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The Tate conjecture and the semisimplicity conjecture for t-modules*
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§0. Introduction.

Let [ be a prime number. Let k be an algebraic number field and A an abelian
variety over k of dimension d. Then the l-adic Tate module '

Vi(4) = (limKer(I™ - id : A(k) — A(k))) Q

is a 2d-dimensional vector space over ; on which Gal(k/k) acts. Thus, fixing a
basis of Vj(A), we obtain an l-adic Galois representation

pa,: Gal(k/k) — GLag(Q).

. The following theorem of Faltings is important.

Theorem (0.1).
(i) (Tate conjecture.)

Homyg(A, A") ® Qi = Homgy, g5 /4y (Vi(4), Vi(4)).

(ii) (Semisimplicity conjecture.) Vi(A) is a semisimple Q;[Gal(k/k)]-module.

These conjectures can be also formulated for the l-adic Galois representations
attached to more general motives, but they are still widely open.

Another problem is: What [-adic Galois representations come from abelian va-
rieties (or motives)? We might hope for characterization of such representations in
terms of p-adic theory at the places of k above p = . In the case of abelian varieties,
the following partial results are known (Serre, Tate, Raynaud, Deligne,...).

Theorem (0.2).

(i) For each place v of k above l, pAJ'Ga,l(Ev /k,) is @ Hodge-Tate representation, i. e.
has a Hodge-Tate decomposition. (In fact, it seems to be known, moreover, to be
a potentially semistable representation.)

(ii) Let p be an l-adic representation of Gal(k/k) which is potentially abelian.
(Namely, the image of Gal(k/k) by p admits an abelian open subgroup.) If p| Gal(Fy /)
is a Hodge-Tate representation for all place v of k above l, then p is ‘generated’ by
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the representations attached to potentially CM abelian varieties and Artin repre-
sentations. ‘ :

In the present article, we consider t-adic Galois representations instead of l-adic
Galois representations. A t-adic Galois representation is, by definition, a con-
tinuous group homomorphism Gal(k**P/k) — GL,(F,((t))), where k is a field of
characteristic equal to char(Fy). (For the definition, we do not have to restrict the
characteristic of the field k, but we do not have any interesting theory so far in the
case char(k) # char(F,).) Here, the analogues of abelian varieties and motives are
Drinfeld modules, Anderson’s abelian ¢-modules, or more general objects, which
yield t-adic Galois representations by taking their ¢-adic Tate modules.

In this new setting, the Tate conjecture has been proved independently by
Taguchi [1][2] and the author [3]. See also [4]. In the present article, we consider
mainly the semisimplicity conjecture and the problem of characterizing ‘geometric’
(or ‘motivic’) t-adic representations. '

§1. Pink’s restricted modules.

Pink introduced the concept of restricted modules (in 1994) in order to ap-
proach the semisimplicity conjecture for t-modules. (In fact, he also gave a proof of
the conjecture, different from ours.) Roughly speaking, the category of restricted
k(t){7}-modules is that of ¢-motives modulo isogeny. Here, k is a field containing
F,, t is an indeterminate, and the (generally noncommutative) ring k(t){7} is de-
fined to be the ring whose underlying abelian group is a’(left) k(t)-vector space
with basis {7%};=0,1,.. and whose multiplication rule is:

(Z) (S0 ) - S S s

where o is defined by:
O‘(Z cit') = Z it
i i

Definition (1.1). Let M be a left k(t){7}-module.
(i) We say that M is restricted, if dimy) M < oo and
def

= k(t) ®)M—>M, fRxw— frx
o,k(t

Tlinear - M(Q)

is an isomorphism.
(i) Assume M to be restricted. Then we say that M is étale (at t = 0), if there
exists an Oy {7}-submodule M of M which is finitely generated as an Og)-

module such that Tjinear induces an isomorphism from M@ def Ok gb M to
0,Uk(t)

M. Here Oy € k() N k[[t] = Klt] -

Remark (1.2).
(i) Similarly, we define the concept of restricted and étale restricted F{7} -modules
for each subfield F' of k((t)) containing k(t) with o(F) C F. Examples of such F’
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are: k((t)), Q &' Frac(k ® Fq((1)), Q" L Frac(k ® Fy(t)"), etc., where Fo(t)* is

the algebraic closure of F,(t) in F,((2)).
(ii) In the definition above, the analogue of (Q,,Q;) is (Fq(t),t,Fq((¢))). This is
only for simplicity, and we can develop our theory for more general setting like [3].

