The Tate conjecture and the semisimplicity conjecture for t-modules\*

RIMS, Kyoto Univ. (京都大学数理解析研究所)

# §0. Introduction.

Let l be a prime number. Let k be an algebraic number field and A an abelian variety over k of dimension d. Then the l-adic Tate module

$$V_l(A) \stackrel{\mathrm{def}}{=} (\varprojlim \operatorname{Ker}(l^n \cdot \operatorname{id} : A(\overline{k}) \to A(\overline{k}))) \underset{\mathbb{Z}_l}{\otimes} \mathbb{Q}_l$$

is a 2d-dimensional vector space over  $\mathbb{Q}_l$  on which  $\operatorname{Gal}(\overline{k}/k)$  acts. Thus, fixing a basis of  $V_l(A)$ , we obtain an l-adic Galois representation

$$\rho_{A,l}: \operatorname{Gal}(\overline{k}/k) \to GL_{2d}(\mathbb{Q}_l).$$

The following theorem of Faltings is important.

### Theorem (0.1).

(i) (Tate conjecture.)

$$\operatorname{Hom}_k(A,A') \underset{\mathbb{Z}}{\otimes} \mathbb{Q}_l \simeq \operatorname{Hom}_{\mathbb{Q}_l[\operatorname{Gal}(\overline{k}/k)]}(V_l(A),V_l(A')).$$

(ii) (Semisimplicity conjecture.)  $V_l(A)$  is a semisimple  $\mathbb{Q}_l[\operatorname{Gal}(\overline{k}/k)]$ -module.

These conjectures can be also formulated for the l-adic Galois representations attached to more general motives, but they are still widely open.

Another problem is: What l-adic Galois representations come from abelian varieties (or motives)? We might hope for characterization of such representations in terms of p-adic theory at the places of k above p = l. In the case of abelian varieties, the following partial results are known (Serre, Tate, Raynaud, Deligne,...).

#### Theorem (0.2).

- (i) For each place v of k above l,  $\rho_{A,l}|_{\operatorname{Gal}(\overline{k}_v/k_v)}$  is a Hodge-Tate representation, i. e. has a Hodge-Tate decomposition. (In fact, it seems to be known, moreover, to be a potentially semistable representation.)
- (ii) Let  $\rho$  be an l-adic representation of  $\operatorname{Gal}(\overline{k}/k)$  which is potentially abelian. (Namely, the image of  $\operatorname{Gal}(\overline{k}/k)$  by  $\rho$  admits an abelian open subgroup.) If  $\rho|_{\operatorname{Gal}(\overline{k}_v/k_v)}$  is a Hodge-Tate representation for all place v of k above l, then  $\rho$  is 'generated' by

<sup>\*</sup>This lecture was given in Japanese.

the representations attached to potentially CM abelian varieties and Artin representations.

In the present article, we consider t-adic Galois representations instead of l-adic Galois representations. A t-adic Galois representation is, by definition, a continuous group homomorphism  $\operatorname{Gal}(k^{\operatorname{sep}}/k) \to GL_n(\mathbb{F}_q(t))$ , where k is a field of characteristic equal to  $\operatorname{char}(\mathbb{F}_q)$ . (For the definition, we do not have to restrict the characteristic of the field k, but we do not have any interesting theory so far in the case  $\operatorname{char}(k) \neq \operatorname{char}(\mathbb{F}_q)$ .) Here, the analogues of abelian varieties and motives are Drinfeld modules, Anderson's abelian t-modules, or more general objects, which yield t-adic Galois representations by taking their t-adic Tate modules.

In this new setting, the Tate conjecture has been proved independently by Taguchi [1][2] and the author [3]. See also [4]. In the present article, we consider mainly the semisimplicity conjecture and the problem of characterizing 'geometric' (or 'motivic') t-adic representations.

