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Z-forms of representations of reductive groups

and prehomogeneous vector spaces

AKIHIKO GYOJA

In [1], ‘the representations of reductive group schemes are discussed, and
especially the concept of the ‘s?lit form’ is defined. In the present article, first we
review [1] in a most elementary way, restricting ourselves to the case where the base
scheme is SpecZ. Then we discuss how such a general theory can be applied to the
theory of prehomogeneous vector spaces.-

1. Reductive group scheme.

1.1. A reductive group scheme éver Z is by definition a group scheme which
is affine and smooth over Z whose geometric fibres are connected reductive [5, eXposé
19, 2.7]. .(More generally, for any commutative ring A or for any scheme S, we can
similarly define the concept of reductive group scheme over A or S.)

1.2. Remark. If the connectedness is not assumed, I do not know how to
define the éoncept of ‘reductive group scheme’. If the fibre dimension is 0, then it
would be natural to assume that it is finite étale.

1.3.. Remark. In order to consider the bad reduction, it is interesting to

remove the smoothness assumption from the definition of the reductive group scheme.

1.4. Example.

GLnz = Spec(Z[{zij}1<i j<n, det(zij)7']) and

SLnz = Spec(Z[{zij}1<i,j<nl/(det(zi5) — 1)ideal)
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are reductive group schemes over Z. We shall denote their coordinate rings (i.e., the
inside of Spec( )) by Z[GL, z] etc.

(2) Let f:=u?+---+u2 and G(C) := SO, (C) be the special orthogoﬁal group with
respect to f (i.e., the group of the usual orthogonal matrices with determinant 1).

Put

I:={pc Z[SLH,Z_] | =0on SOn(C)},_
Gz = SpeC(Z[SLn,Z]/I)v |

Ga=GzRz A (= Gz X SpecZ SpQCA)

for any commutative ring A. Then- Gz /2] is a reductive group écheme over Z[1/2],
and‘GZ(C) = 50,(C) is a reductive algebraic group,.'bu'tv Gy is not a reductive group-

scheme over Z. In fact, Gz(F2) C GLn(Fz) is conjugate with

(/1 0o --- 0 )
Z21 xZé Z2n

{ € SL.(F2) ;

\ \Tpl Tp2 Tnn /

in GL,(F32), where F; is an algebraic closure of Fj, especially the geometric fibre
of Gz at SpecF: is not reductive. This phenomenon occurs because f becomes a
degenerate quadratic form after reduction modulo 2.

It would be worth noting here that Gg has no model over Z which is reductive
over Z. |

(3) Note that, in (2), we can construct the group scheme Gz from any

quadratic form f. If we start from

{ 27;1 TiTm+i (n =2m)
f=

2?;1 TiTm4i + :c%m+1 (n=2m+1),
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then the resulting group scheme is reductive over Z, whose geometric fibres are always
special orthogonal groups.

2. Split form of a representation.

2.1. Definition of a split Z-form.

Notation.

G = G¢ = a connected complex reductive group.

T = T¢c = a maximal torus.

M = Hom(T,C*).

V = V¢ = a finite dimensional multiplicity free rational G-module.

V = @, Vi = irreducible decomposition.

V =@ em Vu = the weight space decomposition with respect to T'.

Uz = the Z-subalgebra of the enveloping algebra U(g) generated by X7 /ml!,
where {X, | @ = root} is a Chevalley system. See [3, §1] for Chevalley system.
Consider a triple (T,Uz, V(Z)), where V(Z) is a free Z-submodule of V' such that

(1) rankz V(Z) = dim¢ V, |

(@) Uz V(@) CV(@),

(3) V(@) = B e VD) N Vi
(f G is semisimple, then the condition (3) is redundant [8, p.17, Corollary 1],
but it is necessary in general.) Consider the equivalence relation (T,Uz,V(Z)) ~
(gTg™1, gUzg™1, 09V (Z)) for g € G(C) and o € Autg V. We call each of the equiva-
lence classes (or (T,Uz, V(Z)) itself) a split Z-form of (G, V). (If we can understand
T and Uz from the context, we sometimes call abusively V(Z) a split Z-form.)

2.2. Dual. Let (G,VV) = (G, D, V,¥) be the dual of (G, V). Put VV(Z) :=
(oY € VY | (0¥, V(Z)) C Z} (= the dual lattice). Then V¥(Z) is a split Z-form of
(G, VY).

2.3. Minimal split Z-form. Let y; be a weight of (G, V;) which is highest
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with respect to some fixed Borel subgroup B containing T'. Take 0 # v; € V;NV,,, and
put Vimin(Z) := D, Uz -vi. Then Viyin(Z) is a split Z-form such that Vumin(Z)NEP; V, =
P; Zv;.

2.4. Maximal split Z-form. Take v} € VY N VY, so that (v),vi) = 1.
Put V.Y, (2) := @,; Uz - v and Vipax(Z) := {v € V | (v, Vn\{in(Z)). C 2}. Then Vigax(Z)
is a split Z-form such that Vinax(Z) N P, Vi, = P; Zv;.

