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Connection Formula for Airy-type Equations
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§0. Introduction

We will study turning point problems for third order equations using technique of WKB
analysis. In the case of second order equations, there are many results which go back to
Liouville. It seems that there are some difficulty to generalize higher-order case ([BNR],
[AKT2]). We treat one of the most simple example in this paper.

In 1936, H.Scheffé study the equations
gy

dzm ——z"y: 07

(0.1)

which he called t-equation. He showed that the asymptotic forms of t-equation play a key
role in the study of more general equations ([S]). The asymptotic behavior of t-equation is
studied by Turrittin ([T]). He calculated Stokes multipliers of t-equation around infinity.

The Stokes sectors of t-equation are divided by 2(n + m) lines

wh

h=0,1,---,2(n+m) — 1.

argz =
But different solutions may have the same asymptotic expansions in some sectors. Hence
we should choose special solutions in order to determine the Stokes multipliers. Turrittin
used Barnes-type integral formula of solutions, and choose an enlarged sector to restore
uniqueness.

Recently Silverstone and others studied the resonances of LoSurdo-Stark effects and the
energy eigenvalue of Hot. In [SNH], they consider Borel summablity of Airy function
Ai(z). The asymptotic expansion of Ai(z) : x

1 (2 °°_kF(k+%)F(i$+é)(_Zﬂ)k
i)~ gt (344) S0 T (5

6

is valid for |arg z| < 7. If we take the Borel resummation of the expansion, we have

1 1 1 2 oe 15 3t
Ai(z) = —q~ 3,71 By 1 TR | =, o L ——g ) dt
i(z) 57 % exp<‘ 32‘ )/0 e 2 1 (6 6 2z§)
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By looking at the branch points of the hypergeometric function, they show that the
standard domain of Borel summability is |argz| < 2, narrower than the usual sector
|arg z| < 7. Borel resummation gives an integral expression of asymptotic expansions, and
we can understand the valid sectors i from the branch points of the integrand.

On the other hand, the exact WKB method invented by A.Voros gives a powerful tool in
the study of semi-classical analysis of one-dimensional Shrodinger equation ([V]). T.Aoki,
T.Kawai and Y.Takei developed the Voros theory, and give exact connection formula of
second order equations with regular singularity. In [AKT], they reduce general equations
to the Airy equation near a simple turning point and give the connection formula near
turning point. They also study the case of third order equations ([AKT2]). In their theory
the connection problem of the Airy equation is essential and this problem is just the same
as the case of Silverstone.

We will study the connection problem of the Airy-type equation (0.1) when m = 3.
The exact WKB analysis of Voros is also useful in this case. In section 1 we review
exact WKB analysis. 'We must modify Voros’s theory for the third order equations. In
section 2 we discuss WKB solutions of Airy-type equation. The Borel transformations of
WKB solutions to this type of equation can be represented by generalized hypergeometric
functions 3 F,. We will give an explicit connection formula of Borel-transform of WKB
solutions. In section 3, using the connection formula of 3 F;, we study connection problem
of generalized Airy equation around infinity. In section 4, we study connection problem
from infinity to zero. In both cases, the connection formula of hypergeometric functions
2 F1 plays a key role. :

§1. Complex WKB analysis

We first review complex WKB analysis. We follow the notation in [V] and [AKT], although
they discuss second order equations.

We are concerned with an equation of the following form: |

3

1 (35 — #*Q)H(a,2) =0

where Q(q¢) is an analytic function and z is a complex large parameter. We take a formal
solution of the following type:

(12) $(g,7) = \/i_p(/ S(¢',2)dg'),
where | | |

(1.3) S(q,2) = S_a(g)z + So(g) + So(g)e ™ +--- .



As a formal power series in 71, S(g, z) satisfies following nonlinear equation:
d2
(1.4) 35(‘1’5”) 5((1’ )+ d—qg.S'(q,:c) + S(¢q,z)® —2°Q(q) = 0.