#### §1. Pink's restricted modules.

Pink introduced the concept of restricted modules (in 1994) in order to approach the semisimplicity conjecture for t-modules. (In fact, he also gave a proof of the conjecture, different from ours.) Roughly speaking, the category of restricted  $k(t)\{\tau\}$ -modules is that of t-motives modulo isogeny. Here, k is a field containing  $\mathbb{F}_q$ , t is an indeterminate, and the (generally noncommutative) ring  $k(t)\{\tau\}$  is defined to be the ring whose underlying abelian group is a (left) k(t)-vector space with basis  $\{\tau^i\}_{i=0,1,...}$  and whose multiplication rule is:

$$\left(\sum_i f_i au^i
ight) \left(\sum_j g_j au^j
ight) = \sum_i \sum_j f_i \sigma^i(g_j) au^{i+j},$$

where  $\sigma$  is defined by:

$$\sigma(\sum_i c_i t^i) = \sum_i c_i^q t^i.$$

**Definition (1.1).** Let M be a left  $k(t)\{\tau\}$ -module.

(i) We say that M is restricted, if  $\dim_{k(t)} M < \infty$  and

$$au_{ ext{linear}}: M^{(q)} \stackrel{ ext{def}}{=} k(t) \underset{\sigma, k(t)}{\otimes} M \to M, \ f \otimes x \mapsto f au x$$

is an isomorphism.

(ii) Assume M to be restricted. Then we say that M is étale (at t=0), if there exists an  $O_{k(t)}\{\tau\}$ -submodule  $\mathcal{M}$  of M which is finitely generated as an  $O_{k(t)}$ -module such that  $\tau_{\text{linear}}$  induces an isomorphism from  $\mathcal{M}^{(q)} \stackrel{\text{def}}{=} O_{k(t)} \underset{\sigma, O_{k(t)}}{\otimes} \mathcal{M}$  to

$$\mathcal{M}$$
. Here  $O_{k(t)} \stackrel{\text{def}}{=} k(t) \cap k[[t]] = k[t]_{(t)}$ .

Remark (1.2).

(i) Similarly, we define the concept of restricted and étale restricted  $F\{\tau\}$  -modules for each subfield F of k(t) containing k(t) with  $\sigma(F) \subset F$ . Examples of such F

are: k((t)),  $Q \stackrel{\text{def}}{=} \operatorname{Frac}(k \underset{\mathbb{F}_q}{\otimes} \mathbb{F}_q((t)))$ ,  $Q^h \stackrel{\text{def}}{=} \operatorname{Frac}(k \underset{\mathbb{F}_q}{\otimes} \mathbb{F}_q(t)^h)$ , etc., where  $\mathbb{F}_q(t)^h$  is the algebraic closure of  $\mathbb{F}_q(t)$  in  $\mathbb{F}_q((t))$ .

(ii) In the definition above, the analogue of  $(\mathbb{Q}, l, \mathbb{Q}_l)$  is  $(\mathbb{F}_q(t), t, \mathbb{F}_q(t))$ . This is only for simplicity, and we can develop our theory for more general setting like [3].

**Example (1.3).** Let  $(G, \phi)$  be a Drinfeld  $\mathbb{F}_q[t]$ -module or an abelian t-module of Anderson's. Then

$$M \stackrel{\mathrm{def}}{=} k(t) \underset{k[t]}{\otimes} \mathrm{Hom}_{(\mathbb{F}_q\text{-module schemes}/k)}(G,\mathbb{G}_a)$$

becomes a restricted  $k(t)\{\tau\}$ -module. It is étale, unless the ideal (t) is the 'characteristic' of  $\phi$ .

The following proposition gives a relation between restricted modules and t-adic Galois representations.

