0000000000
9350 1996 0 9-20 9

Transformation G for analytic functionals and its applications

Kunio Yoshino (&F % # 4 )

Sophia University ( L& X ®EH T)

1. Introduction

In [1] and [8] Avanissian and Supper studied Abel interpolation
problems of entire functions of exponential type by using analytic
functionals with compact carrier. To derive the results they used

the sequence {Dmf(m)} In this report we derive analogous

me N
results for non - entire functions of exponential type defined in
the direct product of half planes. We will make use of the Sequence
In Section 2 we

(D"™f(-m)} n instead of {D™f(m))

me N mel}ln

describe notations which we needed. The following Section is devoted
to‘reSults obtained by Avanissian and Supper. The definitions and
properties of transform é of analytic functionals with unbounded
carrier are given in Section 4. In the last Seétioh We will present‘

our main fesults.
2. Notations
In what follows wé‘will use following notations. Following [1]

and [8], we put

U={t =rexp(ix): 0 s r < ( z-1x1)/1sin(x) 1, 1x1 < n}.
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Dr= {te Cc:l1tl<r}.
P(t) = t’lexp(—t). ¢ is bi-holomorphic map between ﬁ - {0} and ¢

- [-e,0]. ([5])
A = {te cCc:19 (t)1>e} v{o}.

U > D1 > A. (For the figure of ﬁ and A, see [2]).

© -(—Il)n_1 -n

1 w (lwl] > e).

¥o=9 . oww) = (7 -

Ki denotes i-th projection of K c¢ CI{

*

For Sc ¢, S = S-{0}.

d(S) denotes the transfinite diameter of S.

— n —
For m = ( ml,...,mn) € W, we put |Ilml||] = m1+...+ mn,
m _ m m -m _ .- -m
D = ax 1 ...:& n, D = Dl 1 ...Dn n ,
1 n
where D.%i f(x) 1 J'mf(x—a)ami_1 da
i (mi—l)! 0

<t,z> = t,z, +...+ tnzn for t = (t t.) and z = (Zl""zn) e C.

1000ty

3. Results of Avanissian and Supper
In this section we will recall some results obtained by Avanissian

and Supper. For the details, we refer the reader to [1] and [8].

Let T be an analytic functional carried by a compact set K in Cn.

T(z) = < Tt’ exp(<t,z>) > is Fourier - Borel transform of T. Now we
assume that Kic Ufor i=1,...,n. Transform GK(T)(w) is defined as
follows

1

éK(T)(w)= <T,, Higl(l—witiexp(ti))_ >.
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These transformations have following properties.

Proposition 1.

(1) éK(T)(w) is holomorphic in H?=1(C— @ (K;)).

~ m m
(2) GK(T)(W) =3 M uvo " D T(m) w

(3) (Inversion formula)

T(z) = (2:1) 2 [ G dw, dw
T(z) = (201)™" [ G (T)(Whexp(%_; z;¥ (w;)) “yl...5n
r 1 n
whére I = Fl X...X Fn and Fi (i=1,...n) is a' countour surrounding

[-e,0].

(4) K =1}_, K,. Suppose that K;c U (1 =1.,,,n) and K » 0 . Then

é is isomorphism between § '(K) and @ (I&El(d:— w(K;))).

Example 1. 6§ (t) (Dirac's delta function )

G{O}(G)(w)»= 1

Example 2. 6 '(t)

~

G{Q}(a')(w) = - W

Example 3. ([8]) (hypergeometric function ) It is well known that

Hypergeometric function F(a,8,7,w) is holomorphic in Cc-[1,0]. By
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(4) in Prop.l there exists an analytic functional (hyperfunction) T
e 8 '(K) such that éK(T)(w) - F(a.B,r,w), where K is [0, (1)].

(¥(1) = 0.567...).

Example 4. ([8]) (confluent hypergeometric function)
Confluent hypergeometric function ®(a,7,w) is an entire function of
w. Hence there exists an analytic functional (hyperfunction) Ta,7
supported by the origin such that 6{0}(Tb,7) = ®(a,y ,w).

Example 5. (Hypergeometric function with two variables)
F3(a,a',B,B',7,x,y) is holomorphic in (€-[1,0)) x (C-[1, o»)). Hence
there exists an analytic functional (hyperfunction ) T supported by
K such that
GK(T)(X.y)= F3(a,a B,B',7,X,Y),

where K = [0, ¥(1)] x [0, ¥1)].

