ON FUNCTIONAL EQUATIONS OF PREHOMOGENEOUS ZETA DISTRIBUTIONS OVER A LOCAL FIELD OF CHARACTERISTIC P

TATSUO KIMURA, MAKIKO FUJINAGA AND TAKEYOSHI KOGISO

Institute of Mathematics University of Tsukuba IBARAKI, 305, JAPAN

ABSTRACT. For a local field of characteristic 0, the functional equations of zeta distributions of prehomogeneous vector spaces are obtained by M.Sato, T.Shintani, J.Igusa and F.Sato (See [17], [9], [13], [15]). In this paper, we shall consider the case of local fields of characteristic p>0.

§1. K-regular P.V.'s

We fix a local field K of characteristic p>0. Let G be a connected linear algebraic group, ρ its rational representation of G on a finite-dimensional vector space V, all defined over an algebraic closure \bar{K} of K. We call a triplet (G, ρ, V) a prehomogeneous vector space (abbrev. P.V.) if V has a Zariski-dense G-orbit Y.

Any point of Y is called a generic point and the isotropy subgroup

 $G_y = \{g \in G; \rho(g)y = y\}$ of a generic point y is called a generic isotropy subgroup. Note that we have $\dim G_y = \dim G - \dim V$ if and only if $y \in Y$. A non-zero rational function f(x) on V is called a relative invariant of (G, ρ, V) if $f(\rho(g)x) = \chi(g)f(x)$ holds for any $g \in G$ and $x \in Y$ where $\chi: G \to GL_1$ is a rational character of G.

The complement S of Y is a Zariski-closed set which is called the singular set of the P.V. (G, ρ, V) . Now we assume that (G, ρ, V) is defined over K, i.e., G, ρ, V are all defined over K. Let $S_i = \{x \in V; f_i(x) = 0\}$ (i = 1, ..., l) be the K-irreducible component of the K-rational points S_K of S of codimension one defined by a K-irreducible (not necessarily absolutely irreducible) polynomial $f_i(x)$ (i = 1, ..., l). Then $f_1(x), ..., f_l(x)$ are algebraically independent relative invariants and any relative invariant f(x) in K(V) is of the form $f(x) = c \cdot f_1(x)^{m_1} \cdot \cdots \cdot f_l(x)^{m_l} (c \in K^\times, (m_1, ..., m_l) \in \mathbf{Z}^l)$. We call $f_1(x), \cdots, f_l(x)$ the basic K-relative invariants of (G, ρ, V) . Let χ_i be the rational character of G corresponding to $f_i(i = 1, ..., l)$. Let $X(G)_K$ be the group of K-rational characters of G, $X_1(G)_K$ its subgroup corresponding to K-relative invariants. Then $X_1(G)_K$ is a free abelian group of rank l generated by $\chi_1,, \chi_l$.

Let G_1 be a subgroup of G generated by the commutator subgroup [G, G] and a generic isotropy subgroup. This does not depend on a choice of a generic point. For $\chi \in X(G)_K$, it is in $X_1(G)_K$ if and only if $\chi|_{G_1} = 1$. For a relative invariant f(x) of (G, ρ, V) , we can define a rational map $\varphi_f: Y \to V^*$ by

$$\varphi_f(x) = {}^t \left(\frac{1}{f(x)} \cdot \frac{\partial f}{\partial x_1}(x), \dots, \frac{1}{f(x)} \cdot \frac{\partial f}{\partial x_n}(x) \right)$$

where V^* is the dual vector space of V. We sometimes denote $\varphi_f(x)$ by $\operatorname{grad} \log f(x)$. By a direct calculation, we have

(1) $\varphi_f(\rho(g)x) = \rho^*(g)\varphi_f(x)$ for $g \in G$ and $x \in Y$ where ρ^* denotes the contragradient representation of ρ ,

and

(2) $\langle d\rho(A)x, \varphi_f(x)\rangle = \delta\chi(A)$ for $x \in Y$ and $A \in Lie(G)$ where $d\rho$ (resp. $\delta\chi$) is the infinitesimal representation of ρ (resp. the infinitesimal character of χ) of the Lie algebra Lie(G) of G.