Each term S;(¢) in (1.3) is uniquely determined if we fix the branch of S_; = /Q(g).
From (1.4) S;(q) is calculated by the following recursive equation:

d? d
3S_1(q)* Sm+2—|—d ~Sm +3.,-+§=:m5id_95j
+35_1 Z S:S; + Z S5iS;Sk =0.
i+j=m+1,i,j>0 ibjrk=m,i,j,k>0

Let
Sy = Ssjz*,Say = Y Ssjraz’ T, Sz = d Szt
J J ' j

By (4) we have

d d pe
3 (SayS)) + 35w g S + @50) +35%)Sa) + 355 Sy + 35%)S0) =0,

d d bz
3% (52)S(0)) + 35w 75w + PO 35%)S(2) +3501)S(0) + 35()S) = 0.
Taking the difference of the equations above,
& 42 d d d
S g ~ S gzoe + 35(22>d—q5<2> - 35<2nd—q5(1> +35@ 7 (SwSw)
d
=35 72 (S2)Sw)) = 350 (5?2) - 5(31)) =0.
‘Hence ‘
' v s d d
5o |\ 5@ — 5o + Sy z-5m —Sw g 5@

d d & L
+t3 (35(2)d S =350 g, 5w S g S —5(1)355(2))

Therefore we obtain
1d d d
S0 = 33,8 (5?2) Sty + 5(2) o~ Sog 5(2))
Therefore WKB solutions may be written in the followmg form:

T
5 L eXp/(s(l) + S(2))dg’,
\ﬂ%) Sty + S Sa) = SwipS®

Although the series (1.3) is divergent, Voros shows that the Borel transform with respect
to the parameter z is a ramified analytic function. We will fix the definition of the Borel

transform (see [V], [AKT]):

(1.4)



DEFINITION. Let f(z) be a formal series
f(z) = €t Z fj:v_j"“,
J20

where a is any complex number. Then its Borel transform fgp(¢) is defined by the series

Z I‘(] +a + 1)(6 )

At least formally, we can represent f(z) as an integral of fg(&):
(1.5) fo)=a | G

If 1(q, x) is a WKB solution of (1.1), it follows from (1.5) that ¢ 5(, ) satisfies the Balian-
Bloch equation

(1.6) L bal6,0) ~ Q) sl a) = O

dg¢s3

§2. WKB solutions of Airy-type equation

In [AKT], it is shown that the Borel transformed WKB solutions of Airy equation are
represented by Gauss hypergeometric functions. The connection formula is calculated
using Kummer’s relation for hypergeometnc functions. In this section we study following
Airy-type equation:

d? 3
(2'1) 8—(}3 - qn"l,LY =0.

The WKB solution of (2.1) is as follows:

1 1 [ !
22) bao) = —zew | st
where

(23) S(q’ :C) = S—I(Q)x + SO((I) + So(q)?t“l +

Let (9 (g,2),9M(q,z) and $~V(q,z) be the WKB solutions co1responding to the

-1

initial term S_; = ¢%,¢%w and ¢Fw™!, respectively, where w = e3™. We take a branch



of ¢"/3 so that 92(1"/ 3> 0if¢>0. Wecan verlfy by the induction that the Si(¢) has the
form

Si(g) = skq™'~ ("+3)3

where s is a complex number. For example, if S_1(q) = wign/3,

n(6+n)w J _&

(18n + 9n? + n®)w! _ants
57 g ...

81

So(q) = —=¢™,S1(q) = —

3 ,S-2(g) = -

Therefore ¥ (q, z) is following:

. 3wJ n43 n - ' -1 ’
) — 28 N2 —k
(2.4) 1/) J (q,:v) = exp(n n 3q 5 x)g” 3 _S_ Ti(q)x 7,

k>0

and T%(q) has also the form
Tk(‘]) =trq” (n+3) E

where t; is a complex number. Especially o = 1. We denote the Borel transform of
(g, ) by wg)(f,q). By definition, we have

(/3 i

(J)(f,q)~(;*szt,7r(k+%) €+ e ¥ 235 yk+3
ko S
= 2 ———F.(kti% (€™ + 3: S+
A
where (a), = f(_;(:)ﬂ

Let ¢ denote {q _3 Then ¢(’)(§,q) has the form

v (E,q)=q"F K@),

RU)(t) has a singularity at t = ——3—:5 It follows from (1.6) that y = A(O(¢), K(V(¢),
" v

‘h( ~1)(t) satisfy the equation
3,3 d*y 9(3 + ")3
((n+3)°t" +27) dt3 R

(34+n)(81+ 78 +13n?) dy  (-34+n)(3+n)(9+n)
+ 4 e T 8 v=

(2.6)



* The three regular singular points in (2.6) correspond to the choice of S_;. The exponents
at each singularity are 0, -;—, 1. Although the distance of the exponents may be an integer,'

any local solution does not have a logarithinic term. The exponent of RU)(t) is 1 5 at

the corresponding singular point. We consider analytic continuation of 39 )(t) to another
singular point.

