) is a K-regular P.V. Then we have det p(9)> € X;(G)k. In general, we
denote by Yk, Sk, etc. K-rational points of Y, S, etc. We write X;(G)x ( resp.

X*(G)k, Y™, 8%, etc.) for (G, p*, V*) which corresponds to X;(G) i (resp. X(G)k,Y, S,

etc. ) for (G, p,V).

Proposition 1.1

Assume that (G, p,V) and (G, p*,V*) are K-reqular P.V.’s . Then we have the
following assertion.

(1) X, (@) = X1(G)x.

(2) For a non-degenerate K -relative invariant f, the map ¢ = grad log f : Y —
Y™ is bijective.

[Proof]

Since ¢(Y) is a Zariski-dense G-orbit in V*, we have p(Y) = Y*, ie., ¢ =
surjective. Since p*(g)p(z) = ¢(p(g)z), we have G, C Gy for z € Y. Now let
f* be a non-degenerate relative invariant in K(V*), and put ¢* = grad log f* :
Y* — Y. Similarly we have Gy C G for y = ¢p(z) and ' = ¢*(y), and hence
G: C Gy C Gy . Since 2’ = p(go)z for some go € G, we have Gy = goGrgy ' D G
Since dim G = dim G, the algebraic group G, and G, have the same connected
component H of the identity. Since G is isomorphic to G, the numbers of their
connected components coincide, i.e., [Gy : H] = [G, : H] with Gz D G. This
implies Gy = G, and hence G, = G, with y = p(z).
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Thus we have G; = G} and hence X;(G)x = X{(G)k. Note that X, (Q)g =
{x € X(G)k;xlc, = 1}. Now assume that @(z1) = p(z2) with z3 = p(g)z; for
some g € G. Then we have p(z1) = p(z2) = p(p(g)z1) = p*(9)¢(z1) and hence
9 € Gy(zy) = Guy, i€, = p(g)z1 = z1. Thus @ is injective.0]

Now assume that (G, p, V) is a K-regular P.V. Then, as we have seen above, the
dual triplet (G, p*,V*) is a P.V. For a generic point y € Y*, a dominant morphism
¥ : G — V* defined by (g) = p*(g)y is called an open orbit morphism.

Proposition 1.2

Assume that (G,p,V) is a K-regular P.V. and an open orbit morphism ¢ : G —
V* is a separable morphism. Then there ezists a K -relative invariant f* such that
grad log f*:Y* -V is dominant.

[Proof] .

Let f be a non-degenerate relative invariant in K(V) and put ¢ = grad log f :
Y — Y. First we show that ¢ is injective. Assume that o(z) = ¢(z'). Since
8x(A) = (dp(A)z, p(z)) = —(z,dp"(A)p(z)), we have (z — o', dp*(A)p(z)) = 0
for all A € Lie(G@). Since ¢ : G — V* with ¢(g) = p*(9)p(z) is separable, we
have {dp*(A)p(z); A € Lie(G)} = V*, and hence z — z' = 0,i.e.,z = z'. For any
9 € Gu)(D G:), we have ¢(p(g)z) = p*(g9)p(z) = o(z). As ¢ is injective, we
have p(g)z = z,i.e.,g € G,. This implies that G, = G,(z) and hence X;(G)g =
X7(G)k- A rational character x corresponding to f is in X1(G)k and hence y™1 €
X7(G)k- This implies that there exists a relative invariant f* in K(V*) satisfying
(0™ (g9)y) = x(9)~' f*(y) for g € G and y € Y™

Put ¢* = grad log f*. Then we have (p*(y), dp*(A)y) = —6x(A). Since 6x(A) =
(dp(A)z, p(z)) = —(z,dp*(A)p(z)), we have

(z — ¢"(y),dp*(A)y) = 0 for y = () and all A € Lie(G).

Since the open orbit morphism 1 is separable , we have

{dp™(A)y; A € Lie(@)} =V,

- and hence p*(y) =z € Y,i.e,p*(Y*) =Y. O

Note that in the case of ch(K) = 0, the proof of Proposition 1.2 gives the
equivalence between K-regularity of (G, p, V) and that of (G, p*,V*).

Proposition 1.3 ’

Assume that (G,p,V) and (G,p*,V*) are K-regular P.V.’s. Then we have
(@) k\YK = 1§ p*(G)k\Y.

[Proof]



Let f be a non-degenerate relative invariant in K(V) and put ¢ = grad log f.
Then for any =z € Yk, we have
e(p(@) g - ) = p*(G)k - ¢(z) C Yk, i€, p maps an orbit in Yx to an orbit in
Y.