Example (1.3). Let (G, ) be a Drinfeld F,[t]-module or an abelian ¢-module of
Anderson’s. Then

M (t) k:%] Hom(IF -module schemes/k:)(G G )

becomes a restricted k(t){7}-module. It is étale, unless the ideal (¢) is the ‘charac-
teristic’ of ¢.

The following proposition gives a relation between restricted modules and t-adic
Galois representations.

Proposition (1.4).
We have the following category equivalence:

(étale restricted k((t)){7}-modules) =~ (t-adic representations of Gal(k®eP /k))

i def sep T
M — V(M) = (k ((t))k((t))M)

D(V) =\ (k=P ((t)) %%))V)Galw“*’/k) — V.
Fo((t

“Here 7 (resp. Gal(k®°P/k)) acts diagonally on k**P((t)) ® M (resp. k*P((t)) ® V),
k((t)) Fq((t))
and (-)7 (resp. (-)G21¥**/k)) means the T-invariant (resp Gal(k®®P / k)-invariant)

part. The action of Gal(k*P/k) on V(M) (resp. T on D(V)) is induced by its
action on k3P ((t)).

Definition (1.5). For an étale restricted k(t){7}-module M, we write V(M) in-
stead of V(k((t)) ® M), and call it the (¢-adic) Tate module of M. Similar notation
k() -

is employed for an étale restricted F'{r}-module. (cf. Remark (1.2)(i).)
The following example explains why we call V(M) Tate module.
Example (1.6). In the case of Example (1.3), we have

V(M) ~ Vi(G)* = Homg, (1)) (Vi(G), F((¥))),
where

Vi(G) € (limKer(¢r- : G(E) — G(E))) 8, Fa((®)-

§2. Tate conjecture and semisimplicity conjecture.

From now on, we assume that k is a finitely generated field over F,.



Theorem (2.1). (Tate conjecture.)
Let M and M' be étale restricted k(t){7}-modules. Then,

Homy (-3 (M, M') F‘%) Fy((t)) ~ Homg, ((s))[Gal(rser /iy (V (M), V(M)
q

Theorem (2.2). (Semisimplicity conjecture.)
Let M be an étale restricted k(t){7}-module, and assume that M is semisimple
as a k(t){r}-module. Then V(M) is a semisimple F,((t))[Gal(k**P/k)]-module.

Remark (2.3). In the semisimplicity conjecture, the assumption of semisimplicity
of the k(t){7}-module M excludes objects like semi-abelian varieties.

The outline of the proof of these theorems is given in the next section.

§3. ‘Geometric’ t-adic Galois representations.

The t-adic representations (of Gal(k%P/k)) attached to étale restricted k(¢){7}-
modules or, more generally, those attached to étale restricted Q"{7}-modules are
worth calling geometric representations. (See Remark (1.2)(i) for the definition of
Q" and Q.)

Definition (3.1). We say that a t-adic representation of Gal(k**P/k) is quasi-

geometric, if it is isomorphic to the t-adic representation attached to an étale re-
stricted Q{7 }-module.

Although we have not yet established any good theory of geometric ¢-adic rep-
resentations, we have a good theory of quasi-geometric t-adic representations, as
follows. :

Remark (3.2). If k is finite, all t-adic representations are quasi-geometric, since @
then coincides with k((t)).