The equation (2.6) is invariant by the §7r-rot,at10n around the origin. Let s denote

3
—mt?’. Then we obtain
27 :
2(3—1) (2 __72)dy
- _(3_159+114n+19n" (B+n)0+n)
. 9 12(3 + n)? ds 216(3 + n)?

1 -
We set p = ———. The local solutions of (2.7) at origin are followings:
n+3 &

(O)(S) ?»Fz(l - g, é + 12—)%; %7 g;vs)»’
800 =sham(z -2+ 2,52 2,
)(3) —333F2(— - g, g + g,‘g; %, g;s).
We set | | ) pl 2
ui(s)= 2R TR TRL 375),
uz(s) = s¥,F} oo ;—), % + g; %;3)-

Using Clausen’s formula

. Lo 1 S . 1
3F2(2a,a + b,2b;2a + 2b,a + b+ E;s) = [2Fi(a,b;a + b+ 5;3)]2,

1 1 1 3 1
3F2(-2-,a—b+§,—a+b+§,~—a—b+-2- a+b+—3)
1 ' 3
—2F1(aba+b+ s)zFl(2 5—b;—a—b+-2—;s),~

we have

(0)(3) = Ul(s)
$(s) = wi(s)ua(s),
P (s) = ua(s)?.



We set 1
- 1 pl
us(s) = 2Rl =533

1
7
U4(8) = (1 d S)l/zzFl g

12
Then the products

8(s) = us(s)%,

817 (s) = ua(s)ua(s),

87(s) = wa(s).
are independent solutions of (2.7) at s = 1. Since ¢( )(s) has a smgularlty of the type
(1—s)1/2, RU)(¢) is equal to ¢( ) ( BL) ) to constant multlphcatlon We notice the

following lemma:.

LEMMA. Consider the functions

Mﬂ=0+(é>>, wi() = (¢ + 3p)

We take the following cut lines in t-plane:

W=

(.7 = _170’ 1)

w’ .
{t; ‘e R+}, (=-101)"
We take a branch of pu(t) and p;(t) as follows.
hm u(a + 25) >0,
wt
lsiFOl w(a ——3;-%- 1) > 0,
for a > 0. Then we can take functions A;(t) (j = —1,0,1), which are holomorphic‘ét

wJ
t = —— such that

u(t) = =/tj(f){4j(t),

The lemma is easily verified by direct calculations.

. J
By (2.5), hU)(¢) has a singularity at t = —g—-— such that
, ‘ P _

() = %(t +3pw’)? (1+ 0 (t +‘A'3wfp)) :



Therefore it follows from the lemma above that

(28) RO(t) = 2w-f\/§¢§” (— (311,)) :

near t = —3pw’.

We will calculate the discontinuity of h(®)(t) at t = —3pw, —3pw™'. In the s-space we
should consider the analytic continuation around the origin. We denote q@&”(s) (resp.,

%gj )(s)) as the analytic continuation of qﬁg] )(s) once counter-clockwise (resp., clockwise)
around the origin. '

PROPOSITION 2.1. We have
ngl)(s) = (2 cos® pr — %) w¢§1)(3) + (holomorphic at s = 1),
z 1
¢(11)(3) = (2 cos” pm — 5) w2¢§1)(s) + (holomorphic at s = 1),

near s = 1.

