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Abstract
We estimate the error of the Euler-Maruyama type approximate solutions for
Ito's stochastic differential equations using the K-M-T inequality.
The obtained result can be applied to Monte Carlo simulations of stochastic
differential equations.
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1. INTRODUCTION AND RESULTS

Let{B(t),OStSl} be an r-dimensional standard Brownian motion
on a probability space (Q,.’F,P). Consider Ité's stochastic
differential equation for a d-dimensional continuous process
{x(1),0<t<1} (d 21):

{ dx(1)= c(t,X(t))dB(t) +b(£.X(1))dz, 0<1<1

(1.1)
| X(0)=X,,

where off,x) is a Borel measurable function (r,x)e[0,1)xR’
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—>R’®R’ and Ht,x) is a Borel measurable function (z,x)e
[0,1]xR? > R, If o(t,x) and Kr,x) satisfy the Lipschitz condition,
then their exists a unique solution of (1.1). To prove the
existence of the unique solution of (1.1) Maruyama [8]
constructed an Euler type approximate solution Z, =
{z (1), 0<t<1} defined by

Z(1):=X, + j:cn(u)dl{u)+ j;bn(u)du, o<1,

where

o,(t):= O'n(k l,xk 1} kn<t<(k+1)/n, k=0,--- ,n-1,

b,(t):= ( 1xk 1} kin<t<(k+1)[n, k=0,---n-1,

k . k .
¥ (j-1 Y (i1

xk :=X0+ 10\ n ,x]_l)nj"' bk ] 1) , k=0,1,"',n,
Jj= ]=1

o)

Applying the approximate solution Z,:={Z(¢),0<¢<1} to Monte Carlo
simulations on digital computers we must discretize it as
following. Let X,:={X (1),0<:<1} be a stochastic process in D[0,1]
defined by

(X (8):=x,, kfn<t<(k+1)[n, k=0.--- ,n-1
iX (1):=x,

where {nk} are i.i.d. random variables with the r-dimensional
normal distribution N(O,l/n) which are realized by pseudo-normal
random numbers. As for the error estimation for X, and Z,
Ghim an-Skorohod [1] and Kanagawa [2]-[4] showed the rate of

convergence of them to the real solution X of (1.1) in I’ -mean



for some p>2. Ogawa [7] estimated the error of Euler-Maruyama
approximate solutions of some nonlinear diffusion processes
governed by Itd's stochastic differential equation. For more
details of other types of approximate solutions, see also
Kloeden-Platen [5].

Since pseudo-uniform random numbers are generated by some
algebraic algorithms, it is obvious that the distribution of them

is not the real uniform distribution. Thus pseudo-normal random

numbers, which are generated from pseudo-uniform random
numbers by some methods, e.g. the Box-Muller method, do not
obey the real normal distribution, too. Furthermore, as for

the speed of computation by digital computers, approximate

solutions constructed from pseudo-uniform random numbers have
advantage over the construction from pseudo-normal random
numbers. Therefore we shall estimate the convergence rate of
the approximate solutions to the real solution of (1.1) when
the distribution of {nk} is not the normal distribution. In [3]
the rate of convergence is considered assuming the existence
of the third absolute moment for {nk}. Let {¢,} be r-dimensional
i.i.d. random variables which do not always obey the normal

distribution and define an approximate solution {Y,(¢),0<:<1} by

Y (1) =y, kln<t<(k+D[n, k=Q--,n-1
LY, (D) =y,,

here

V=X +io'(-jll-y )é/\/Y—l-i-ib(Lﬂy \/n k=01,--n
A i~ i o) j—1 ’ - ’ ofbe
k = \n Pt Jo = \n

Theorem A. ([3]) Let {£,k>1} be r-dimensional i.i.d.

random variables with

(1.2 B@E)=0.E(E[)=1and E([) <.
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Suppose that for any 0<st<1and xyeR?
(1.3) lo(t,x)—- G(s,y)r + |b(t,x) —b(s,y)r SKl(Ix— y|2 + |t —s|2),
(1.4) |0'(t,x)r +|b(s,y)|2 <K,,

where K, and K, are some positive constants independent of s,
t, x and y. Then we can redefine {X(1),0st<1} and {r,(1),0<:<1} on

a common probability space such that for any p=2 and

£>(2+5)2/2(3 +5),
(1.5) E((P}azcl |X(t)—Yn(t)|p): o(n‘PIG(logn)E) asn — oo,
where the power of n cannot be improved by better one.

The aim of this paper is to improve the above result under the Cramér
condition which is satisfied several types of distributions, e.g. the uniform
distribution.

Theorem 1. Let {,,k>1} be r-dimensional i.i.d. random
variables with zero mean and finite variance. Moreover let
{€,.k 21} satisfy the Cramér condition;

(1.6) E(exp(s|§1D)<oo in a neighborhood of s=0.
Assume o(t,x) and b(t,x) satisfy (1.3) and (1.4). Then we can

redefine {X(),0st<1} and {¥,(1),0<t<1} on a common probability
space such that for any p22and €> p,

(1.7) E(&Ig OB Yn(t)lp)z o(n"’/4(logn)€) asn — oo



2. PRELIMINARIES

Before proving the theorem we define two random processes {X, (1), 0<r<1}
and {Y (1),0<t< 1} as follows. Let {{,, 1<k<M} and {n,, 1<k<M} be

random variables defined by

k[n]n]

(= Z %,ISkSM—L Cy= i

i==-D[nP]+1 i=(M-D[n¥]+1

e

n, =B(k[n}fn)- B((k-D[n"*]+1)/n), 1<k <M -1,
n,, =B —B((M -D[n"*]+1)/n),

where M =[nf[n"*]]+1. Define {X (1), 0<r<1} and {¥,(s),0<t<1} by

{f}_(,,(t):uk, ((k=D[n")+1)n<t <kln)n, 1<k<M -1
L)_(n(l):=uM, '

{(I—/n(t) =v,, (k=DnPl+1)/n <t <k[n")fn, 1<k <M -1
LY,(D) =v,,

where

_x +§;o( DY, )+ oG- D, )iV 1< k<M,

j=1

= xo+ic(u—n[nlﬂl/n,v,-_l)cﬁib(u W), i 15 S .