A relative invariant f(x) is called non-degenerate if $\varphi_f: Y \to V^*$ is dominant and the Hessian $H_f(x) = \det(\frac{\partial^2 f}{\partial x_i \partial x_j})$ is not identically zero. In this case, a rational function $F(x) = \frac{f(x)^n}{H_f(x)}$ $(n = \dim V)$ is a relative invariant corresponding to the character $\chi_0(g) = \det \rho(g)^2$.

Proposition 1.1

Assume that (G, ρ, V) and (G, ρ^*, V^*) are K-regular P.V.'s. Then we have the following assertion.

- (1) $X_1(G)_K = X_1^*(G)_K$.
- (2) For a non-degenerate K-relative invariant f, the map $\varphi = \text{grad log } f: Y \to Y^*$ is bijective.

[Proof]

Since $\varphi(Y)$ is a Zariski-dense G-orbit in V^* , we have $\varphi(Y) = Y^*$, i.e., $\varphi = \text{surjective}$. Since $\rho^*(g)\varphi(x) = \varphi(\rho(g)x)$, we have $G_x \subset G_{\varphi(x)}$ for $x \in Y$. Now let f^* be a non-degenerate relative invariant in $K(V^*)$, and put $\varphi^* = \text{grad log } f^* : Y^* \to Y$. Similarly we have $G_y \subset G_{x'}$ for $y = \varphi(x)$ and $x' = \varphi^*(y)$, and hence $G_x \subset G_y \subset G_{x'}$. Since $x' = \rho(g_0)x$ for some $g_0 \in G$, we have $G_{x'} = g_0G_xg_0^{-1} \supset G_x$. Since $\dim G_{x'} = \dim G_x$, the algebraic group $G_{x'}$ and G_x have the same connected component H of the identity. Since $G_{x'}$ is isomorphic to G_x , the numbers of their connected components coincide, i.e., $[G_{x'} : H] = [G_x : H]$ with $G_{x'} \supset G_x$. This implies $G_{x'} = G_x$, and hence $G_x = G_y$ with $y = \varphi(x)$.

Thus we have $G_1 = G_1^*$ and hence $X_1(G)_K = X_1^*(G)_K$. Note that $X_1(G)_K = \{\chi \in X(G)_K; \chi|_{G_1} = 1\}$. Now assume that $\varphi(x_1) = \varphi(x_2)$ with $x_2 = \rho(g)x_1$ for some $g \in G$. Then we have $\varphi(x_1) = \varphi(x_2) = \varphi(\rho(g)x_1) = \rho^*(g)\varphi(x_1)$ and hence $g \in G_{\varphi(x_1)} = G_{x_1}$, i.e., $x_2 = \rho(g)x_1 = x_1$. Thus φ is injective. \square

Now assume that (G, ρ, V) is a K-regular P.V. Then, as we have seen above, the dual triplet (G, ρ^*, V^*) is a P.V. For a generic point $y \in Y^*$, a dominant morphism $\psi: G \to V^*$ defined by $\psi(g) = \rho^*(g)y$ is called an open orbit morphism.

Proposition 1.2

Assume that (G, ρ, V) is a K-regular P.V. and an open orbit morphism $\psi : G \to V^*$ is a separable morphism. Then there exists a K-relative invariant f^* such that grad log $f^* : Y^* \to V$ is dominant.

[Proof]

Let f be a non-degenerate relative invariant in K(V) and put $\varphi = \operatorname{grad} \log f$: $Y \to Y^*$. First we show that φ is injective. Assume that $\varphi(x) = \varphi(x')$. Since $\delta \chi(A) = \langle d\rho(A)x, \varphi(x) \rangle = -\langle x, d\rho^*(A)\varphi(x) \rangle$, we have $\langle x - x', d\rho^*(A)\varphi(x) \rangle = 0$ for all $A \in \operatorname{Lie}(G)$. Since $\psi: G \to V^*$ with $\psi(g) = \rho^*(g)\varphi(x)$ is separable, we have $\{d\rho^*(A)\varphi(x); A \in \operatorname{Lie}(G)\} = V^*$, and hence x - x' = 0, i.e., x = x'. For any $g \in G_{\varphi(x)}(\supset G_x)$, we have $\varphi(\rho(g)x) = \rho^*(g)\varphi(x) = \varphi(x)$. As φ is injective, we have $\rho(g)x = x$, i.e., $g \in G_x$. This implies that $G_x = G_{\varphi(x)}$ and hence $\chi(G)_K = \chi_1^*(G)_K$. A rational character χ corresponding to f is in $\chi(G)_K$ and hence $\chi(G)_K = \chi(G)_K$. This implies that there exists a relative invariant f^* in $\chi(G)_K$ satisfying $\chi(G)_K = \chi(G)_K =$