PROOF: By Gauss’ connection formula

oFi(a,b;¢8) = ?Ez)f(:);(‘z: ZgéFl(G, b;a+b— c +1;1—3)
T(c)T(a+b—¢) c—a—b ; o
Narm -7 Al seshemambi il -,
we have
rul(s) = Au3(s) — Buy(s),
(2.9) 31/3'“2(,5) = CU3(S) —_— DU4(3), .
where
a NGO B 2/(3)
D(z +5T(HF -5 T(H+ 5 +5)
e VAR 2/l
NE+ 5P +2) D(5 + HT(F +5)
Therefore - |
O] A? ~2AB B? R ON
(2.10) W@y | = Ac —(aD+BC) BD 8 (s)
¢g2)(s) C? -2CD D? ¢(12)(3)



- We denote ¢~$§] )(s) (resp., q~5§] )'(s)) as the analytic continuation ofj¢((,j )(s) once counter-
clockwise (resp., clockwise) around the origin. Then we have

35 (s) = w793 (s),

= 35(s) = w4 (s).

By direct calculation, we have

1 2 1
-+ "BC = —=-
3 3‘/§cos7rp, C

Hence the inverse transformation of (2.9) is given by

AD =

cos Tp.

3f

uz(s) = -Z—Dul(s) - gBuz(s)‘,‘

uy(s) = 2Cu(s) - g—Auz(s).

‘ 2
Therefore
" (s) o [ D’ —2BD B? #0(s)
(2.12) #)s) |=7|CD -(4D+BC) 4B ¢ (s)
2 2
¢§2)(3) Cc* | —2AC A (2)(8)

(2.12) is valid if we change all of qﬁg) into qzij) or zscj). Combined with (2.10), (2.11) and
(2.12), we obtain the proposition 2.1. |§

From now on, We will study the analytic continuation from s = oo to s = 1. We set

Cus(s) = (—s)" =5, By .25 _p 1-p;s7h),

12 2712 2
ug(s) = (—s)” T, (= + PS5 + Py +p'3—1).
12 2’12 2’ ’

The products
$Q(s) = us(s)?,
85 (s) = us(s)us(s),
6P (s) = ug(s)*.

are the local solutions of (2.7) near infinity. By Clausen’s formula we have

N 1 1 5 _
¢ (s) = (=s)~5+? 3F2(——p,§—p,6—p;1—p,1—2p;s 1),
115 ' -
Wy — (-2 _ -1 A
b (s) =(—s)7% 3F2(6 35 i1—p,l14p;js™),

i 1 5 ~
¢PD(s) = (-s)7¢ ”3F2(g +P"2'+P96+P51+P,1+2P;3 h.
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ProposITION 2.2. The analytlc continuation of ¢>( )(s) a]ong a path in the lower-half
plane is

b (s) = -

FED i) Hj:o L' (1+(k-j)p) 6D (s)
- T (L +3(k-p)
+ (holomorphic at s =1)

near s = 1.

PROOF: When we take a path in the lower-half plane, the connectlon formula is the fol-
lowing;:

(=8)"%F(a,a+1—ca+1—b;s™)

_P(c+ l—a-bl(a+b—c)(a+1-
T TA=-bI(c=bl(a+b+1—¢)

3 FNa+b—c)(a+1-
Fa)'(a+1-c¢)

b)e"i““QFl(a,b;a +b—c+1;1-3)

b)Y o
)e'”(”“c)__(l - s)c_“_szl(c —a,c—bjc—a—-b+1;1—3).

Therefore
us(s) = Euz(s) + Fuy(s),
2.13 ‘ - ’
( ) ue(s) = Gus(s) + Huy(s),
where
in(- b I(1-p)  in(-g+2)_ 2V/AT(1-p)
Ez_eﬂ’( 12+%) \/7? i — F=¢ ( 12+2)_ y
F-9rE-4) (5 -5HT(Z-%)
Go _oir(-k-3)_ VTEA+p) o in(-g-3)_ 2/ +p)

T(z+3T(E+E) F(+3TGGE+E)

At first we consider ¢g(<’,)(s) By (2.13) we have
us(s)? = 2GHus(s)uq(s) + (holomorphic at s = 1).
Recall the multiplication formula of Gauss and Legeﬁdre:
1
(2.14) o C F(Z)P,(z + -2—) = 2172 /7T (22).

We have



Therefore we have ‘ \

I -p)
| P T C=r)
Recall the multlphcatlon formula of the third degree: Lo

(215) I(z)T (z + —g) r (z + g) - 2;/3:” r(32).