Example 6. ( Confluent hypergeometric function with two variables
) ®3(B,7,x,y) and ®2(B,B',7,x,y) are entire functions. So there
exist analytic functionals (hyperfunctions) T2 and T3 supported by
the origin such that

G{Q}(Tz) (x,y) = <I>2(B B',7,X,Y)

G{Q}(T3) (x,y) = <I>3(B 7 ,X,Y)

For the details of hypergeometric functions of two variables, we

refer the reader to [4] and. [6].
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Theorem 1. ([1] and [8]) Let K be a compact set in c™. Suppose

that entire function f(z) satisfies following conditions:

(1) For arbitrary ¢ > 0, there exists a constant C5 > @ such that

_ . n
| £(z) | < Ceexp(HK(z) + elzl) (z = (Zl""zn) e ¢ ).
(2) For any m = (ml,...mn) e {H v© }n ,

Df(m) = 0.

If all Ki (i= 1,...n ) are contained in U, then f(z) vanishes
identically.

Remark 1. Assumption Ki c U is crucial. Suppose that a e 23U. We
put f(a,z) = exp(az) - exp(a z). f(a,z) satisfies (1) and (2) in
theorem 1. But f(z) doesn't vanish identically. sin(% z) is a
special case of this example. (sin ( %-z) = (Zi)f(%-i, z) )

Another example ze—z is obtained by following manner:

-Z 1

ze =1im (a - a ) ~ f(a,z).
ae 230
a-> -1

Theorem 2. (Abel interpolation formula. [1] and [8]) Suppose that
K is a compact set in ¢? and entire function f(z) satisfies
condition (15‘in thedrem 1. ' |
If Ki ¢ A for i=1,...n, then folioWing expansioh is valid:

m, m,-1 m_-1

f(z) =3 . yn Dmf(m) zl...in(zl—ml) 1 ...(zn—mn) n
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To prove theorem 2. we need following lemma.

Lemma 1

exp(zt) = %2 (te®)? z(z-n)? 1 (

0 te A).
n!

n_1/n! behaves like O(e® )

(Proof) By Stirling's formula, z(z-n)
for sufficiently large n. Hence if t belongs to A then the series in

the right hand side converges uniformly

n

%! = (2”1)_1 I z 01 exp(az)dz,

z(z—n)n_l _ LE:Elp . (z—n)n_l
n! n! (n-1)!

Applying these identities and residue theorem to right hand side in

lemma, we obtain lemma.

(Proof of Theorem 2)
By Martineau - Ehrenpreis's theorem, there exists an analytic
functional T € & '(K) such that f(z) = T(z). From the definition,

T(z) = <T exp(<t,z>)>.

t)
Inserting the identity in lemma, we obtain Abel interpolation

series.

Example 7. (confluent hypergeometric function ®(a,7,w) )

As shown in example 4, there exists an analytic functional T& v

supported by the origin such that é{ggT)(w) = ®(a,y,w) . Since {0}

is included in A, T @,y can be expanded to Abel interpolation

series.
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Example 8. (Abel's identity) We apply Abel's interpolation

formula to (y + z)n. Then we have
n_ n n n-k, _ . k-1
(y+z) "= 2 §_o () (¥+K) (z-k) .

Putting y = r/q, z = p/q. We obtain

-

(r+p)® = p 30, (1) (k) K (p-ka) ¥ 7.

This is so - called Abel's identity.([3]) If g=0, this is binomial
expansion.

zZ . .
is Fourier -

Remark 2. We can not omit condition K, ¢ A. ze
Borel transform of &'(t+1). support of &8'(t+1) is {-1}. {-1} is a
boundary point of A. Hence ze—Z is not expressed by Abel

interpolation series. f(a,z) ( ae 3aU ) also give such example.

Remark 3. 1In the case of K c¢ U, Abel interpolation series is

Mittag - Leffler summable in general. ([2]).

Theorem 3. Suppose that entire function f(z) satisfies following
assumptions
(3) There exists a constant C > @ such that

n
| f(z) I < C exp( 2k=1 ay 'ZH ).
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(a) p1*Ie(i+j) = pleci)pIe(j)  (for any i,j e WD ).
If ak< ¥(1) for all k = 1,...n , then f(z) is constant.
4. Transform é for analytic functionals with unbounded carrier.