By Proposition1.1, this map ¢ is injective, and hence f p(G) \Yx < 4§ 0" (G)k\Yk-
Similarly we have f p*(G)\Y7% S # p(G)\Yk- O

Now we shall consider a sufficient condition that § p(G)x\Yk is finite.
Professor J.P.Serre kindly let us know the following theorem with the proof which
was explained by Tits to him.

Theorem 1.4

Let K be a local field of characteristic p > 0 ( or more generally let K be a field
complete with respect to a discrete valuation, and with the residue field k of type
(F) in the sense of Serre [18]. Let G be a connected smooth reductive group over
K. Then H'(K,QG) is finite.

[Proof]( after Serre’s letter on 9th. September 1992. )

Let K' be the maximal unramified extension of K. The field K’ is known to
be of dim. < 1 ( in the sense of CG, II, §3 ). By a theorem of Steinberg ( for
K' perfect ) and of Borel-Springer ( for K " jmperfect - see Borel Col. Papers II,
p.761 ) we have H'(K’,G) = 0. Hence the Galois cohomology of G over K is killed
by K', i.e., it is equal to HY(K'/K,G). We may now apply a theorem of Bruhat-
Tits ( J.Fac.Sci.Tokyo, 34 (1987), p.693, th.3.12 ); this says that H'(K'/K,G)
is contained in a finite union of cohomology sets H'(k,G:), where the G;’s are
algebraic linear groups ( non neccessarily connected ) over k. Since k is type (F),
each H(k,G;) is finite ( see e.g. Borel, Col.Papers II, p.404 , th.6.2, or Coh. Gal.
I11-30, th.4 ). Hence H'(K,G) is finite.

O

Proposition 1.5

Let (G,p,V) be a P.V. defined over K with a reductive generic isotropy subgroup.
Then tp(G)k\Yk is finite.

[Proof]

Let H be a generic isotropy subgroup of a point in Yg. Then there exists a
bijection between p(G)k\Yx and Ker(HY(K,H) — H'(K,G)) ( see Serre (18] ) .
By Theorem 1.4, H'(K, H) is finite , and hence p(G)k\Yk is a finite set.

O

Example 1.6
Let G be the subgroup of GL, consisting of all lower triangular matrices. Let | %
be the totality of symmetric n X n matrices and define p by

p(g)x = gz'g for all g€G
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and z € V. Since dim G = dim V, a generic isotropy subgroup is a finite subgroup
and hence we have § p(G)k\Yx = v < +00 by Proposition 1.5.

Moreover det z is a non-degenerate K -relative invariant. By tr(zy) (z,y € V),
we identify V with its dual V™.

Then (G,p,V) and (G,p*,V*) are K-regular P.V.’s. Hence, by Proposition
1.8, we have § p*(G)k\Yp = v < +o0.

Proposition 1.7

Let (G, p, V) be an irreducible regular P.V. defined over K. Then we have §p(G)k\Yk <
+o00.

[Proof]

By a classification of irreducible P.V.’s ( see Z.Chen [4] ), we know that a generic
isotropy subgroup is reductive.

O

§2. Zeta distributions

Let K be a local field of characteristic p > 0. Assume that (G, p, V') and its dual
(G, p*,V*) are K-regular P.V.’s . Moreover we shall assume that Yy = Y, U---UY,,
decomposes into a finite union of p(G)k-orbits ¥; (1 S i S v), ie, § p(G)k\Yk =
v < +00. Then by Proposition 1.3 , we have Y =Y*U.---UY}.

Let fi(z),- -+, fi(z)( resp. fi(y),---, f'(y)) be basic K-relative invariants of
(G,p,V) (resp. (G, p*,V*) ). Let x;( resp. x¥ ) be the corresponding character of
fi (resp. f¥ ). Then we have

X1(@)k = (x1,- - - xa) and X7(G)k = (X1, - »X])-

By Proposition 1.1, we have X;(G)x = X;(G)k so that there exists uniquely a
matrix

U= (u,;j) € GLI( Z )

satisfying x; = Hizlxjuij. Since detp(g)® € X1(G)k, we have det p(g)? =
XM - x3M for some A = (Ar, -+, Ai) € (3 Z)" and det p*(g)* = Xfm ‘.- X:2A7 for
some A* = (A},---, A7) € (3 Z)-. Since det p*(g) = det p(g)~*, we have A* = —AU.

Example 2.1
For simplicity, we deal with the case n = 2 in Example 1.6. Then we have

G=(o= (¢ })iwr0)

and
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V={X= (‘” y)}.

y =z

The basic K -relative invariants of (G,p, V) ( resp. (G,p*,V*) ) are fL(X) =<z
and f2(X) = det X (resp. f{(X) =z, f5(X)=detX ) corresponding to x1(g) =
a?, xa(g) = a®b® (resp. x{(g) =672, x3(g) =a™?b7? ) for

_[a 0
9=\ c b
and x2 = Xx3~' so that we have

v=(s o)

detp((i 2)) = a3b3,

n G.