Put $\varphi^* = \operatorname{grad} \log f^*$. Then we have $\langle \varphi^*(y), d\rho^*(A)y \rangle = -\delta \chi(A)$. Since $\delta \chi(A) = \langle d\rho(A)x, \varphi(x) \rangle = -\langle x, d\rho^*(A)\varphi(x) \rangle$, we have

 $\langle x - \varphi^*(y), d\rho^*(A)y \rangle = 0$ for $y = \varphi(x)$ and all $A \in Lie(G)$.

Since the open orbit morphism ψ is separable , we have

 $\{d\rho^*(A)y; A \in Lie(G)\} = V^*,$

and hence $\varphi^*(y) = x \in Y, i.e., \varphi^*(Y^*) = Y$. \square

Note that in the case of ch(K) = 0, the proof of Proposition 1.2 gives the equivalence between K-regularity of (G, ρ, V) and that of (G, ρ^*, V^*) .

Proposition 1.3

Assume that (G, ρ, V) and (G, ρ^*, V^*) are K-regular P.V.'s. Then we have $\sharp \rho(G)_K \backslash Y_K = \sharp \rho^*(G)_K \backslash Y_K^*$.

[Proof]

Let f be a non-degenerate relative invariant in K(V) and put $\varphi = \operatorname{grad} \log f$. Then for any $x \in Y_K$, we have

 $\varphi(\rho(G)_K \cdot x) = \rho^*(G)_K \cdot \varphi(x) \subset Y_K^*$, i.e., φ maps an orbit in Y_K to an orbit in Y_{K}^{*} .

By Proposition 1.1, this map φ is injective, and hence $\sharp \rho(G)_K \backslash Y_K \leq \sharp \rho^*(G)_K \backslash Y_K^*$. Similarly we have $\sharp \rho^*(G)_K \backslash Y_K^* \leq \sharp \rho(G)_K \backslash Y_K$. \square

Now we shall consider a sufficient condition that $\sharp \rho(G)_K \backslash Y_K$ is finite. Professor J.P.Serre kindly let us know the following theorem with the proof which was explained by Tits to him.

Theorem 1.4

Let K be a local field of characteristic p > 0 (or more generally let K be a field complete with respect to a discrete valuation, and with the residue field k of type (F) in the sense of Serre [18]. Let G be a connected smooth reductive group over K. Then $H^1(K,G)$ is finite.

[Proof](after Serre's letter on 9th. September 1992.)

Let K' be the maximal unramified extension of K. The field K' is known to be of $dim. \leq 1$ (in the sense of CG, II, §3). By a theorem of Steinberg (for K' perfect) and of Borel-Springer (for K' imperfect - see Borel Col. Papers II, p.761) we have $H^1(K',G)=0$. Hence the Galois cohomology of G over K is killed by K', i.e., it is equal to $H^1(K'/K,G)$. We may now apply a theorem of Bruhat-Tits (J.Fac.Sci.Tokyo, 34 (1987), p.693, th.3.12); this says that $H^1(K'/K,G)$ is contained in a finite union of cohomology sets $H^1(k,G_i)$, where the G_i 's are algebraic linear groups (non neccessarily connected) over k. Since k is type (F), each $H^1(k,G_i)$ is finite (see e.g. Borel, Col.Papers II, p.404, th.6.2, or Coh. Gal. III-30, th.4). Hence $H^1(K,G)$ is finite.

Proposition 1.5

Let (G, ρ, V) be a P.V. defined over K with a reductive generic isotropy subgroup. Then $\sharp \rho(G)_K \backslash Y_K$ is finite.

[Proof]

Let H be a generic isotropy subgroup of a point in Y_K . Then there exists a bijection between $\rho(G)_K \setminus Y_K$ and $Ker(H^1(K,H) \to H^1(K,G))$ (see Serre [18]). By Theorem 1.4, $H^1(K, H)$ is finite, and hence $\rho(G)_K \backslash Y_K$ is a finite set.