# Proposition (1.4).

We have the following category equivalence:

(étale restricted k(t)) $\{\tau\}$ -modules)  $\simeq$  (t-adic representations of  $Gal(k^{sep}/k)$ )

$$M \qquad \qquad \mapsto \qquad \widehat{V}(M) \stackrel{\mathrm{def}}{=} (k^{\mathrm{sep}}((t)) \underset{k((t))}{\otimes} M)^{\tau}$$

$$\widehat{D}(V) \stackrel{\mathrm{def}}{=} (k^{\mathrm{sep}}((t)) \underset{\mathbb{F}_q((t))}{\otimes} V)^{\mathrm{Gal}(k^{\mathrm{sep}}/k)} \quad \longleftrightarrow \qquad V.$$

Here  $\tau$  (resp.  $\operatorname{Gal}(k^{\operatorname{sep}}/k)$ ) acts diagonally on  $k^{\operatorname{sep}}((t)) \underset{k((t))}{\otimes} M$  (resp.  $k^{\operatorname{sep}}((t)) \underset{\mathbb{F}_q((t))}{\otimes} V$ ), and  $(\cdot)^{\tau}$  (resp.  $(\cdot)^{\operatorname{Gal}(k^{\operatorname{sep}}/k)}$ ) means the  $\tau$ -invariant (resp.  $\operatorname{Gal}(k^{\operatorname{sep}}/k)$ -invariant) part. The action of  $\operatorname{Gal}(k^{\operatorname{sep}}/k)$  on  $\widehat{V}(M)$  (resp.  $\tau$  on  $\widehat{D}(V)$ ) is induced by its action on  $k^{\operatorname{sep}}((t))$ .

**Definition (1.5).** For an étale restricted  $k(t)\{\tau\}$ -module M, we write  $\widehat{V}(M)$  instead of  $\widehat{V}(k(t)) \underset{k(t)}{\otimes} M$ , and call it the (t-adic) Tate module of M. Similar notation is employed for an étale restricted  $F\{\tau\}$ -module. (cf. Remark (1.2)(i).)

The following example explains why we call  $\widehat{V}(M)$  Tate module.

**Example (1.6).** In the case of Example (1.3), we have

$$\widehat{V}(M) \simeq V_t(G)^* = \operatorname{Hom}_{\mathbb{F}_q((t))}(V_t(G), \mathbb{F}_q((t))),$$

where

$$V_t(G) \stackrel{\mathrm{def}}{=} (\varprojlim \operatorname{Ker}(\phi_{t^n}: G(\overline{k}) \to G(\overline{k}))) \underset{\mathbb{F}_q[[t]]}{\otimes} \mathbb{F}_q((t)).$$

#### §2. Tate conjecture and semisimplicity conjecture.

From now on, we assume that k is a finitely generated field over  $\mathbb{F}_q$ .

Theorem (2.1). (Tate conjecture.)

Let M and M' be étale restricted  $k(t)\{\tau\}$ -modules. Then,

$$\operatorname{Hom}_{k(t)\{\tau\}}(M,M') \underset{\mathbb{F}_q(t)}{\otimes} \mathbb{F}_q((t)) \simeq \operatorname{Hom}_{\mathbb{F}_q((t))[\operatorname{Gal}(k^{\operatorname{sep}}/k)]}(\widehat{V}(M),\widehat{V}(M')).$$

# **Theorem (2.2).** (Semisimplicity conjecture.)

Let M be an étale restricted  $k(t)\{\tau\}$ -module, and assume that M is semisimple as a  $k(t)\{\tau\}$ -module. Then  $\widehat{V}(M)$  is a semisimple  $\mathbb{F}_q((t))[\operatorname{Gal}(k^{\operatorname{sep}}/k)]$ -module.

Remark (2.3). In the semisimplicity conjecture, the assumption of semisimplicity of the  $k(t)\{\tau\}$ -module M excludes objects like semi-abelian varieties.

The outline of the proof of these theorems is given in the next section.

### §3. 'Geometric' t-adic Galois representations.

The t-adic representations (of Gal( $k^{\text{sep}}/k$ )) attached to étale restricted  $k(t)\{\tau\}$ modules or, more generally, those attached to étale restricted  $Q^h\{\tau\}$ -modules are worth calling *qeometric* representations. (See Remark (1.2)(i) for the definition of  $Q^h$  and Q.)