Hence x1 = x;‘xg_l

Since

we have A = \* = (0, %)

Let {€1,- - -,€,} be the complete representatives of K*/K*? in K*. Then we
have Yk =Y U---UY, with

Y; = {y € Yx; fo(y) =&i mod K*?} (i=1,---,v).

Let w® : KX — C* (i = 1,---,1) be a quasicharacter, i.e., a continuous homo-
morphism.

For w = (w®,- -, w®) and the basic K-relative invariants f(z) = (fi(z),- -
-, fi(z)), we write w(f(z)) instead of M_,w(®*(fi(z)) for simplicity of notations.

Let | | be the absolute value of K normalized by |r| = ¢! for a prime element
7 where ¢ is the module of K. For s = (s1,---,s1), we write ws = (| |[**,--+,| |*) s0
that w,(f(2)) = i, |fi(=)]*.

Let dz be the Haar measure on Vi = K™ normalized by f Rn dr = 1 where R is
the maximal compact subring of K. Since d(p(g)z) = | det p(g)|dz and wx(f(p(g9)z)) =
| det p(g)|wa(f(z)), the measure dy (z) = #’Ex)) is a G-invariant measure on Y.

For ® € G(Vk) where G(Vk) denotes the Schwartz-Bruhat space of Vi, we
define an integral

Zi(w, ®) = /Y W(f(2)®(zx)dy(z) (i =1, v).

Now any quasi-character w(®) : K* — C* = {z € C;z # 0} can be written
uniquely as w(® = | |* - ¢, for some s; € C and ¢; : R* — C; = {z € C;|z| = 1}
where R* is the units of R. Put Re ¥ = Re s; (i = 1,--,1). The following lemma
is easy to prove and we omit the proof ( cf. F.Sato [15] ).

Lemma 2.2
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If Re W > )\, (5 = 1,---,1), the integral Z;(w,®) is absolutely convergent
and holomorphic with respect to s = (s1,---,8) € (C/(lj’” Z))! = CX! for w =

(1% - a1 - @)

Let 6'(Vk) = {z: 6(Vk) — C, C — linear mapping} be the space of distribu-
tions on Vk. By Lemma 2.2, the mapping ® — Z;(w, (D) defines a distribution on
Vi when Re w(® > X; (i =1,...,0). :

For (G, p*,V*), we can deﬁne similar distribution Z}(w) (j = 1,---,v) given by

20,8 = [ ol )# (v ).

Now we fix a non-trivial additive character ¥ : K — C;° and define the Fourier
transformation G(V3) 3 @ — &* € (Vk) by

‘I)*(:I:) = fv}} @*(y)'dz((x,y))dy

where dy is a Haar measure on V% dual to a fixed Haar measure on V.

For w = (M), w®), put w* = WV = (I, .. T w(@ua),

Our purpose is to show that Z;(w) and Z;(w) are continued analytically to all
w and satisfy the functional equation:

(2.1) Zi(w) =Y Ti;(w)Z; (w'wr) (i=1,---v)
=1
qnder some additionfml conditions where
Z;i(w)(®*) = Zi(w, d*). Recall that wyr = (| [rg,..o,| [5;) with det p*(g9)? =
227 277
X1 * X1

Actually when K is a local field of ch(K) = 0, then (2.1) is obtained under some
conditions and it is called “ the fundamental theorem of P.V. over K ”.

§3. Rationality for almost all p

For a rational prime p, let K, denotes the local field with the constant field F,,.
For f €Z[z,,- - -,z,], we denote f mod p €Fp[z1,- - -, zn] by fp. Then we have the
following theorem which is suggested by Professor M.Kashiwara.



Theorem 3.1
For almost all p, the integral

Zp(5,8p) = | 1fo(@)l%, ®p(e)dps
K

1

is a rational function of t = p~° where ¢, € G(K}) and dpz is o Haar measure
on K.
P

[Proof]

Let K = Q((t)) be a field of formal power series over Q, X = Q" the affine space
and Xg = K. Let f denote the morphism X —  defined by f(z); then there
exists a nonsingular algebraic variety ¥ and a projective morphism A : Y — X
both defined over K with the following property : let b denote an arbitrary point of
Yx, Ok the local ring of Y at b relative to K ( consisting of “ functions ” defined
over K), and 9k the ideal of non-units of Ok; then there exists an ideal basis
(y1,° - - yn) of Mk, elements u,v of O — Mg, and integers N; 2 0,»; 2 1 for
1 £ 7 £ n such that

=u-T1" o™, wdzn)=v-T[ o% "
foh=u-J[ M, w(de)=v-]] _ o dy.