Example 1.6

Let G be the subgroup of GL_n consisting of all lower triangular matrices. Let V be the totality of symmetric $n \times n$ matrices and define ρ by $\rho(g)x = gx^t g \text{ for all } g \in G$

and $x \in V$. Since dim $G = \dim V$, a generic isotropy subgroup is a finite subgroup and hence we have $\sharp \rho(G)_K \backslash Y_K = \nu < +\infty$ by Proposition 1.5.

Moreover det x is a non-degenerate K-relative invariant. By tr(xy) $(x, y \in V)$, we identify V with its dual V^* .

Then (G, ρ, V) and (G, ρ^*, V^*) are K-regular P.V.'s. Hence, by Proposition 1.3, we have $\sharp \rho^*(G)_K \backslash Y_K^* = \nu < +\infty$.

Proposition 1.7

Let (G, ρ, V) be an irreducible regular P. V. defined over K. Then we have $\sharp \rho(G)_K \backslash Y_K < +\infty$.

[Proof]

By a classification of irreducible P.V.'s (see Z.Chen [4]), we know that a generic isotropy subgroup is reductive.

§2. Zeta distributions

Let K be a local field of characteristic p > 0. Assume that (G, ρ, V) and its dual (G, ρ^*, V^*) are K-regular P.V.'s. Moreover we shall assume that $Y_K = Y_1 \cup \cdots \cup Y_{\nu}$ decomposes into a finite union of $\rho(G)_K$ -orbits Y_i $(1 \leq i \leq \nu)$, i.e., $\sharp \rho(G)_K \setminus Y_K = \nu < +\infty$. Then by Proposition 1.3, we have $Y_K^* = Y_1^* \cup \cdots \cup Y_{\nu}^*$.

Let $f_1(x), \dots, f_l(x)$ (resp. $f_1^*(y), \dots, f_l^*(y)$) be basic K-relative invariants of (G, ρ, V) (resp. (G, ρ^*, V^*)). Let χ_i (resp. χ_i^*) be the corresponding character of f_i (resp. f_i^*). Then we have

 $X_1(G)_K = \langle \chi_1, \dots, \chi_l \rangle$ and $X_1^*(G)_K = \langle \chi_1^*, \dots, \chi_l^* \rangle$.

By Proposition 1.1, we have $X_1(G)_K = X_1^*(G)_K$ so that there exists uniquely a matrix

 $U = (u_{ij}) \in GL_l(\mathbf{Z})$

satisfying $\chi_i = \prod_{j=1}^l \chi_j^{*u_{ij}}$. Since $\det \rho(g)^2 \in X_1(G)_K$, we have $\det \rho(g)^2 = \chi_1^{2\lambda_1} \cdots \chi_l^{2\lambda_l}$ for some $\lambda = (\lambda_1, \cdots, \lambda_l) \in (\frac{1}{2} \mathbb{Z})^l$ and $\det \rho^*(g)^2 = \chi_1^{*2\lambda_1^*} \cdots \chi_l^{*2\lambda_l^*}$ for some $\lambda^* = (\lambda_1^*, \cdots, \lambda_l^*) \in (\frac{1}{2} \mathbb{Z})^l$. Since $\det \rho^*(g) = \det \rho(g)^{-1}$, we have $\lambda^* = -\lambda U$.

Example 2.1

For simplicity, we deal with the case n=2 in Example 1.6. Then we have

$$G = \{g = \begin{pmatrix} a & 0 \\ c & b \end{pmatrix}; ab \neq 0\}$$

and

$$V = \{X = \begin{pmatrix} x & y \\ y & z \end{pmatrix}\}.$$

The basic K-relative invariants of (G, ρ, V) (resp. (G, ρ^*, V^*)) are $f_1(X) = x$ and $f_2(X) = \det X$ (resp. $f_1^*(X) = z$, $f_2^*(X) = \det X$) corresponding to $\chi_1(g) = a^2$, $\chi_2(g) = a^2b^2$ (resp. $\chi_1^*(g) = b^{-2}$, $\chi_2^*(g) = a^{-2}b^{-2}$) for

$$g = \begin{pmatrix} a & 0 \\ c & b \end{pmatrix}$$

in G.

Hence $\chi_1=\chi_1^*\chi_2^{*-1}$ and $\chi_2=\chi_2^{*-1}$ so that we have

$$U = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}.$$

Since

$$\det \rho(\begin{pmatrix} a & 0 \\ c & b \end{pmatrix}) = a^3 b^3,$$

we have $\lambda = \lambda^* = (0, \frac{3}{2})$.