**Definition (3.1).** We say that a t-adic representation of  $Gal(k^{sep}/k)$  is quasigeometric, if it is isomorphic to the t-adic representation attached to an étale restricted  $Q\{\tau\}$ -module.

Although we have not yet established any good theory of geometric t-adic representations, we have a good theory of quasi-geometric t-adic representations, as follows.

Remark (3.2). If k is finite, all t-adic representations are quasi-geometric, since Qthen coincides with k(t).

Now we have the following diagrams of categories and functors:

$$\begin{array}{c} (\text{\'etale restricted } k(t)\{\tau\}\text{-modules}) \\ Q \underset{k(t)}{\otimes} \cdot \downarrow \\ (\text{\'etale restricted } Q\{\tau\}\text{-modules}) & \rightarrow & (\text{quasi-geometric } t\text{-adic representations}) \\ k((t)) \underset{Q}{\otimes} \cdot \downarrow & \cap \end{array}$$

(étale restricted k(t)) $\{\tau\}$ -modules)  $\simeq$ (t-adic representations).

### Lemma (3.3).

(i) Let M and M' be étale restricted  $k(t)\{\tau\}$ -modules. Then,

$$\operatorname{Hom}_{k(t)\{\tau\}}(M,M')\underset{\mathbb{F}_q(t)}{\otimes} \mathbb{F}_q((t)) \simeq \operatorname{Hom}_{Q\{\tau\}}(Q\underset{k(t)}{\otimes} M,Q\underset{k(t)}{\otimes} M').$$

(ii) Let M be an étale restricted  $k(t)\{\tau\}$ -module, and assume that M is semisimple as a  $k(t)\{\tau\}$ -module. Then  $Q\underset{k(t)}{\otimes}M$  is a semisimple  $Q\{\tau\}$ -module.

This lemma, which is rather easy to prove, reduces the Tate conjecture (2.1) and the semisimplicity conjecture (2.2) to the following:

# Theorem (3.4).

(i) The functor

$$(\text{\'etale restricted }Q\{\tau\}\text{-modules}) \overset{k((t)) \otimes \cdot}{\longrightarrow} (\text{\'etale restricted }k((t))\{\tau\}\text{-modules})$$

is fully faithful.

(ii) The subcategory (quasi-geometric t-adic representations) is stable under taking subquotients in the category (t-adic representations).

Our proof of this theorem borrows a technique in p-adic Hodge theory. The main point is to construct a commutative ring B, which is a subring of  $k^{\text{sep}}(t)$  stable under the actions of  $\tau$  and  $\text{Gal}(k^{\text{sep}}/k)$ , satisfying the following properties:

- (i)  $B^{\tau} = \mathbb{F}_q((t))$ .
- (ii)  $B^{\operatorname{Gal}(k^{\operatorname{sep}}/k)} = Q$ .
- (iii) For each étale restricted  $Q\{\tau\}$ -module M, the canonical isomorphism

$$k^{\text{sep}}((t)) \underset{\mathbb{F}_q((t))}{\otimes} \widehat{V}(M) \simeq k^{\text{sep}}((t)) \underset{Q}{\otimes} M$$

comes from a (unique) isomorphism

$$B \underset{\mathbb{F}_q((t))}{\otimes} \widehat{V}(M) \simeq B \underset{Q}{\otimes} M.$$

Remark (3.5). Roughly speaking, the condition (iii) says that B contains the entries of a 'period matrix' of M.