In this section we will consider transform G of analytic
functionals with unbounded carrier. Let L be a closed convex set
bounded in the imaginary direction. Holomorphic test function space

Q(L:k') is defined as follows

Q(L:k') = 1im ind Qb(L k'),
' &
£ >8
E >
Q, (L :k'+e') = {f ¢ O ( £.) nc(L ); sup I £(t) Ilexp ((k'+ %)t |
& & & tel < + »

g (ﬁe) and C(f;) denote'thé space of holomorphic functions in ﬁs
(interior of La) and the space of continuous functions in f;
(closurer of Ls) respectively. Q'(L:k') denotes the dual space of
Q(L:k'). The element of Q'(L:k') is called analytic functional with
carrier L and of type k'. %(z) = < Tt,-exp(<t,z>)> is Fourier -
Borel transform of T € Q'(L:k'"). i(z) is holomorphic in the direct
‘ﬁfﬁdﬁct of half planes qgl{ Re zi<—k'} and of exponential type‘HL(z)

(supporting function of L). Converse statement also valids. ([7])
Now we put following assumptions

(i) 0 < k' < 1,
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(ii) Li c U n{ Re ti> ai} for some ai> o . (i=1,...n).

Under these two conditions we can define transformation GL(T) for T
e Q'(L:k') as follows

o.% (1-w.t,exp(t ))_1>
i=1 i71 i :

GL(T)(w) = <Tt’

éL(T)(w) has following properties.

Proposition 2. ([9])

(5) éL(T)(w) is holomorphic in H?zl(c—?(Li) ).

-m -m
2m e y1 D T(-m)w .

[}
~
§
b
'

(8) éL(T)(w)»

(7) (inversion formula)

T - I - , aw dw
T(z) = (221)™" [ 6, (T)(Wexp(F z;¥ (wy)) Ll ...omn
r 1 n
r QKle..;x Fn and Fi (i=1,...n) is a boundary of sector with

'vertex,at:zéro surroundihg 7 (Li)'

5. Main results.

In this section we show our main results.

Theorem 4. Suppose that @ < k' < 1 and f(z) satisfies following

conditions:
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(8) f(z) is holomorphic in H?=1{ zie € ; Re zi < -k' }

(9) for all ¢ > 0O ahd e '> 0, there exists a constant Cs 8,2 0

such that

’

| £(z) | < Ce e.exp( HL(z) + g1 z1), (Re z; < -k'-¢', i=1,...n ).

(10) D® f(-m) =0 , (m = (mg,...m ) e .

If L satisfies (ii) in sec.4, then f(z) vanishes identically.

(Proof) By the assumptions (8) and (9), there exists T € Q'(L:k')
such that f(z) = %(z).([7]) From assumption (10@) and expansion (6)
in Prop.2. GL(T)(w) vanishes identically. Hence by inversion

formula (7) in Prop.2, f(z) vanishes identically.

Remark 4. We can not omit condition (ii) in theorem 4. Suppose
that a € 89U and Re a > @. Then f(a,z) satisfies all assumptions in
theorem 4. But f(a,z) does not vanishes identically.

Corollary. We assume (8), (9) in theorem 4 and (i), (ii) in sec.4.
Suppose that f(z) satisfies following conditions
(11) D '7Ie(-i-j5) = Dte(-1) DTIF(-j) (for a1l i, j e wmP),

(12) D f(-i) e 2z, (for all i ¢ WD ).

If ai> ¥ (1) (= 0.567...), then f(z) vanishes identically.
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Remark 5 Condition ai> ¥ (1) is crucial. Put f(z) = exp(¥(1l)z).
Then f(z) satisfies (11) and (12). But this function doesn't vanish

identically.

Now we assume that F is a algebraic number field with [F, @] = d.

We put 86 =d if Fc Rand é&6= d/2 if F ¢ R. OF denotes the set of

algebraic integers in F. For algebraic integer a. we put

fal] =max {I| a, | ; a,'

i i are cojugates of a over Q }.

Theorem 5. We put same assumptions (8) and (9) in theorem 4 and

(i) and (ii) in sec.4. Suppose that f(z) satisfies following
conditions

(13) D 2f(-m) e O ( for allm e W' ).

F ’

(14) 1im sup (I m II)_llog | D-mf(—m) | < ¢, (for some c > 0 )

llm|]| 20

If log (d(¢(Li)) < -(6-1)c valid for i=1,...n, then f(z) is

exponential polynomial.
Corollary Let L = H?=l[ai, o ).  Suppose that f(z) satisfies

(8) and (9) in theorem 4 and D ™f(-m) € Z for all m ¢ N=.

If a; > ¥(4), then f(z) is exponential polynomial.
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