The following result, which is called the K-M-T inequality obtained by
Komlés-Major-Tusnady [6], plays an important roll to estimate E(In1 - lr)

Lemma 1. Given the condition (1.6), there exist a Brownian motion
{B(1),0<t<1} and {&,.k>1} on a common probability space such that for all
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real x and every n we have

(2.1) PJ max 2Clog n+x1 <Ke'“,

llSkSn

igk - B(k)
i=1

where C, K, A are positive constants depending only on the distribution function

of €,
Using the K-M-T inequality we have the next lemma.
Lemma 2. Without changing distributions of {£,,1<k<n} and
{¢..,1<k<M}, we can redefine them on a richer probability space with a

Brownian motion {B(t),0<t<1} with the increments {n,, 1<k<M} such that
for each 1<k < Mand forany €>2

(2.2) E(ICk—nklz)=o(n_l(log n)e) as n— oo,
(2.3) {771""’771(,51,""51(} is independent of {nm,"',nu,ékw"wéM}-

Proof. By (2.1) we have

41,
E,l ék—B([n' ]/n)

+j{
SZJ[CIogn+%logns[

i=1

nE(l¢ —mFH{

[47]
>&. - B(n"" ]/n)[dP

>C log n+-:%10gn}

17

[nlln] 1
_B([n!"
PR 26~ 8( ]/n)rdP

i=1

<Clog n+%logn]

nlln

3 eis( [ )

]
&, - B((n"" ]/n)[dP

i=1
k=0

2C logn+%logn+k .
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1n

£, (") /)

[

4
<Clogn+-zlogn}

4
{Clog n+zlognTP{

nlln

28~ B((n""]/n)

i=

oo

4 [
< E (Clogn+Ilogn+kTP{
i
J{Cl —4-1 T
ogn+l ogn

4 4 4
SKZ(Clongzlog n+kJzexp{—l(i-logn+k)}+(€logn+xlog n)z

k=0

= 0((‘log n)2 ) .

4
2 Clogn+’xlog n+k}

Moreover E(lC e nklz), k>2, are treated similarly. On the other hand, taking
independent copies of (Cl M ), (2.3) can be shown easily. . ]

3. PROOF OF THEOREM 1

For simplicity we treat the case d=r=1. The multidimensional case can be
proved similarly. In what follows K’s are different positive constants
independent of n in different equations. From the definitions of X (¢)
and Y,(7) |

\/p _ I/ p
(3.1) E(Orgai( IX(M)—Y,,(u)Ip) sE[OIEaic IX(u)— X, (w) |P]

p

_ _ 1/p _ )
+E( max |X,, () - ¥,() |"] +E[Or<na§t |, () - ¥, () |”]

0<uc<t

=0 +p!P el
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k[nI/Z] (k+1)[n1/2]

We first estimate I,. For " <t< ,1<k<M, we have
n
from (1.3)

(3.2) I, <E(max |u Ip]
1<i<k

zo,(] )" /nu_1 71, Zc( [nllz]/nv_l W

1)

1<igk

<KEL

i
|

1i<k

+KEL max

zb 1I2 ]/": Uj )[n1I2 ]/"_ Eb((j_ 1)[”1’2 ]/”a Vj—l)[nllz ]/”

p

SKE{lgliag(k Zo((j—l)[nlﬂ]/n, U )(le— C,) }

+KE 1rsnlz;xk Z(G(U——l)[nlp]/n,uj_l) c(] l[n /n V;_ ))

Jj=1

14

|
|

+KE| max Z(b((j—1)[n”2]/n,u,'_1)—b((j—1)[n1’2]/n,v,-.1 )" 1/n

j=1

!
|

=5 +1,,+I,,.

Put

$e= ) ol Dn® Voo (m, =8, 15k <M

Since (2.3) implies that {S,,k>1} is a F, =o{n,, -, n..&., &, }-adapted



133

martingale, using Doob's inequality and (1.4), we have

(3.3) IZI—KE[max |s.|” ]

1i<k

<KJ ZE[ (i=0[n"*Yn,u. )(n,- ﬂ}'_J}JlPIZ

j X lp/Z
<K ZE(lnj—cjr) .
[ j=1 J

Therefore we obtain from (2.2) and (8.3) that

(3.4) L, <Kt"*n "*(logn)’.

On the other hand by Doob’s inequality it is easy to see that

(3.5) 121SKI [o<u<le(”) Y(u)|)d
(3.6) ’235"_[ [0<< |, () - Y(u)ljd

From (3.1)-(3.6), for any 0<¢<1

0<u

t
E[Omax X, () - E,(@l”)s K707 (logn)” +KJ' [ ax |X,(w)- Y, (w)| jd
<u<t 0 <
Thus by Gronwall's lemma
3.7 I,= o(n"’“(log n)° ),

as n— o, for any > p. As for I, and I,, from Lemmas 5 and 6 in [3], we
have as n —
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(3.8) I =0(n""") and I,= 0(n""").
From (3.1), (3.7) and (3.8) we conclude the proof of the theorem. Q
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