Let $\{\varepsilon_1, \dots, \varepsilon_{\nu}\}$ be the complete representatives of $K^{\times}/K^{\times 2}$ in K^{\times} . Then we have $Y_K = Y_1 \cup \dots \cup Y_{\nu}$ with

$$Y_i = \{ y \in Y_K; \ f_2(y) \equiv \varepsilon_i \ mod \ K^{\times 2} \} \ (i = 1, \dots, \nu).$$

Let $\omega^{(i)}:K^{\times}\to \mathbf{C}^{\times}$ $(i=1,\cdot\cdot\cdot,l)$ be a quasicharacter, i.e., a continuous homomorphism.

For $\omega = (\omega^{(1)}, \dots, \omega^{(l)})$ and the basic K-relative invariants $f(x) = (f_1(x), \dots, f_l(x))$, we write $\omega(f(x))$ instead of $\Pi_{i=1}^l \omega^{(i)}(f_i(x))$ for simplicity of notations.

Let $| \ |$ be the absolute value of K normalized by $|\pi| = q^{-1}$ for a prime element π where q is the module of K. For $s = (s_1, \dots, s_l)$, we write $\omega_s = (|\ |^{s_1}, \dots, |\ |^{s_l})$ so that $\omega_s(f(x)) = \prod_{i=1}^l |f_i(x)|^{s_i}$.

Let dx be the Haar measure on $V_K = K^n$ normalized by $\int_{\mathbb{R}^n} dx = 1$ where R is the maximal compact subring of K. Since $d(\rho(g)x) = |\det \rho(g)|dx$ and $\omega_{\lambda}(f(\rho(g)x)) = |\det \rho(g)|\omega_{\lambda}(f(x))$, the measure $d_Y(x) = \frac{dx}{\omega_{\lambda}(f(x))}$ is a G-invariant measure on Y.

For $\Phi \in \mathfrak{S}(V_K)$ where $\mathfrak{S}(V_K)$ denotes the Schwartz-Bruhat space of V_K , we define an integral

$$Z_i(\omega,\Phi) = \int_{Y_i} \omega(f(x)) \Phi(x) d_Y(x) \; (i=1,\cdot\cdot\cdot,
u).$$

Now any quasi-character $\omega^{(i)}: K^{\times} \to \mathbf{C}^{\times} = \{z \in \mathbf{C}; z \neq 0\}$ can be written uniquely as $\omega^{(i)} = | |^{s_i} \cdot \phi_i$ for some $s_i \in \mathbf{C}$ and $\phi_i: R^{\times} \to \mathbf{C}_1^{\times} = \{z \in \mathbf{C}; |z| = 1\}$ where R^{\times} is the units of R. Put $Re \ \omega^{(i)} = Re \ s_i \ (i = 1, \dots, l)$. The following lemma is easy to prove and we omit the proof (cf. F.Sato [15]).

If Re $\omega^{(i)} > \lambda_i$ $(i = 1, \dots, l)$, the integral $Z_i(\omega, \Phi)$ is absolutely convergent and holomorphic with respect to $s = (s_1, \dots, s_l) \in (\mathbb{C}/(\frac{2\pi i}{\log q}\mathbb{Z}))^l \cong \mathbb{C}^{\times l}$ for $\omega = (|\cdot|^{s_1} \cdot \phi_1, \dots, |\cdot|^{s_l} \cdot \phi_l)$.

Let $\mathfrak{S}'(V_K) = \{z : \mathfrak{S}(V_K) \to \mathbf{C}, \ \mathbf{C} - linear \ mapping\}$ be the space of distributions on V_K . By Lemma 2.2, the mapping $\Phi \mapsto Z_i(\omega, \Phi)$ defines a distribution on V_K when $Re \ \omega^{(i)} > \lambda_i \ (i = 1, ..., l)$.

For (G, ρ^*, V^*) , we can define similar distribution $Z_j^*(\omega)$ $(j = 1, \dots, \nu)$ given by

$$Z_j^*(\omega, \Phi^*) = \int_{Y_j^*} \omega(f^*(y)) \Phi^*(y) d_{Y^*}(y).$$

Now we fix a non-trivial additive character $\psi: K \to \mathbb{C}_1^{\times}$ and define the Fourier transformation $\mathfrak{S}(V_K^*) \ni \Phi^* \mapsto \hat{\Phi}^* \in \mathfrak{S}(V_K)$ by

$$\hat{\Phi}^*(x) = \int_{V_{\star}^*} \Phi^*(y) \psi(\langle x, y \rangle) dy$$

where dy is a Haar measure on V_K^* dual to a fixed Haar measure on V_K .

