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A commuting difference system arising
from the elliptic R-matrix * |
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Abstract

For Belavin’s elliptic R-matrix, we constract an ”L-operator” as a set of difference
operators acting on the functions on a type A weight space. According to Baxter’s
argument for commuting transfer matrices, the trace of the L-operater gives a com-
mutative difference system. We show that for the above mentioned L-operator this
approach gives the elliptic Macdonald-type operators, actually equivalent to Ruijse-
naars’ operators. We briefly mentioned about some interesting invariant subspaces.

1 Introduction

In [M1], [M2], I. G. Macdonald defined a commuting system of difference operators for
each root system and thereby define a new family of orthogonal polynomials containing
two rational parameters (g,t) (in case all the roots have the equal length). Up to now, at
least two ways of understanding for these systems are known. One is the work by Etingof
and Kirillov [EK1], who obtained these operators as the image of central elements of the
quantum enveloping algebra. The other is the work by Cherednik [C92], who uses double
affine Hecke algebras, their representation via difference operators (Dunkl operators), and
the center of the algebra.

Here we wish to suggest yet another approach for the system.

Needless to say, the Yang-Baxter equation is one of the important background of the
above two works. Originally, in Baxter’s study of solvable lattice statistical models, the
Yang-Baxter equation arose as the condition to provide sufficiently many commuting
operators.This is done by taking the traces of the so called L-operators, the operators
which satisfy the ”’RLL = LLR relation” (1), which is nothing but a variant of the
Yang-Baxter equation.

So the following question is quite natural to ask: ”"what kind of operators arise if we
start with the L-operator realised as difference operators for appropriate functions?” This
is our approach and we will show this idea actually works quite well at least for one
interesting case.

The case we consider in this paper is for the elliptic R-matrix of Belavin [Be]. In the
trigonometric limit, up to a certain simple “gauge transformation” [Re] , this R-matrix
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degenerates to the image of the universal R-matrix for the quantum affine enveloping
algebra U, (A(l) ) ([J],[Dr1]) in the vector representation.

2 The difference operators

Forn > 1llet V = eakeZ/nZCGk (k= €F*™) and let g,h € GL(V)to be gef :=
ekexpgfz—"'ﬁ, he* := ek*+1 We have gh = hgexp%. Let A,7 € C,h # 0,Im7 > 0.
Belavin’s R-matrix R(u) = Rp(u) is characterized as the unique solution of the following

five conditions.

¢ Rx(u) is a holomorphic End(C" ® C") -valued function in u,

¢ Ri(u) = (z @ z) Ra(u)(z ® )~ for z = g, h,

¢ Ry(u+1)=(¢g®1)*Ru(u)(g®1) x (-1),

® Ry(u+7) = (h®@1)Ru(u)(h ®1)™ x (—exp2mi(u + 2 + Z))~?

e Ri(0)=P: 2@y~ yQz.
It holds that 1)there is a unique solution to the above conditions and 2) the solution
satisfies the Yang-Baxter equation.

By an L-operator we mean the matrix L(u) = [L(u)}]; j=1,... of operators (noncommu-
tative letters) that satisfy

R(u —v)L(w) ® L(v) = L(v) ® L(u)R(u — v), (1)
where R(u) := PR(u).

For Belavin’s R-matrix we shall construct such an L-operator in the following way. Let
h* be the weight space for s/,(C) and realize h* in C" = ®,-;...,C¢;, < €, € >=16;;,
as the orthogonal complement to 3_,_; .., ;. We denote the orthogonal projection of ¢;
by €. For each A\, € h* and j =1,---,n we put

0i(t— <N &>) :p—A=h§ forsomek=1,---,n,
H(w) { 0 : otherwise (2)
where
. 1, u?
0;(u) ;= > exp2mi(p(u+ 5) + gT)

peEF—j+2

Also we let ¢(u)4+"e:7 to be the entry in the inverse matrix to [¢(u)4*"% ;] 11 ... », namely
n
- \pthe c, pth
qu(u)ﬁ ek]‘ﬁ(u)z-l—hekj = Okyk Z $(u thek )p = 5.3 (3)
i=1

Then generalizing a result in the celebrated paper [S] we have

Theorem 1 ([H1], [H2]) For a function f on h*, put
(L(cfu); () = D @lu+ R ¢(u)h ™ f(u + hé). (4)

k=1,n

Then for any c € C, the collection of difference operaors L(c|u) = [L(clu);],Fln satisfies
the desired relation (1). i.e., L(c|u) gives a I-parameter (c) family of L-operators.



Recall V = @;-1,..,Ce’ = C" and let O be the ring of meromorphic functions. Then
the above L-operator is an endomorphism on the space V @ O(h*),

L(clu) € End(V ® O(h")).

Here the first space V = C" can be regarded as the space of defining comodule (vector
“co”representation) for the bialgebra A(R) defined by the relation (1). We can consider
more complicated comodules for this bialgebra as well: actually for each young diagram
Y we can construct a A(R)-comodule V(Y) whose dimension is just the same as for the
GL,-module that corresponds to Y. This is an early result known as the fusion technique
[KRS][C] and done by taking the appropriate sub/quotient of the tensor comodule of
V(O) =V = C". It follows that we get a collection of difference operators

LY(c|u) € End(V(Y) ® O(h*))
for each Y and they satisfy the relation
BY"(u = )L (cfu) ® LY (clo) = LY (elo) ® LY (clu) ™' (u — v), (5)

where R’ is the ”fused R-matrices” which is nothing but the isomorphism between the
A(R)-modules V(Y)®@V(Y') - VY") @ V(Y).