We have ) . 5
' rf{z_ z_ 2_ .\ = 3p :_
0(5-)r(5-2)r(§-#) =2 97 (3-9).

We use (2.14) again and get
r (l —p) I'(1-p)=2%/7T(1-2p).

2BF = —4eim(—3+p) _

2

Hence we obtain
eivr( 2+p) ri—pr- 2P)

1
(2.16) 2BF =~ g5 = | eEm)

In the same way,
ug(s)? = 2GHus(s)ua(s) + (hOlomQrphic at s =1).
And we get S ¢ '
33 cim(—2-) Fr(l+pr{- 2p)

(2.17) | °GH = v (e

We will consider qS( )(s) By (2.13) we have .
us(s)ug(s) = (EH + FG)U3(s)u4(.s) + (holomo1p111c at s = 1)

Since 1 .
p P ™
MNM=-z|P=+%)=———-~
(12 2) (12+2) sin (& + &)’
7 p ) p T
I[=-Z | |=+%)=———~
, (12 2) <1z+2) sin (32 + 2F)’
we have

EH +FG = —;zr-e—%i"m —pT(1+p)

. (sin (122—4-%) sin’ ?g +%7£)‘+Sin (-l-il—zz-{-%) sin (%4—%))

2 _a2. T N .

= ——e 3'"[(1-p)'(1 — ‘ e
—e”8"T(1 = p)I(1 + p) cos 5

1 _ 2.
(2.18) = —=e"3"(1 - p)D(1 +p).

By (2.16), (2.17) and (2.18) we obtain the proposition. |
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3. Connection formula around infinity

In this section we will calculate the Stokes multipliers around infinity. At first we will
see Stokes regions on (2.1), due to Voros ([V]). The Borel transform ¢g(¢,q) of the WKB

solution has three branch points

3 -

6(a) = — =l

b

for j = —1,0,1. The Stokes line is the curve in ¢-space defined by the equation

(3.1) 3¢i(9) = 3i(g)
for j # k. By (3.1), we have

(2h + 1)m

Lh cargq = m

(h=0,1,2,--- ,2n +5)

This definition is different from the notation used in introduction.

© set (2h — 1) (2h +1)
‘ v — 1) v+ 1)w

Sy g2t T \er T )T
{”’ nt3) ~ELS 2(n+3)}

and calculate the Stokes multipliers from Sy to S;. We will denote 1/)(] )(q, z) is the Laplace
transform of 1/)(])(5, q) when q € Si.

On Ly we have

Sto(9) = S&i(9); 3369((1) < R (q).

Therefore the Laplace transform

$O(g,2) = 2 / O (€, q)de

0o

is changed when ¢ moves across the Stokes line Ly, Whlle »W(q, 1:) and ¢(~V(q, z) are not
changed.

In [V], Voros showed that the connection formula across the Stokes line is

917(0,2) = 907 (0,2) + 280 (g, ).

Here the complex number A is defined by

(0)(6, q) = (1)(§,q) + (holomorphic at £ = 61((]))

near £ = £(q).
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PROPOSITION 3.1. The connection _formula from Sy to S, is the followings:

3 - 1) "l’(()l)(q’ $)7

¢§0)(qv$) (‘I7$)+w (4cos2 n7r

(g, 2) = $$ (g, 2),
P (g,2) = 9§ (g, ).

PRrROOF: We should know the behavior of ¢ ({,q) at £ = £1(q). By proposition 2.1 the

behavior of , e\
t
h(") = ‘/_ M=
(t) 2 7r¢1 3p

R EO) .
=22 (o= 3)eet” (- (3))

(2 cos® p — —) h(l)(t)

at t = —3pw is

t=—3pw

At=—3pw
1
Therefore A = w? (2 cos’> mp — 5) ]

We will calculate the Stokes multiplier when ¢ goes across Ly. On L; we have

S¢:(q) = Shle),  Ré(g) < R&u(q):
Therefore ¢ (¢, z) and 6(1)((1,:1:) are not changed and

(g, 2) = (g, 2) + 28"y (g, 7).

Here the complex number A’ is defined by

PP (€, 9) = A9 (£, ¢) + (holomorphic at € = &1(q)),
near ¢ = £1(q).