2.5. (1) Every split Z-form V(Z) normalized so that @; V(Z)NV,, = @, Zv;

satisfies

Vinin(Z) C V(Z) C Vinax(2).
Conversely, any Z-submodule V(Z) of V(C) such that
Vanin(Z) C V(Z) C Vimax(Z), and
UzV(Z) C v(2)
V(Z)= P V(@) nV,(C)
rEM
gives a split Z-form.

Problem A. When two such V(Z)’s are equivalent?

If the answer of the following problem is affirmative, then different V(Z)’s

are never equivalent.
Problem B. V(Z) = §,(Vi(C)nV(Z))?

(2) If (G,V) is a (not necessarily reduced) saturated [3, Introduction], irre-
ducible, regular, prehomogeneous vector space, then Vipax(Z)/Vinin(Z) = 0 or = Z/2Z.

(The proof uses the classification of M.Sato and T.Kimura. Note that Viin(Z) and



Vimax(Z) depends only on Uz, and that they behave well under the castling transfor-
mation.) Hence there are at most 2 split Z-forms. More precisely, there is only one
split Z-form for the prehomogeneous vector space of type (1), (3), (5), (6), (7), (9),
(10), (11), (12), (13), (15D), (20), (21), (23), (24), (27), (28), (29). There are 2 split
Z-forms for the type (2), (4), (8), (14), (15B). Here the number refers to that of [6,
§7]. The type (15), i.e, (SOn X GLm,C™ ® C™) is referred to as (15B) (resp. (15D))
if n is odd (resp. even). See [3] for the detail.

2.6. Example. If G = GL, and V is the totality of n x n symmetric

matrices. Then

Vain(Z) = {(zij) € V | zi5 € Z},

Vma.x(z) = {(wz]) ev l T € 27 2331] €l (Z 7& .7)}

2.7. Geometric meaning of split Z-form. Let (T,Z/{Z,V(Z)) be a split
Z-form. Then, we get

(1) a Chevalley-Demazure group scheme Gz (= a split reductive group scheme)
such that Gz ®zC = G¢ and which contains Tz = SpecZM as a maximal torus, where
ZM is the group ring of M (cf. (2.1) for M),

(2) a vector bundle Vz = Spec S(VVY(Z)), where S(VV(Z)) is the symmetric
algebra of VV(Z), and

(3) the action Gz x Vz — Vz which becomes the original action G X V — V
after ®zC.
Let us add some explanation about (3). By (2.1, (3)), from a split Z-form we can
get a Ty-action on V7. Roughly speaking, Gz consists of Tz (=maximal torus) and
Uz (= semisimple part), and hence we get a Giz-action on Vz combining the above

Ty-action and the Uz-action on V(Z).

202



203

2.8. General Z-forms. Now, let (G%, V) be an arbitrary pair of a reductive
Z-group scheme and a vector bundle over SpecZ (i.e., a Z-lattice, since the class
number of Z is 1) such that (G7,V7) ® C = (G, V). Such a pair (G%,V}) is called
a Z-form of (G,V), and can be obtained from a split (Gz,Vz) by twisting it using
non-abelian étale cohomology. '

2.9. Remark. (1) In [1], we obtained (2.8) assuming the irreducibility of
(G,V). In order to obtain (2.8) assuming only that (G, V) is multiplicity free, it is
enough to replace the “highest weight vector vy” appearing in the definition of the
“épinglage of a representation of a reductive group scheme” [1, (3.6)] by the “maximal

weight vectors {v; };” (see (2.3) for {v;}:).
Problem C. Prove (2.8) without assuming the multiplicity freeness.

The essential difficulty is how to define “épinglage of a representation of
a reductive group scheme”. (Even without assuming the rhultiplicity freeness, we
can prove that, étale locally with respect to the base scheme, a representation of a
reductive group scheme over Z can be obtained similarly as in (2.7). ’An “épinglage”
is a devicé which is used to patch together these local data to obtain a globally split
object.) |

(3) Although Problem C is unsettled, “the multiplicity freeness” does not
seem to be very harmful for our application in the theory of prehomogeneous vector
spaces. In fact, if (G,V) is a prehomogeneous vector space, and V = @fvzl Vi is
an irreducible decomposition of V, consider (G, V) := (G x GL{V,@;-ILI Vi), where
the i-th factor of GLY = {(z1,---,zn)} acts on V; as a scalar multiplication and -
trivially on the remaining V;’s. Then (G,V) is a multiplicity free, and as is easily seen,
the relative invariant polynomials on the prehomogeneous vector spaces (G, V) and
(G, V) are the same. Since the relative invariants are of our main interest, replacing

G with the larger group G, we can escape the difficulty.



2.10. Polynomial with Z-coefficients. Assume that a Z-form of (G, V)
is given (cf. (2.8)). Then we can consider the lattice V(Z) and its dual lattice VY(Z).
An element of VV(Z) (C VV) gives a linear function on V, and hence the symmetric
algebra Z[Vg] := Sz(VV(Z)) generated by VV(Z) (over Z) can be regarded as a ring
of polynomial functions on V. We shall consider an element of Z[V7] as a polynomial
functions on V with Z-coefficients. In the same way, we can consider a polynomial

function on VV with Z-coefficients.