For
$$\omega = (\omega^{(1)}, \dots, \omega^{(l)})$$
, put $\omega^* = \omega^U = (\prod_{i=1}^l \omega^{(i)u_{i1}}, \dots, \prod_{i=1}^l \omega^{(i)u_{il}})$.

Our purpose is to show that $Z_i(\omega)$ and $Z_j^*(\omega)$ are continued analytically to all ω and satisfy the functional equation:

(2.1)
$$\hat{Z}_i(\omega) = \sum_{j=1}^{\nu} \Gamma_{ij}(\omega) Z_j^*(\omega^* \omega_{\lambda^*}) \ (i = 1, \dots, \nu)$$

under some additional conditions where

 $\hat{Z}_i(\omega)(\Phi^*) = Z_i(\omega, \hat{\Phi}^*)$. Recall that $\omega_{\lambda^*} = (| |_{\lambda_1^*}, ..., | |_{\lambda_l^*})$ with $\det \rho^*(g)^2 = \chi_1^{2\lambda_1^*} \cdots \chi_l^{2\lambda_l^*}$.

Actually when K is a local field of ch(K) = 0, then (2.1) is obtained under some conditions and it is called "the fundamental theorem of P.V. over K".

§3. Rationality for almost all p

For a rational prime p, let K_p denotes the local field with the constant field \mathbf{F}_p . For $f \in \mathbf{Z}[x_1, \dots, x_n]$, we denote $f \mod p \in \mathbf{F}_p[x_1, \dots, x_n]$ by f_p . Then we have the following theorem which is suggested by Professor M.Kashiwara.

Theorem 3.1

For almost all p, the integral

$$Z_p(s,\Phi_p) = \int_{K_p^n} |f_p(x)|_{K_p}^s \Phi_p(x) d_p x$$

is a rational function of $t = p^{-s}$ where $\Phi_p \in \mathfrak{S}(K_p^n)$ and $d_p x$ is a Haar measure on K_p^n .

[Proof]

Let $K = \mathbf{Q}((t))$ be a field of formal power series over $\mathbf{Q}, X = \Omega^n$ the affine space and $X_K = K^n$. Let f denote the morphism $X \to \Omega$ defined by f(x); then there exists a nonsingular algebraic variety Y and a projective morphism $h: Y \to X$ both defined over K with the following property: let b denote an arbitrary point of Y_K , \mathfrak{O}_K the local ring of Y at b relative to K (consisting of "functions" defined over K), and \mathfrak{M}_K the ideal of non-units of \mathfrak{O}_K ; then there exists an ideal basis (y_1, \dots, y_n) of \mathfrak{M}_K , elements u, v of $\mathfrak{O}_K - \mathfrak{M}_K$, and integers $N_i \geq 0, \nu_i \geq 1$ for $1 \leq i \leq n$ such that

$$f \circ h = u \cdot \prod_{i=1}^{n} y_{i}^{N_{i}}, \quad h^{*}(dx) = v \cdot \prod_{i=1}^{n} y_{i}^{\nu_{i}-1} dy.$$

The existence of such a pair (Y, h) is guaranteed by Hironaka's theorem [5] p.109 -p.326]. Then for almost all p, the reduction modulo p is well-defined and we have similar results for $K_p, f_p, \cdot etc$. Then by just similar argument as in Appendix of Igusa [11], we obtain our result. \square

Remark 3.2

Let K be a number field. For $f \in \mathfrak{O}_K[x_1, \dots, x_n]$, we have a similar result as Theorem 3.1 for almost all prime ideals \mathfrak{P} of \mathfrak{O}_K .

§4. Functional equations

Lemma 4.1

Let G denote a locally compact totally disconnected group, H a closed subgroup of G, $X = H \setminus G$, and $\omega : G \to \mathbb{C}^{\times}$ a quasicharacter. Put

$$\xi_X(\omega) = \{ T \in \mathfrak{S}(X)'; gT = \omega(g)^{-1}T \text{ for all } g \in G \}.$$

Then we have $\dim_{\mathbf{C}} \xi_X(\omega) \leq 1$. Moreover $\dim_{\mathbf{C}} \xi_X(\omega) = 1$ if and only if $\Delta_G \cdot \omega|_H = \Delta_H$ where Δ_G, Δ_H denotes the module of G, H respectively.