The existence of such a pair (Y, k) is guaranteed by Hironaka’s theorem [5] p.109
-p.326 ]. Then for almost all p, the reduction modulo p is well-defined and we have
similar results for K, fp,- - etc. Then by just similar argument as in Appendix of
Igusa [11], we obtain our result. O

Remark 3.2
Let K be a number field. For f € Ok[z1,- -, z,], we have a similar result as
Theorem 3.1 for almost all prime ideals 8 of O.

§4. Functional equations

Lemma 4.1

Let G denote a locally compact totally disconnected group, H a closed subgroup
of G, X = H\G, and w: G — C* a quasicharacter. Put

Ex(w) ={T € 6(X);9T =w(g)™'T for all g € G}.

Then we have dimc £x(w) £ 1. Moreover dimc Ex(w) = 1 if and only if
AG ‘w|lg =AM where Ag, Ag denotes the module of G, H respectively.

[Proof]
See Igusa [9] p.1015 .0

160
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Let (G,p,V) and its dual (G, p*,V*) be K-regular P.V.’s with

b p(@)rk\Yrk =v < +0

where K is a local field of characteristic p. Then, by Proposition 1.3, we have

Yk =Y,U--UY, and Yz = Y;*U---UY) e, §p(G)x\Y3 = v.

As in §2, we can define the zeta distribution Z;(w, ®) ( resp. Z}(w, ®*) ) which
is convergent when Re w(¥) > Aj ( resp. Rew) > A7) (1<i<v,1<5<1).

We denote by Z;(w) the distribution defined by @ — Z;(w, ®) etc.

Proposition 4.2

We have

(1) Z7 (W wx+) € &y (wwas)
and

(2) Zi(w) € &y (wwar).
(t,j=1,....,v )

[Proof]

By a direct calculation, we obtain our results. I

Proposition 4.3

Let K be a local field of characteristic p > 0 with the module q. For w =
(WM, w®) with W) = w,, - ¢; ( i(r) =1 for a prime element © ), assume
that Z; (w ®) and Z;(w,®") are rational fwn,ctzons of g=°1,---,q~%. Then for all
®* € 6(Yg), we ha've

Zi(w, &%) = Z [ij(w)Z; (W wa», @7)
j
fori,j=1,---,v

[Proof]
Since Z;(w,®) and Z;(w, ®*) are rational functions, it is defined for all w except
poles and hence by Lemma 4.1 and Proposition 4.2, we have our result. [J

Theorem 4.4

Let (G, p,V) be a K-regular P.V. satisfying the following conditions:

(C1) its dual (G, p*,V*) is a K-regular P.V. such that

tp (G)K\VK < +00,

(C2) for x € Sy, there exists x €X 1(G)k satisfying x(Gz, k) € R* where R®
18 the units of the mazimal compact subring R of K

and

(C3) Zj(w, ®) is a rational function of g—°1,--- g~ where

w= (), w®) with v =w,, (1LiZ1).

Then we have the functional equation



Zi(w, é*) = Z Fij(LU)Z; (W wys, ©*)

J
for all * € G(V) fori,j=1,---,v where v =4§ p*(G)k\Yk-

| [Proof]
The condition (C2) corresponds to Lemma 2.2 in F.Sato [15] p474 for the case

of ch(K) = 0. Then the proof is just similar as the case of ch(K) = 0 ( using
Proposition 4.3 ) ( See Igusa [9] and F.Sato [15] p.477 ). O

Now let (G, p, V) be a reductive Q-regular P.V. Then for almost all p, we have a
reduction modulo p and we obtain K,-regular P.V. (G, pp, V;) where K, is a local
field with the constant field F,,.

(Assumption A )
Assume that § pp(G)k,\Sk, < +oo and for © € Sk,, there ezists x € X1(Gp)k,
satisfying X(Gpe,k,) € Ry for almost all p.
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Let (G, p,V) be a reductive Q-regular P.V. with ( Assumption A ). Let fi,--

-, fi be basic Q-relative invariants with Z-coefficients. Denote |fi mod p|§}v ..
|fi mod p|% by | (2)l%, and |

Zf(s, (I’p) = f(y,\.p)i If(p)(w)li(,, (i’p(m)dY,. ()

for (Dp € G(VK,,)-

Theorem 4.5

Let (G, p,V) be a reductive Q-regular P.V. with ( Assumption A ).Then for
almost all rational prime p, the integral Z7 (s, ®,) (i =1, vp, Yk, = YiU---UY,,)
is a rational function and satisfies the functional equation:

e

Z0(s,8,) = > _Tij(s)20(s", )

=1

(i=1,..,vp )
When | = 1, we have s* = 2 — s withn = dim V and d = deg f. In general, for
W= Wy = Ws, t Wy, We have wer = wrwys.

[Proof]
By Theorem 4.4 and using the results of §1 and §3, we obtain our result. [
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