These structures are of course now well understood for the trigonometric R-matrix case,
where we have the quantised enveloping algebra and its universal R-matrix as the origin
of those fused R-matrix or the fused L-operators. '

Now we are in the position to ask the concretized question in Section 1: "what kind of
operators arise as the traces of these LY (c|u) ’s?”. We shall consider the case Y = 1¥, the
vertical k boxes case. Then L!® is a matrix of size dim A¥ C" whose matrix element is a
difference operator. We denote the Jacobi theta function by

8(u) = V=Ip'/B(z"/2 = 2712 TT (1 = 2p™)(1 — 27 'p™)(1 — p™)

He=F

1

with p = exp 2miT and z = exp 2miu.

Theorem 2 1. Let M®(c|u) := Trace;s L (c|u) (k=1,---,n). Then we have

U, k—d'i' E.‘;_gt 'Cﬁ h
MOy =2 2) v (H A= >+"))TI, (6)

0(uw)  jep, Tin=k \sgrzer (<A & —&>)

where T? stands for the h-shift operator:
(TF)N) = f(A+h&), T7 =TT
il
2.(cf.[D]) Define a function on h* by

0 © 1 _ zqm+1pk 1— Z—lqm—gpk+1

d(N) = dt(z/ze), df(z):= , 7
( ) kgl ( k'/ k) ( ) ]}:I()rngol —qu+g+1pk l—z‘lqmpkH ( )
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where p = exp2miT,q = exp2mih(|g] < 1) and z; := exp2m < A\ § >. Then the
conjugation by the square root ®'/2 yields ' the Ruijenaars’ [R] commuting operators:

6(u + %)

o)
B 70(ch+<)\,es—et>) N O(ch+ < X, e — €5 >)
oS L) (0 )

Ic{l,n}I|l=k \s¢Itel sgltel O(< A e — e >)

)—1 . q)—l/QM(k)(du)@l/Q

In the operator M¥)(c|u) (6), the spectral parameter u appears only in the overall
factor. It is easy to see that, in the trigonometric limit p — 0 the commuting system
M®(c|u) (6) falls into the Macdonald’s one with the parameters ¢ = exp 27ih and t =

—c/n
g~
It is an important remark that these operators obviously commute, as we mentioned
before. This is because the extended "RLL=LLR” relation (5) can be rewritten as

RYY' (u — ) LY (cJu) ® LY (c|v) RYY (u — v) ™! = LY (¢c|v) ® LY (c|u),
and then taking the trace simply gives
MY (c|lu)MY (c|v) = MY (c|v)MY (c|u)

where MY (c|u) := traceyy)L¥ (c|u). This simple argument and the resulting operators,
“the commuting transfer matriecs”, was effectively used in Baxter’s analysis of the spin
chain models [Bax71], [B]; see also [TF]. Thus we may state the ideology:

commuting transfer matrices = commuting difference system.

The proof for the above theorem is fully computational. We only mention here that
the proof relies on the formula below, which is quite interesting itself.

Lemma 1 Recall Y, := 1 if r < s holds, Y, .= 0 otherwise. The following formula
holds:

d
det | T 6 (ir — Awt + WYjeq + 6ra( — (s — 1)B)) (8)
r=1

8,8'=1,--.,d

- Il&(u—sh) II 60w — 28R + s — pe).

1<s<s'<d

Proof of this formula can be done by the induction on k. The i = 0 case of (8) is easily
transformed into the Cauchy type determinant formula

B(e — M + u)} _ Mhiyeralits = )60 = A)
O(ps — As)0(u) s,8'=1,.d s o=1,a O(ps — Ast) ’

which is also known as the genus 1 case of Fay’s trisecant formula [Fay]. But I do not
know whether (8) is previously known or not.

It is also interesting to remark that the A = 0 case of this formula was quite relevant
in [R] although his approach for the commuting system is completely different with ours.

det [

las long as it makes sense
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3 An invariant subspace spanned by symmetric theta

functions

Let Thi™ denote the space of level AW - characters [Kac]. This space is of dimension
%2 and spanned by the theta series on h* invariant under the action of the symmetric
group S,. Then we have

Theorem 3 ([H2]) For nonnegative integer I, we have L(l|u)iTh{* C Thi", hence

M®(Iu)Thi" ¢ Thi".

We can state more precisely the following: As an A(R)-module, Th3» is isomorphic to the
representation V(O - -0), the module corresponding to the Young diagram of [ horizontal
boxes.

Thus there is an interesting “representation theoretic” invariant subspace for our op-
erators. This space would be identified with the space of Weyl group invariant theta
functions in [EK2], where they considered the affine analogue of Sutherland operator and
its diagonalization.

As an elliptic analogue of Macdonald polynomial theory [M1], we may define a family
of orthogonal polynomials as the simultaneous eigenfunction for our operators M®)(c|v).
This diagonalization problem is now under investigation and we hope to report the result
in a near future.
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