[Proof]

See Igusa [9] p.1015 .□

Let (G, ρ, V) and its dual (G, ρ^*, V^*) be K-regular P.V.'s with $p(G)_K \setminus Y_K = \nu < +\infty$

where K is a local field of characteristic p. Then, by Proposition 1.3, we have $Y_K = Y_1 \cup \cdots \cup Y_{\nu}$ and $Y_K^* = Y_1^* \cup \cdots \cup Y_{\nu}^*$. i.e., $\sharp \rho^*(G)_K \backslash Y_K^* = \nu$.

As in §2, we can define the zeta distribution $Z_i(\omega, \Phi)$ (resp. $Z_i^*(\omega, \Phi^*)$) which is convergent when $Re\ \omega^{(j)} > \lambda_j$ (resp. $Re\omega^{(j)} > \lambda_j^*$) ($1 \le i \le \nu$, $1 \le j \le l$). We denote by $Z_i(\omega)$ the distribution defined by $\Phi \mapsto Z_i(\omega, \Phi)$ etc.

Proposition 4.2

We have

(1)
$$Z_j^*(\omega^*\omega_{\lambda^*}) \in \xi_{Y_j^*}(\omega^*\omega_{\lambda^*})$$
 and

(2)
$$\hat{Z}_{i}(\omega) \in \xi_{Y_{j}^{*}}(\omega^{*}\omega_{\lambda^{*}}).$$

(i, j = 1,, \nu)

[Proof]

By a direct calculation, we obtain our results. \square

Proposition 4.3

Let K be a local field of characteristic p > 0 with the module q. For $\omega = (\omega^{(1)}, \dots, \omega^{(l)})$ with $\omega^{(i)} = \omega_{s_i} \cdot \phi_i$ ($\phi_i(\pi) = 1$ for a prime element π), assume that $Z_i(\omega, \Phi)$ and $Z_j^*(\omega, \Phi^*)$ are rational functions of $q^{-s_1}, \dots, q^{-s_l}$. Then for all $\Phi^* \in \mathfrak{S}(Y_K^*)$, we have

$$Z_i(\omega, \hat{\Phi^*}) = \sum_j \Gamma_{ij}(\omega) Z_j^*(\omega^* \omega_{\lambda^*}, \Phi^*)$$

for $i, j = 1, \dots, \nu$.

[Proof]

Since $Z_i(\omega, \Phi)$ and $Z_j(\omega, \Phi^*)$ are rational functions, it is defined for all ω except poles and hence by Lemma 4.1 and Proposition 4.2, we have our result. \square

Theorem 4.4

Let (G, ρ, V) be a K-regular P.V. satisfying the following conditions:

(C1) its dual (G, ρ^*, V^*) is a K-regular P.V. such that

 $\sharp \rho^*(G)_K \backslash V_K^* < +\infty,$

(C2) for $x \in S_K^*$, there exists $\chi \in X_1(G)_K$ satisfying $\chi(G_{x,K}) \nsubseteq R^{\times}$ where R^{\times} is the units of the maximal compact subring R of K and

(C3) $Z_j(\omega, \Phi)$ is a rational function of $q^{-s_1}, \dots, q^{-s_l}$ where $\omega = (\omega^{(1)}, \dots, \omega^{(l)})$ with $\omega^{(i)} = \omega_{s_i}$ ($1 \le i \le l$).

Then we have the functional equation

$$Z_i(\omega, \hat{\Phi}^*) = \sum_j \Gamma_{ij}(\omega) Z_j^*(\omega^* \omega_{\lambda^*}, \Phi^*)$$

for all $\Phi^* \in \mathfrak{S}(V_K^*)$ for $i, j = 1, \dots, \nu$ where $\nu = \sharp \rho^*(G)_K \backslash Y_K^*$.

[Proof]

The condition (C2) corresponds to Lemma 2.2 in F.Sato [15] p474 for the case of ch(K)=0. Then the proof is just similar as the case of ch(K)=0 (using Proposition 4.3) (See Igusa [9] and F.Sato [15] p.477). \square

Now let (G, ρ, V) be a reductive Q-regular P.V. Then for almost all p, we have a reduction modulo p and we obtain K_p -regular P.V. (G_p, ρ_p, V_p) where K_p is a local field with the constant field \mathbf{F}_p .