Theorem (3.4)(i) follows directly from the properties of B. In fact, the inverse map of

$$\operatorname{Hom}_{Q\{\tau\}}(M, M') \to \operatorname{Hom}_{k((t))\{\tau\}}(k((t)) \underset{Q}{\otimes} M, k((t)) \underset{Q}{\otimes} M')$$
$$= \operatorname{Hom}_{\mathbb{F}_q((t))[\operatorname{Gal}(k^{\operatorname{sep}}/k)]}(\widehat{V}(M), \widehat{V}(M'))$$

is defined to map  $f \in \operatorname{Hom}_{\mathbb{F}_q((t))[\operatorname{Gal}(k^{\operatorname{sep}}/k)]}(\widehat{V}(M), \widehat{V}(M'))$  to the restriction of  $\operatorname{id}_B \otimes f : B \underset{\mathbb{F}_q((t))}{\otimes} \widehat{V}(M) \to B \underset{\mathbb{F}_q((t))}{\otimes} \widehat{V}(M')$  to the  $\operatorname{Gal}(k^{\operatorname{sep}}/k)$ -invariant parts.

**Definition (3.6).** For each t-adic representation V of  $Gal(k^{sep}/k)$ , we define

$$D(V) = (B \underset{\mathbb{F}_q((t))}{\otimes} V)^{\operatorname{Gal}(k^{\operatorname{sep}}/k)}.$$

From the properties of B, we can easily deduce the following theorem, which completes the proof of Theorem (3.4)(ii).

# Theorem (3.7).

Let V be a t-adic representation of  $Gal(k^{sep}/k)$ . Then the following are equivalent:

- (i) V is quasi-geometric;
- (ii)  $\dim_Q D(V) = \dim_{\mathbb{F}_q((t))} V;$
- (iii)  $k((t)) \underset{Q}{\otimes} D(V) \simeq \widehat{D}(V)$ .

In particular, any subquotients of a quasi-geometric representation are again quasi-geometric.

Finally, we mention the construction of the ring B. Fix a proper normal model X of k over  $\mathbb{F}_q$ , and define  $\Sigma$  to be the set of the points of codimension 1 in X. Let  $X^{\text{sep}}$  be the normalization of X in  $k^{\text{sep}}$ , and define  $\Sigma^{\text{sep}}$  to be the set of the points of codimension 1 in  $X^{\text{sep}}$ . Denote by  $w_{\bar{x}}$  the additive valuation of  $k^{\text{sep}}$  associated to  $\bar{x} \in \Sigma^{\text{sep}}$  (normalized as  $w_{\bar{x}}(k^{\times}) = \mathbb{Z}$ ). Define the subring  $B^+$  of  $k^{\text{sep}}((t))$  by:  $f = \sum a_i t^i \in B^+ \iff \text{for all } \bar{x} \in \Sigma^{\text{sep}}, \{w_{\bar{x}}(a_i)\}_i \text{ is bounded below and, for almost all } \bar{x} \in \Sigma^{\text{sep}}, w_{\bar{x}}(a_i) \geq 0 \text{ for all } i$ . Here 'for almost all  $\bar{x} \in \Sigma^{\text{sep}}, \ldots$ ' means 'there exists a finite subset  $\Sigma_0$  of  $\Sigma$  and, for all  $\bar{x} \in \Sigma^{\text{sep}}$  not above  $\Sigma_0, \ldots$ '. Next define the subset S of  $k^{\text{sep}}((t))$  by

$$S = \{ f \in k^{\text{sep}}((t))^{\times} \mid \sigma(f)f^{-1} \in k \underset{\mathbb{F}_q}{\otimes} \mathbb{F}_q((t)) \},$$

which turns out to be a multiplicative subset of  $B^+$ . Now the ring B is defined by

$$B = S^{-1}B^{+}$$
.

#### REFERENCES

- [1] Y. Taguchi, The Tate conjecture for t-motives, preprint.
- [2] \_\_\_\_\_, On  $\varphi$ -modules, preprint.
- [3] A. Tamagawa, The Tate conjecture for A-premotives, preprint.
- [4] \_\_\_\_\_\_, Generalization of Anderson's t-motives and Tate conjecture, 京都大学数理解析研究所講究録 884 (1994), 154-159.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO, JAPAN *E-mail address*: tamagawa@kurims.kyoto-u.ac.jp