PROPOSITION 3.2. The connection formula from S; to S, is the followings:

¥(q,2) = ¥"(q, 2),
i (q,2) = ¥{M (g, 2),

z/)g 1)(q, T)= ¢1 )(q,:c) 4w (4cos ot 1) ¢§1)(q,m).
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PRrOOF: The proof is the same as ‘the proof of proposition 3.1 except that we take qS(I)
instead of ¢>(1)

Since

) (e2P'mq, z) = ™ (2r=3) y ()¢, 2),

the other case is deduced from proposition 3.1 and 3.2.

THEOREM 3.3. When q goes across Ly, we have the connection formulae between '(/)(] )(q, x)
and ;) (4,2):
g(a,T) = @/Jéh)(q,x) +w? AYG) (g, 2),
((ihi)z((b z) = e(;thr)l(‘I’ z) + WA¢61L+1(q’ z),
Ponrs(4:) = benps(a:7) + W AYE 5 (4,2),
Peitea(0,7) = Biilya(0,7) + 0AUG (4, 2),
8;)-1-5(‘1’ T) = ¢6h+4(q, x) + szd)éh_&(q, ),

¢bh+6 ¢,T) = ’/’6h+5(‘1»$) + WA¢61.+)((1, ),

2
n+

where A = 4 cos — 1. In the other case Stokes mu]tzplzers are trivial:

it (0,2) = «p‘“(q,w)
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4. Connection formula from zero to infinity
(2.1) has solutions
o0 ) 3m

: . D : 3mq(n+3)m (k _ 0;1,2)
m=0Hs=OF(1+( —S)p+m) . s oRr

(4.1)  yr(g,z) = zrisgh

near ¢ = 0. (4.1) converge for |¢| < oo. In this section we study connection formula
between yi(q,z) and 9(g,z). This connection formula gives asymptotic expansions of
yx(g, ), when ¢ is in the large. :

The independent solutions of (2.6) near ¢ = oo are given by the following:
(4.2)

3 [e e} 3m
t : 1 (1 1 3
x(_ (L — (3p)3+3(k=Dp mi(—3+(1-K)p)(_ 4~ $—3(k=1)p (k) [ _2P
e ( () ) (3p) 20 e S ()7
for k =0,1,2, Here

o _ GHE=1p), G+*=-Dp), G+(*-1p),
" (1+kp),, (1 + (k= 1)p),, (1 + (k= 2)p),,

In (4.2), we take a sector

2
—37 < arg(—t) <0,
which corresponds to the sector

-7 < arg(—s) < 7,

s .83 —t ?
—s=ce — ] .
. 3p

The Borel transform ¢ B(§, q) is a sum of the following functions near £ = oo:

by the transform

(43) WOE D) = H® (e F).

We will take Laplace transform of (4.3). Let C be a curve which starts from +o0, turns
around &o(q), £1(q), £-1(g) counter-clockwise and returns to +o00. And Let C; (5 =0,1,2)
be a curve which starts from ‘+oo, turns around &;(q) counter-clockw1se and returns to
+00. Consider the Laplace integral

yB = /C =€ B(¢, q)dt.



16

Then we have

y® =z Z AP / _’%(’)(E q)d¢,

Jj=-1

where Agk) is the discontinuity of Wg? at £ = €j(q). Since ¢g)(§ ,q) has a singularity of
square root type at £ = €;(q), we have

SO = Z 2A® / e=7Ep) (¢, q)de,

j=-1 ¢ (a)
1

(4.4) ~ = > 288y (g,2).
j=—1

In the following, we set

ri = (3p) P4 0R). (k= 0,1,2)

PROPOSITION 4.1. we have

y® (g, 7) = 2mem(3HA=0P)(35)3+3(k=Dp g __3"“}_(0 Ff{k(f 1—);)) ), yr(g,@)-

PRrROOF: We can develop ¢((,f,)(.£ ) near ¢ = —oo as follows:

B = rea 3 (@) DB (-)hre-am

m=0
Since or;
e %8 (=£)d = g7
Lot = 5

we have

(k) | | L43(k ’1) k' | (3P)3mc(k) +3m
Yoo, = 2MirgT? I’( i AR
¢ D T (% +3( “Dp+3n)

m=0

By (2.15) we get

o _ o TE+(E—Dp+m+3) I’ T(1+ (k- s)p)
" e T+ (k=1p+3) oo T+ (k—s)p+m)
_T(F+3*k=1)p+3m) T[:,T(1+(k—s)p)
BT (1 +3(k—1)p) [[P_,TA+(k—s)p+m)
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Therefore we obtain that

. (e <] m 2
y(k)(q, T) = 2merk x%+3(k—1)11qkq Z p’ [li=o T (2 + (k= s)p) £3m
T (3 +3(k—1)p) o D14 (k=s)p+m)

m=0 8=0
2miree s ~Pg* [I2_ T (1 + (k — s)p) ®) (g, 2)
-_— ,.’E
T (Z+3(k—1)p) v

— 2memi(3+1-R)p) (3 343k~ 1p ;1 =3p [To=o T (A + (k- s)p)
T'(3+3(k—1)p)

qr

yr(g, z).

THEOREM 4.2. y;(q,) has an asymptotic expansion in Sp in the form

3(1—k)p—1

R |
_1 —. . -2- - 3
yr(g,z) = _2\_/__37r_.m L43p Z e ,m(aﬂ(% 1?p)¢(1)(q,$)_

i=—1

ProOF: We will consider the behavior of ngg)(t) at t = —3pw’ for j = —1,0,1. We assume
that d)(o’cc,)(t) has the form _

d®(t + 3_p)%(1 + O(t +.3p)) + (holomorphic at t = —3p)
near t = —3p. Since ' S
#(2) = em (340D ),

d)gé)(t) has the form

e"i(%+2(k'1)p)d(k)(wt + 3p)%(1 + O(t 4 3pw™)) + (holomorphic at t = —3pw™!)
:e"i(%+2(k‘l)p)d(k)(t +3pw ) I(1+ Ot + 3pw™1)) + (holomorphic at t = —3pw™') -
—1 4 \ » » »

near t = —3pw
In the same way (/)E,ﬁ)(t) has the form

.e"i(7%1_2(’“:‘“-1)?)(1(’“‘)-(1} + 3pw)%(.1 + O(t + 3pw)) + (holomorphic at t = —3pw)
near t = —3pw. Therefore we should know only the discontinuity at ¢ = —3p.
We will take a path from infinity to ¢ =.—3p in the sector ——57 < arg(—-t) < 0, In

s-space, this path goes from infinity to s = 1 in the lower space. By proposition 2.2 qSS,’f,)(t)
has the form

~ g3(k—1)p eiw(—§+(1—k)P) H§=0 ['(1+(k—s)p) ¢(1)(_ (-t_)s)
@s) . Jw P(3+3(k=-Dp) 7 \3p
+'(holomorphic at t = —3p).
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By (2.8) the singular part of (4.5) is

_33(kr cim(—3+(1-k)p) Moo D1+ (k= s)p) RO ().
2./p T(3+3(k-1)p)

Therefore

(4.6) Agk) = _Ei(k—_weijr(—éﬂl—k)p) Iﬁ:olr(l + (k = s)p)
2VP T (+3(k—1)p)

in (4.4). By proposition 4.1, we obtain the proposition 4.2. 1

We considered z is a large parameter, and ¢ is a finite number. From now on, we take
a variable

(4.7) z = z°Pq,

and consider z in the large. By (4.7), the equation (2.1) is

d3
(4.8) AV -2 =0

The local solution (4.1) is
DI P o
Ik(z) = 2" 2nTHm,
m=0 Hi:o F(1+(k—s)p+m)
And the WKB solution (2.4) is

d)(.ﬂ)(z) — m%—:*pz—% exp(3pw]q3l_l’) Z tkz';T.
e . - k>0

We set _ o .
PU)(2) = G F exp(3pw’ 2%7) Ztkzﬁ.
k>0

By theorem 4.2 we have asymptotic expansion of solutions of (4.8).

THEOREM 4.3. In the sector |arg z| < . , we have an asymptotic expansion
2(n+3)
) 3!"&—1! 1 1 ‘ »
ti(z) = - i : e ’ 3 n+43 )] 2).
() = ; =9(z)
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