(Assumption A)

Assume that $\sharp \rho_p(G)_{K_p} \backslash S_{K_p} < +\infty$ and for $x \in S_{K_p}$, there exists $\chi \in X_1(G_p)_{K_p}$ satisfying $\chi(G_{p,x,K_p}) \nsubseteq R_p^{\times}$ for almost all p.

Let (G, ρ, V) be a reductive Q-regular P.V. with (Assumption A). Let f_1, \dots, f_l be basic Q-relative invariants with Z-coefficients. Denote $|f_1 \mod p|_{K_p}^{s_1} \dots |f_l \mod p|_{K_p}^{s_l}$ by $|f^{(p)}(x)|_{K_p}^s$ and

$$\begin{split} Z_{i}^{p}(s,\Phi_{p}) &= \int_{(Y_{K_{p}})_{i}} |f^{(p)}(x)|_{K_{p}}^{s} \Phi_{p}(x) d_{Y_{p}}(x) \\ \text{for } \Phi_{p} &\in \mathfrak{S}(V_{K_{p}}). \end{split}$$

Theorem 4.5

Let (G, ρ, V) be a reductive Q-regular P.V. with (Assumption A). Then for almost all rational prime p, the integral $Z_i^p(s, \Phi_p)$ ($i = 1, \dots, \nu_p, Y_{K_p} = Y_1 \cup \dots \cup Y_{\nu_p}$) is a rational function and satisfies the functional equation:

$$Z_i^p(s,\hat{\Phi_p}) = \sum_{j=1}^{\nu_p} \Gamma_{ij}(s) Z_j^p(s^*,\Phi_p)$$

 $(i = 1,, \nu_p).$

When l=1, we have $s^* = \frac{n}{d} - s$ with $n=\dim V$ and $d=\deg f$. In general, for $\omega = \omega_s = \omega_{s_1} \cdots \omega_{s_l}$, we have $\omega_{s^*} = \omega^* \omega_{\lambda^*}$.

[Proof]

By Theorem 4.4 and using the results of $\S 1$ and $\S 3$, we obtain our result. \square

REFERENCES

- 1. A.Borel, Collected papers.
- 2. F.Bruhat et J.Tits., Groupes algebriques sur un corps local, Chapitre III, complements et applications a la cohomologie Galoisienne, J.Fac.Sci.Tokyo 34 (1987).
- 3. Z.Chen, Fonction zêta associée à un espace préhomogène et sommes de Gauss,.
- 4. _____, A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic p (II) (in chinese), Chin. Ann. of Math. 9A (1) (1988), 10-22.
- 5. H.Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math 79 (1964), 109-326.
- 6. J-I.Igusa, Complex powers and asymptotic expansion I, J.reine angew. math 268/269 (1974), 110-130.
- 7. _____, Complex powers and asymptotic expansion II, J.reine angew. math 278/279 (1975), 307-321.
- 8. _____, Lectures on forms of higher degree, Tata Inst. Fund. Research, Bombay (1978).
- 9. _____, Some results on p-adic complex powers, Amer.J.Math 106 (1984), 1013-1032.
- 10. _____, Zeta distributions associated with some invariants, Amer. J. Math 110 (1988), 197-233.
- 11. _____, Some observations on higher degree characters, Amer.J.Math 99 (1977), 393-417.
- 12. D.Meuser, On the rationality of certain generating functions, Math.Ann. 256 (1981), 303-310.
- 13. F.Sato, Zeta functions in several variables associated with prehomogeneous vector spaces I: Functional equations, Tôhoku Math. J. 34 (1982).
- 14. _____, Zeta functions in several variables associated with prehomogeneous vector spaces II: A convergence criterion, Tôhoku Math. J. 35 (1983), 77-99.
- 15. _____, On functional equations of zeta distributions, Adv. Studies in Pure Math. 15 (1989), 465-508.
- 16. M.Sato and T.Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math.J 65 (1977), 1-155.
- 17. M.Sato and T.Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math 100 (1974), 131-170.
- 18. J.P.Serre, Cohomologie Galoisienne, springer Lecture note 5 (1964).