3. Application to the theory of prehomogeneous vector spaces

Leading coefficients of b(s).

From now on, we assume that (G, V) (cf. §2) is a prehomogeneous vector

space. Concerning the prehomogeneous vector spaces, we use the notations of [2,

(1.4)] freely.

3.1. Take ¢ € Hom(G,C¥). Let f € C[V] (resp. /¥ € C[VV]) be a relative
invariant whose chéracter is ¢ (resp. ¢71). (See [2, (1.4, (10), and (11)].) If we do
not consider a Z-form of (G,V), f and fV are determined only up to C*. Hence the

leading coefffléient of b(s) does not have a much significance. Now consider a Z-form

(Gz,Vz) of (G,V), and assume that
(1) some constant multiples of f and f are polynomial functions with Z-coefficients.

(This condition is automatically satisfied if (G, V) is irreducible.) Then first assume
that f and fV are of Z-coefficients, and next single out the common factor of the
coefficients. In this way, we can normalize f and f¥ up to £1. Then the leading
coefficient by of b(s) has a meaning up to 1. Now multiplying suitable £1 to f and
fY, we may assume by > 0, and then the leading coefficient by of the b-function is
uniquely determined without any ambiguity. In (3.2)-(3.4) below, we assume that f,

fY, b(s) and by are normalized in this way.

3.2. A strange formula. If (G, V) is a (not necessarily reduced nor regular)
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irreducible prehomogeneous vector space and if the Z-form (Gz, V7) is split, then (3.1,

(1)) is satisfied and
bo = H(jj)e(j)a

iz
where

(1) = [ (# — 1)°0.

321
See [2, (1.4, (24))] for 6P and e(j).

3.3. Example. Let (G, V) be a reduced irreducible regular prehomogeneous

vector space of type (11) [6, §7, Table I]. Then a conjecture of 1.Ozeki says

b(s) =(s + D™{(s + D(s + PI{(s + s + PI (s + (s + )Y

X {(s+ 15)(s + ) (s + B)(s + B))2

Hence
b(t) = $1g3¢4d5 10, and J] (7)) = 203745,
j21

where ¢; is the j-th cyclotomic polynomial (e.g., ¢3 = t2 +¢+1). On the other hand
bo is calculated by J.Murakami (1984.8.20) using a computer based on the method
(3.7) below: by = 256324510, |

3.4. Remark. I expect that (3.2) holds without assuming the irreducibility.
See [4, Remarks 7-9]. |

3.5. Even if we admit a degeneration of the geometric fibres of Gz, the
leading coefficient by of b(s) seems to be divisible by HJ-Zl(jj)e(j), where 6P(t) =
szl(tj —1)°0), and moreover the quotient seems to be a product of (powers of)
primes at which Gz degenerates. In other words, by/ szl(jj )e(j) seems to control

the bad reduction of a prehomogeneous vector space (G, V) together with f.



3.6. Example. Let f = 22+ .- + 22 and f¥ = y% + .-+ 4+ y2. Then
bs) = 4(s + 1)(s + 3), bo = 4,

(t—1)2 if nis even,
2(t) = {

(2 —1) if nis odd,

H (i) 1 if n is even,
-]

§>1 4 if n is odd.

3.7. The leading coefficient by of b(s) can be calculated by the method

used in the proof of Proposition 2.7 of [7]. Let us explain it. In our notation,

bof(v) ™! = fY((gradlog )(v)) = f¥(f(v) ™"~ (grad f)(v)) = f(v)~*- f¥((grad f)(v)),

ie.,

(1) bo = f(v)~ 1 f¥((grad f)(v)).

Take some v, which is suitable for the calculation, and then evaluate the right hand
side of (1).

4. Second application

Hessian of log f.

Take a Z-form of a prehomogeneous Véctor space (G, V). Then we can con-
sider V(Z) and its dual lattice VV(Z). Let {vY,---,vy} be a free Z-basis of V(Z),
put z; := vy and regard {z1,--- ,Zn} as a linear coordinate system of V. Then we

can consider

dlog f
(1) Hess(log f) = det ( ) .
0z;0z; 1<ij<n
If we took an arbitrary linear coordinate system {zj,-- ,z,} defined over C, then

(1) depends on the choice of the coordinate and hence Hess(log f) has a meaning

only up to a constant multiple. However, under the normalization as above, for two
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coordinate systems {z1,--- ,z,} and {z},--- ,z,,}, the Jacobian det(dz;/0z}) is £1,

and especially Hess(log f) is independent of the choice of the coordinate. Therefore

it is interesting to know its explicit form. This calculation is complicated, but can be

somewhat simplified by using

(1)

Hess(log f) = (1 — d);lf(m)_n Hess(f),

(cf. the proof of Proposition 10 of [6, pp.62—64]). Indeed, the right hand side is easier

to calculate, although it is still difficult. Note that this quantity and some other

related quantity appear in [2, Theorem C].
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