Now we have the following diagrams of categories and functors:

(étale restricted k(t){7}-modules)

Q®- |
k(t)
(étale restricted @{7}-modules) = — (quasi-geometric ¢-adic representations)
K(®)g- 1 n
(étale restricted k((t)){7}-modules) =~ (t-adic i‘epresentations).

Lemma (3.3).
(i) Let M and M' be étale restricted k(t){7}-modules. Then,

Homy 1y (M, M) ® F,((t)) ~ Hom ® M,Q ® M.
k() {r} )Fq(t) (1)) Q{T}(Qk(t) Qk(t) )

(i1) Let M be an étale restricted k(t){r}-module, and assume that M is semisimple
as a k(t){r}-module. Then Q@ ® M is a semisimple Q{7}-module.
k(t)
This lemma, which is rather easy to prove, reduces the Tate conjecture (2.1) and
the semisimplicity conjecture (2.2) to the following:
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Theorem (3.4).
(i) The functor

k((1)®-
(étale restricted Q{r}-modules) —7 (étale restricted k((t)){r}-modules)

is fully faithful.
(ii) The subcategory (quasi-geometric t-adic representations) is stable under taking
subquotients in the category (t-adic representations).

Our proof of this theorem borrows a technique in p-adic Hodge theory. The main
point is to construct a commutative ring B, which is a subring of k%P((t)) stable
under the actions of 7 and Gal(k%®P /k), satisfying the following properties:

(i) BT = Fq((t)).
(11) BGal(kzsep/k) — Q
(iii) For each étale restricted Q{r}-module M, the canonical isomorphism

(@) 8 VM) = K ((0) @ M

comes from a (unique) isomorphism

B ® V(M)~B®M.
Fq((2)) Q

Remark (3.5). Roughly speaking, the condition (iii) says that B contains the entries
of a ‘period matrix’ of M.
Theorem (3.4)(i) follows directly from the properties of B. In fact, the inverse

map of

Homg (M, M') — Homk((t)){’r}(k((t)) %’ M, k((t)) % M')

= Homﬂ?q((t))[Gal(kseP/k)](V(M)a V(M)

is defined to map f € Homﬁrq((t))[Gal(ksep/k)](TA/(M),XA/(M’)) to the restriction of
dp®f:B ® V(M)—>B ® V(M') to the Gal(k*P /k)-invariant parts.
Fq((2)) Fq((1))

Definition (3.6). For each t-adic representation V of Gal(k*?/k), we define

D(V)=(B @ V)G&E"/H,
Fa((1))

From the properties of B, we can easily deduce the following theorem, which
completes the proof of Theorem (3.4)(ii).
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Theorem (3.7).
Let V be a t-adic representation of Gal(k%P/k). Then the following are equiva-
lent:

(i) V is quasi-geometric;
(ii) dimg D(V') = dinﬂzq((t)) V;
(iil) k((¢)) % D(V) ~ D(V).

In particular, any subquotients of a quasi-geometric representation are again
quasi-geometric.

Finally, we mention the construction of the ring B. Fix a proper normal model
X of k over Fy, and define ¥ to be the set of the points of codimension 1 in X. Let
X®P be the normalization of X in k%P, and define ¥5°P to be the set of the points
of codimension 1 in X*°P. Denote by wz the additive valuation of k%P associated
to Z € L%P (normalized as wz(k*) = Z). Define the subring Bt of k*P((t)) by:
f=YYat € Bt < forall Z € ¥%P, {wz(a;)}; is bounded below and, for
almost all T € %P, wz(a;) > 0 for all i. Here ‘for almost all £ € ¥°¢P, ...’ means
‘there exists a finite subset Yo of ¥ and, for all £ € ¥5°P not above X, ...”. Next
define the subset S of k%P ((t)) by

q

S ={f e (W) |o())f " € k@ Fy(())},

which turns out to be a multiplicative subset of Bt. Now the ring B is defined by
B=S"'Bt.
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